RU (495) 989 48 46
Пленка на бампер

АНТИГРАВИЙНАЯ ЗАЩИТА БАМПЕРА

 

Виды передач в механике


Механические передачи.

Механические передачи



Общие понятия и определения

Передачей, в общем случае, называется устройство, предназначенное для передачи энергии из одной точки пространства в другую, расположенную на некотором расстоянии от первой.

В зависимости от вида передаваемой энергии передачи делятся на механические, электрические, гидравлические, пневматические и т.п.
Курс "Детали машин" изучает механические передачи, предназначенные для передачи механической энергии.

Механической передачей называют устройство (механизм, агрегат), предназначенное для передачи энергии механического движения, как правило, с преобразованием его кинематических и силовых параметров, а иногда и самого вида движения (вращательного в поступательное или сложное и т. п.).
Наибольшее распространение в технике получили передачи вращательного движения, которым в курсе деталей машин уделено основное внимание (далее под термином передача подразумевается, если это не оговорено особо, именно передача вращательного движения).

В общем случае в любой машине можно выделить три составные части: двигатель, передачу и исполнительный элемент.
Механическая энергия, приводящая в движение машину или отдельный ее механизм, представляет собой энергию вращательного движения вала двигателя, которая передается к исполнительному элементу посредством механической передачи или передаточного устройства. Передачу механической энергии от двигателя к исполнительному элементу машины осуществляют с помощью различных передаточных механизмов (в дальнейшем – передач): зубчатых, червячных, ременных, цепных, фрикционных и т. п.

***

Функции механических передач

Передавая механическую энергию от двигателя к исполнительному элементу (элементам), передачи одновременно могут выполнять одну или несколько из следующих функций.

Понижение (или повышение) частоты вращения от вала двигателя к валу исполнительного элемента.
Понижение частоты вращения называют редуцированием, а закрытые передачи, понижающие частоты вращения, - редукторами.
Устройства, повышающие частоты вращения, называют ускорителями или мультипликаторами.
В технике и машиностроении наибольшее применение получили понижающие передачи , поэтому в курсе Детали машин им уделяется преимущественное внимание. Впрочем, принципиальная разница в расчетах редуцирующих передач и ускорителей невелика.

Изменение направления потока мощности.
Примером может служить зубчатая передача (редуктор) заднего моста автомобиля. Ось вращения вала двигателя у большинства автомобилей составляет с осью вращения колес прямой угол. Для изменения направления потока мощности в данном случае применяют коническую зубчатую передачу.

Регулирование частоты вращения ведомого вала.
С изменением частоты вращения изменяется и вращающий момент: меньшей частоте соответствует больший момент. Для регулирования частоты вращения ведомого вала применяют коробки передач и вариаторы.
Коробки передач обеспечивают ступенчатое изменение частоты вращения ведомого вала в зависимости от числа ступеней и включенной ступени.
Вариаторы обеспечивают бесступенчатое в некотором диапазоне изменение частоты вращения ведомого вала.

Преобразование одного вида движения в другой (вращательного в поступательное, равномерного в прерывистое и т. д.).

Реверсирование движения - изменение направления вращения выходного вала машины в ту или иную сторону в зависимости от функциональной необходимости.

Распределение энергии двигателя между несколькими исполнительными элементами машины.
Так, любой сельскохозяйственный комбайн вмещает несколько механизмов, выполняющих самостоятельные технологические операции по уборке урожая, при этом каждый из этих механизмов приводит в движение собственный исполнительный элемент (ходовую часть, жатку, молотилку, очистку и т. п.). Поскольку комбайн, как правило, оснащен одной силовой установкой (двигателем), при помощи передач его энергия распределяется между каждым из обособленных механизмов.

***



Классификация механических передач

В зависимости от принципа действия механические передачи разделяют на две основные группы:

Каждая из указанных групп передач подразделяется на две подгруппы:

Кроме этих основных классификационных признаков передачи подразделяют по некоторым другим конструктивным характеристикам: расположению валов, характеру изменения вращающего момента и угловой скорости, по количеству ступеней и т. д.

Классификация механических передач по различным признакам представлена ниже.

1. По способу передачи движения от входного вала к выходному:
       1.1. Передачи зацеплением:
            1.1.1. с непосредственным контактом тел вращения - зубчатые, червячные, винтовые;
            1.1.2. с гибкой связью - цепные, зубчато-ременные.
       1.2. Фрикционные передачи:
            1.2.1. с непосредственным контактом тел вращения – фрикционные;
            1.2.2. с гибкой связью - ременные.

2. По взаимному расположению валов в пространстве:
      2.1. с параллельными осями валов - зубчатые с цилиндрическими колесами, фрикционные с цилиндрическими роликами, цепные;
      2.2. с пересекающимися осями валов - зубчатые и фрикционные конические, фрикционные лобовые;
      2.3. с перекрещивающимися осями - зубчатые - винтовые и гипоидные, червячные, лобовые фрикционные со смещением ролика.

3. По характеру изменения угловой скорости выходного вала по отношению к входному: редуцирующие (понижающие) и мультиплицирующие (повышающие).

4. По характеру изменения передаточного отношения (числа): передачи с постоянным (неизменным) передаточным отношением и передачи с переменным (изменяемым или по величине, или по направлению или и то и другое вместе) передаточным отношением.

5. По подвижности осей и валов: передачи с неподвижными осями валов - рядовые (коробки скоростей, редукторы), передачи с подвижными осями валов (планетарные передачи, вариаторы с поворотными роликами).

6. По количеству ступеней преобразования движения: одно-, двух-, трех- и многоступенчатые.

7. По конструктивному оформлению: закрытые и открытые (безкорпусные).

Наибольшее распространение в технике получили следующие виды механических передач:

Зубчато-ременные передачи можно выделить в отдельную группу передач с промежуточной гибкой связью, поскольку они способны передавать мощность и посредством трения, и посредством зацепления.

***

Основные характеристики механических передач

Главными характеристиками передачи, необходимыми для ее расчета и проектирования, являются передаваемые мощности (по величине и направлению) и скорости вращения валов – входных (ведущих), промежуточных, выходных (ведомых).
В технических расчетах вместо угловых скоростей обычно используются частоты вращения валов - nвх и nвых, измеряемые в оборотах за минуту. Соотношение между угловой скоростью ω (рад/сек) и частотой вращения n (об/мин):

ω ≈ πn/30

Еще важный параметр механической передачи – коэффициент полезного действия (КПД), характеризующий потери мощности при передаче от двигателя к исполнительному элементу.

***

Фрикционные передачи


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Общие сведения о передачах

Передачей называется устройство для передачи энергии на расстояние. В зависимости от способа осуществления передачи энергии различают механические, электрические, пневматические и гидравлические передачи. Из механических передач самые распространенные передачи вращательного движения, так как вращательное движение легко сделать непрерывным, проще и легче осуществить в виде компактной конструкции, при нем легче достигнуть равномерности хода, уменьшить потери на трение.

Рис. 1 Рис. 2

В курсе «Детали машин» изучают лишь механические передачи вращательного движения, которые принято называть просто передачами. Другие виды механических передач, а также электрические, пневматические и гидравлические передачи (приводы) изучают в специальных курсах расчета и конструирования тех машин, где эти передачи применяются.

Рис. 3 Рис. 4

Передачи вращательного движения служат для передачи энергии от двигателей к рабочим машинам, обычно с преобразованием скоростей, сил и крутящих моментов.

Рис. 5 Рис. 6

Кроме того, эти передачи широко применяют в различных механизмах для преобразования скорости, а в некоторых случаях и вида или закона движения. Передачи вращательного движения подразделяют на передачи с непосредственным контактом тел вращения и передачи с гибкой связью, в которых тела вращения связаны между собой гибким звеном. К первым передачам относятся фрикционная (рис. 1), зубчатая (рис. 2) и червячная (рис. 3), а ко вторым — ременная (рис. 4) и цепная (рис. 5). В зависимости от способа передачи движения от ведущего тела вращения ведомому различают передачи трением и передачи зацеплением. К первым относятся передачи фрикционные и ременные, а ко вторым — зубчатые, червячные и цепные. К передачам вращательного движения относят также передачи винт—гайка (рис. 6), назначение которых — преобразовывать вращательное движение в поступательное.


Презентация по технической механике "Виды передач"

Инфоурок › Другое ›Презентации›Презентация по технической механике "Виды передач"

Скрыть

Описание презентации по отдельным слайдам:

1 слайд Описание слайда:

ВИДЫ ПЕРЕДАЧ

2 слайд Описание слайда:

Передачи Под передачами понимают механизмы, служащие для передачи механической энергии на расстоянии с преобразованием скоростей, моментов, законов и видов движения.

3 слайд Описание слайда:

Структура передачи Двигатель Передача Рабочий орган

4 слайд Описание слайда:

Виды передач Механические Электрические Пневматические Гидравлические Комбинированные

5 слайд Описание слайда:

Механические передачи Передачи, основанные на использовании сил трения между элементами передачи Передачи зацеплением, работающие в результате давления между зубьями и кулачками на взаимодействующих деталях

6 слайд Описание слайда:

Классификация передач. По характеру изменения скорости – понижающие и повышающие. По характеру движения валов – простые, планетарные. По конструктивному исполнению – открытые и закрытые. По числу ступеней – одноступенчатые, многоступенчатые.

7 слайд Описание слайда:

Многоступенчатая передача

8 слайд Описание слайда:

Фрикционная передача Состоит из двух гладких дисков, прижатых друг другу.

9 слайд Описание слайда:

Ременная передача 1, 3 – шкивы. 2 – охватывающий ремень

10 слайд Описание слайда:

Типы ремней Плоские Клиновые Зубчатые

11 слайд Описание слайда:

Вариаторы Это передачи, позволяющие в определенных переделах плавно изменять передаточное отношение. Изменять передаточное отношение можно либо изменяя положение ремня на конических шкивах ременной передачи, либо перемещая ролик во фрикционной передаче.

12 слайд Описание слайда:

Вариаторы с ремнем

13 слайд Описание слайда:

Вариаторы с роликом

14 слайд Описание слайда:

Зубчатые передачи Если на дисках имеются зубья определенного профиля, расположенные на равном расстоянии друг от друга.

15 слайд Описание слайда:

Виды зубчатых колес А – прямые, Б- косые, В – шевронные Наименьшее число зубьев на колесе - 17

16 слайд Описание слайда:

Зубчатые передачи Ж – с внешним зацеплением, З – с внутренним зацеплением.

17 слайд Описание слайда:

Зубчатые передачи Передаточное отношение увеличивается за счет создания многоступенчатых передач х х

18 слайд Описание слайда:

Планетарные передачи Передача, имеющая в своем составе зубчатые колеса с движущимися геометрическими осями (одновременное вращение колеса вокруг своей оси и оси неподвижного колеса.)

19 слайд Описание слайда:

Цепная передача Состоит из 2-х звездочек, расположенных на параллельных валах и охватывающей цепи.

20 слайд Описание слайда:

Червячная передача Состоит из червячного (косозубого колеса) с зубьями специального профиля и червяка (винта с трапецеидальной резьбой).

Курс профессиональной переподготовки

Педагог-библиотекарь

Курс профессиональной переподготовки

Специалист в области охраны труда

Курс повышения квалификации

Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:

Выберите категорию: Все категорииАлгебраАнглийский языкАстрономияБиологияВнеурочная деятельностьВсеобщая историяГеографияГеометрияДиректору, завучуДоп. образованиеДошкольное образованиеЕстествознаниеИЗО, МХКИностранные языкиИнформатикаИстория РоссииКлассному руководителюКоррекционное обучениеЛитератураЛитературное чтениеЛогопедия, ДефектологияМатематикаМузыкаНачальные классыНемецкий языкОБЖОбществознаниеОкружающий мирПриродоведениеРелигиоведениеРодная литератураРодной языкРусский языкСоциальному педагогуТехнологияУкраинский языкФизикаФизическая культураФилософияФранцузский языкХимияЧерчениеШкольному психологуЭкологияДругое

Выберите класс: Все классыДошкольники1 класс2 класс3 класс4 класс5 класс6 класс7 класс8 класс9 класс10 класс11 класс

Выберите учебник: Все учебники

Выберите тему: Все темы

также Вы можете выбрать тип материала:

Общая информация

Номер материала: ДБ-117155

Похожие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

виды и типы, достоинства и недостатки, область применения, назначение, общие сведения, из чего состоят, где применяются, характеристики, определение, принцип действия

08.07.2020

Огромное количество устройств с механическими деталями использует принцип переноса силового усилия, вращательного момента, направления давления посредством особого способа. И именно его мы сегодня и затронем в обзоре. Мы разберем типы и виды, применение и назначение, преимущества зубчатых передач. А также рассмотрим смежные моменты.

Общее описание

Для того чтобы передать усилия, ранее использовался повсеместно лишь один метод — ременный, который имел важное промежуточное звено — ремень. В нашем же случае способ меняется. Ненужный переходник исключается, вместо него появляется сцепление между элементами.

Таким образом, увеличивается не только уровень надежности и минимизируется размер всей системы, но также достигается и еще одно важное преимущество. Снижается расход энергии, необходимый для активации всей конструкции.

Существует масса ключевых факторов, которые определяют эффективность, сферу применения механизма. Разумеется, важным аспектом становятся габариты, материал производства и точность.

Если говорить про общие сведения о зубчатых передачах, нужно знать, что в хорошем продукте между зубьями всегда присутствует зазор. Они не располагаются вплотную. Иначе скольжение будет невозможным по определению. А также будет крайне неудобно смазывать подвижные части. Эксплуатационный срок, равно как и эффективность применения будет значительно снижена. Не нужно забывать, что многие типы производства подразумевают образование высоких температур на производственных площадках. А сами механические детали во время работы ввиду банальной силы трения разогреваются. Значит, металл будет расширяться, незначительно увеличиваться в размерах. И без зазора зубья просто встанут, упираясь друг в друга и заблокировав дальнейший ход.

Поэтому выбор конечного продукта всегда стоит останавливать на том, что точно не подведет. Именно поэтому мы в компании «Сармат» всегда внимательно относимся к деталям. И любая часть наших станков и иной продукции отвечает не только всем требованиям нормативной документации, но и желаниям наших клиентов.

Элементы конструкции зубчатой передачи

Данное устройство по своей сути является довольно простым. В нем используется минимальное количество составных частей. Соответственно, это значительный плюс в пользу эксплуатационного срока. Как бы далеко ни шагнула наука и прогресс — чем проще механизм, тем реже он ломается. Это факт, с которым невозможно спорить.

Хотя, говоря о герое нашего обзора, в первую очередь в воображении предстает колесо, но это лишь вершина айсберга. Посмотрим более подробно:

Стоит также осознавать, что основа для любой шестерни – это зубья. Они и подарили название всей системе. Величина, количество, периодика расположения отличает виды друг от друга. Наклон тоже может существенно меняться в различных моделях.

Важно уточнить, что эти шестерни устанавливаются на вал через прессование. В результате общая конструкция обладает изрядной прочностью, а холостой поворот колеса исключается по определению. А это означает, что будет меньше потерь энергии. В большей части случаев снижается расход электрического тока, служащего источников для движения вала.

Как классифицируются зубчатые передачи

Сложно выделить единую градацию, на которую бы опирался каждый производитель. Существует значительное количество разнообразных факторов, становящихся фундаментальными в зависимости от задач на производстве. Поэтому и используется несколько вариаций группировки.

Посмотрим, по каким аспектам разделяют эти инструменты на подвиды:

Основные достоинства и недостатки зубчатых передач

Ключевые преимущества видны невооруженным взглядом. Это:

Но и минусы тоже существуют:

Типы

А теперь пройдемся по конкретным представителям своего жанра. Сначала остановимся на наиболее общих группах. А после уже перейдем к узким нишам.

Конические

Название говорят за себя. Основа колеса имеет форму конуса. Оси в таком варианте всегда перекрещиваются. Есть и иные отличительные стороны. Как непрямые зубья. Хотя, в принципе существует и аналог с прямыми, просто это менее распространенный выбор.

Примечательно, что в результате форму позволяет увеличить площадь соприкосновения между элементами. А угол достигает 90 градусов. Поэтому фиксация, по заверению экспертов, становится более надежной. Также интересно то, что зубья утолщаются от основания к вершине. А значит, после зацепа они весьма надежно держатся за партнеров. И соскальзывание почти полностью исключается.

Понятие, принцип действия зубчатой передачи конической формы строится на надежности. Но нельзя сказать, что это экономичный вариант. Ведь он неотвратимо теряет в среднем 15% импульса, который передает ему вал. Прямой угол просто не позволяет сохранить всю прилагаемую силу.

С переменным передаточным отношением

Это относительно новое веяние в сфере. Смысл строится на том, что в стандартном механизме положение полюса зацепления всегда остается неизменным, статичным. А в этом прогрессивном виде оно «гуляет», изменяется под среду и нужды. Нельзя сказать, что это очень популярная разновидность, но в определенных случаях он показывает весьма завидные результаты.

Планетарные

Их еще можно назвать подвижными. В этом варианте ось колеса может перемещаться. Чтобы было яснее, в механизме шестерни не крутятся на месте, а более мелкое «бегает» по крупному. Движением становится намного разнообразнее, приходится пройти весь круг. И ось должна двигаться по траектории, меняя свое положение постоянно.

Разновидности колес

А теперь разберем основные виды, параметры зубчатых передач в зависимости от колес. Это самая популярная градация, на которой основываются чаще всего.

Цилиндрические

Наиболее распространенный способ. Используется два колеса с различным количественным фактором зубьев. Характеризуются постоянным передаточным отношением, никаких «плавающих» переменных. Оси по традиции параллельные. Существуют две вариации реализации такого механизма, с повышающим и понижающим фактором. В первом случае отношение количества зубьев больше единицы, во втором, соответственно, меньше.

Коническая

Об этой вариации мы уже немного поговорили. Смысл заключается в наличии угла между элементами. Разумеется, такой подход снижает КПД. Но для пущей надежности, особенно если подразумеваются высокие скорости вращения – это идеальное решение.

Червячная

Особый тип. В этом случае используется скрещивание осей. И принцип работы зубчатой передачи строится на заходах, каждый из которых немного тормозит движение. Меньшее колесо описывает от одного до четырех кругов по крупному собрату. Ход в обратную сторону, кстати, в такой конструкции не допускается. Сила трения слишком велика, она просто не позволит пойти назад. Зачастую к общему набору составных частей добавляются еще и редукторы.

Механизмы

Помимо описанных вариаций, есть еще парочка, которые являются более редкими, но все столь же результативными. В первую очередь, реечная. Используется не для передачи крутящего момента. Напротив, здесь вращательное движение проходит преобразование с помощью рейки. И на выходе мы видим поступательное. Возможен и обратный процесс.

А также существуют винтовые. Они весьма точны и надежны, поэтому реализуются в различных компактных приборах. Но есть и негативная сторона. Проседает эксплуатационный срок, соприкосновение почти без зазоров, а значит, поверхность просто стирается при работе.

Форма и характеристика зуба

Мы уже пояснили, из чего состоит зубчатая передача. И главным фактором колеса являются зацепы. Поэтому конструкция так и называется. Но им пока уделили недостаточно внимания. А ведь у них есть свои отличительные стороны и видовое разнообразие.


Это:

Материалы

Чаще всего используется сталь. Но более мягкая и дешевая в вале и подшипниках. И максимально жесткая в колесах. Ведь они постоянно контактируют, трутся, давят. Поэтому применяется не только легированная сталь или углеродная, но и специальные методы обработки. Азотирование как вариант, а также цементирование. Закалка поверхностного уровня.

Любопытно, что в середине зацепы куда мягче, чем на поверхности. Ведь если сделать их твердыми по всему объему, они начнут ломаться при постоянных нагрузках, станут хрупкими. А если учитывать сферы, где применяются зубчатые передачи, особенности использования – такого допускать нельзя.

Геометрические параметры колес

Есть определенные нюансы конструкционного плана. Боковые стороны всегда соприкасаются. Это главная точка поверхности, передающая импульс. А угол всегда подбирается с учетом смещения, чтобы при некорректной работе не заблокировались шестерни.

Поэтому важно учитывать: диаметр, длину окружности, размер зацепов, периодику, частоту. Все эти параметры указываются в сопутствующей документации. И должны точно соответствовать требованиям нормативов.

Методы обработки

Для пущей надежности каждая деталь после производства и обкатки проходит еще термическую закалку. И это обязательный процесс для продукта, который прослужит долго. В большей части случаев термообработки хватает, но есть некоторые детали, которые используются в высокоточных приборах. И тогда уже понадобится еще шлифовать каждый продукт.

Области применения

Существует масса промышленных сфер, где с успехом нашли свое отражение такие конструкции. Проще найти отрасль, где их нет. От точных приборов до гигантских буровых установок. Используются в двигателях внутреннего сгорания, а значит, почти в каждом виде транспорта на земле: станки, конвейеры на фабричном производстве и в цехах. Даже в небольших элитных наручных часах применяется все тот же принцип. Просто без электрического привода.

Изучив классификацию и область применения зубчатых передач, остается только пожелать вам подобрать грамотный продукт для своего производства. И гидом, помогающим обойти все перипетии современного рынка, станет компания «Сармат».


Устройство коробки переключения передач: схема, принцип работы МКПП

Коробка переключения передач (сокр. КПП или коробка передач) предназначена для изменения крутящего момента, передаваемого от коленчатого вала двигателя к ведущим колесам, для движения автомобиля задним ходом и длительного разобщения двигателя от трансмиссии во время стоянки автомобиля и при движении его по инерции.
Устройство механической коробки передач (кликабельно).Механическая коробка передач — КПП, в которой выбор передач и их включение осуществляется вручную, механическим способом. Механическая коробка передач уже не является наиболее распространенным типом КПП из применяемых на автомобилях сегодня. Однако она все еще остается достаточно востребованной благодаря своей надежности, простоте конструкции и ремонтопригодности.

Содержание статьи:

Устройство механической коробки передач

Схема работы КПП: 1 — первичный вал; 2 — рычаг переключения; 3 — механизм переключения; 4 — вторичный вал; 5 — сливная пробка; 6 — промежуточный вал; 7 — картер.Конструктивно МКПП состоит из следующих элементов:

Сцепление

Сцепление является неотъемлемым компонентом механической КПП, осуществляющим разъединение двигателя и коробки в момент переключения ступеней без последствий для агрегатов. Говоря упрощенно — сцепление отключает крутящий момент. В момент выжатой педали сцепления мотор и колеса автомобиля вращаются отдельно друг от друга.

Сцепление создано для аккуратного соединения мотора и колес. Состоит из двух дисков, один из которых соединен с двигателем, второй — с колесами. В момент отпускания педали сцепления диски прижимаются и начинаются вращаться вместе. Именно поэтому и важна плавность отпускания педали.

Шестерни и валы

В стандартных МКПП оси валов расположены параллельно, на них располагаются шестеренки.
Ведущий (первичный) вал присоединяется к маховику мотора через корзину сцепления, находящиеся на нем продольные выступы передвигают второй диск сцепления и передают через жестко закрепленную ведущую шестерню вращающий момент на промежуточный вал.

В хвостовике ведущего вала расположен подшипник, к которому примыкает конец вторичного. Отсутствие фиксированной связи делает возможным крутиться валам независимо друг от друга в разных направлениях и с разными скоростями.

На ведомом вале имеется целый набор различных шестерней как жестко закрепленных, так и свободно вращающихся.

Синхронизаторы

Угловые скорости первичного и вторичного валов уравниваются при содействии синхронизатора и становится возможным смена ступени. Синхронизаторы обеспечивают более щадящий режим эксплуатации КПП и пониженный шум.
Во время включения водителем передачи муфта подается в сторону нужной шестеренки. Во время перемещения усилие переходит на одно из блокировочных колец муфты. За счет разных скоростей между шестерней и муфтой конические поверхности зубьев взаимодействуют с помощью силы трения. Она поворачивает блокировочное кольцо на упор.

Зубья последнего устанавливаются против зубьев муфты, поэтому последующее смещение муфты становится невозможным. Муфта заходит без противодействия в зацепление с малым венцом на шестерне. Шестерня за счет такого соединения жестко блокируется с муфтой. Такой процесс осуществляется за доли секунды. Один синхронизатор обычно обеспечивает включение двух передач.

Виды механических КПП

По количеству ступеней (передач) механические коробки в основном подразделяются на:

Наиболее распространенной механикой считается 5МТ, то есть пятиступенчатая коробка переключения передач.

По количеству валов МКПП подразделяются на:

Принцип работы МКПП

Суть функционирования МКПП состоит в создании соединений между первичным и вторичным валом путем варьирования шестерней с различным количеством зубьев, что адаптирует трансмиссию под постоянно меняющиеся обстоятельства передвижения транспортного средства.

Данный силовой агрегат обеспечивает необходимые режимы работы мотора путем изменения количества оборотов, изменяя передаваемое усилие на ведущие колеса. Соответственно, при уменьшении количества оборотов снижается передаваемое усилие, а при увеличении — увеличивается. Это необходимо при удержании требуемого режима работы мотора при начале движения, снижении скорости или разгоне.

Двухвальная коробка передач: устройство и принцип работы

В таких трансмиссиях вращающий момент передается от шестеренок первичного вала на шестеренки ведомого. Ведущий вал соединяется с мотором через маховик, а ведомый передает вращающий момент на передние колеса. Располагаются они параллельно.

Ведущая шестеренка главной передачи на вторичном валу крепко зафиксирована. Между шестеренками находятся муфты синхронизаторов.

Для уменьшения габаритов агрегата и для увеличения количества ступеней устанавливается до трех вторичных валов, на каждом из них стоит шестеренка главной передачи, которая постоянно взаимодействует с ведомой шестеренкой.

Главная передача и дифференциал трансформируют вращающий момент вторичного вала на ведущие колеса машины.

Трехвальная коробка передач: устройство и принцип работы

Подшипники, расположенные в корпусе, обеспечивают вращение валов. На каждом валу имеется комплект шестеренок с различным числом зубьев.

Ведущий вал примыкает к двигателю посредством корзины сцепления, ведомый с карданным, промежуточный передает вращающий момент вторичному.

На первичном валу имеется ведущая шестеренка, которая раскручивает промежуточный с расположенным на нем крепко зафиксированным набором шестеренок. На ведомом валу имеется свой комплект шестеренок, перемещающихся по шлицам.

Между шестеренками вторичного вала находятся муфты синхронизаторы, которые выравнивают угловые скорости шестеренок с оборотами самого вала. Синхронизаторы крепко закреплены на валах и передвигаются в продольном направлении по шлицам. На современных МКПП такие муфты находятся на каждой ступени.

Преимущества и недостатки МКПП

Преимущества Недостатки
Стоимость и масса коробки ниже в сравнении с другими типами КПП Меньший уровень комфорта для водителя в сравнении с другими КПП
Высокие динамика разгона, топливная экономичность и КПД Утомляющий для водителя процесс переключения передач
Высокая надежность за счет простоты конструкции Необходимость периодической замены сцепления
Простое и недорогое обслуживание Более низкая плавность хода автомобиля в сравнении с другими типами КПП
Возможность более эффективного движения по бездорожью При неправильной эксплуатации повышенные нагрузки на ДВС

Как пользоваться механической коробкой

Использование автомобиля с механической КПП имеет некоторые особенности, которые нужно знать автолюбителю.

Во-первых, это последовательность действий при запуске машины:

Во-вторых, схема переключения на МКПП. Она чаще всего находится на внешней части рукоятки рычага. При переключении передачи рекомендуется ориентироваться на тахометр. Переключаться на более высокую передачу можно раскрутив обороты двигателя до 1500–2000 об/мин в случае дизельного мотора и до 2000–2500 об/мин в случае бензинового.

В-третьих, процесс переключения передач. Он состоит из нескольких этапов:

В-четвертых, регулярная проверка уровня рабочей жидкости и замена ее согласно указаниям производителя продлят период эксплуатации механической КПП.

Заключение

В большинстве стран с более высоким доходом населения количество выпускаемых авто с МКПП уменьшено практически до 10-15%. Связано это в первую очередь с комфортом во время вождения — при использовании АКПП он несомненно выше. Механическая КПП имеет самый простой принцип работы. Из-за этого она дешевле и экономичнее. МКПП является отличным решением для любителей быстрой езды или езды по бездорожью. Если комфорт для вас не является первостепенным, то выбор в пользу МКПП очевиден.

Ременные передачи.

Ременные передачи



Общие сведения о ременных передачах

Ременные передачи относятся к передачам трением (фрикционным), у которых передача мощности осуществляется за счет сил трения, возникающих между ведущим, ведомым и промежуточным звеном – упругим ремнем (гибкой связью).
Ведущее и ведомое звено обычно называют шкивами. Этот тип передач обычно применяется для соединения валов, расположенных на значительном расстоянии друг от друга.

Для нормальной работы ременной передачи необходимо предварительное натяжение ремня, которое может осуществляться за счет перемещения одного из шкивов, за счет натяжных роликов или установки двигателя (механизма) на качающейся плите.

***

Классификация ременных передач

Ременные передачи классифицируют по различным признакам - по форме поперечного сечения ремня, по взаимному расположению валов и ремня, по количеству и виду шкивов, по количеству охватываемых ремнем шкивов, по способу регулировки натяжения ремня (с вспомогательным роликом или с подвижными шкивами).

1. По форме поперечного сечения ремня различают следующие виды ременных передач:

Наибольшее применение в машиностроении имеют клиновые и поликлиновые ремни. Передачу круглым резиновым ремнем (диаметром 3…12 мм) применяют в приводах малой мощности (настольные станки, приборы, бытовые машины и т. п.).

Разновидностью ременной передачи является зубчатоременная, в которой передача мощности осуществляется зубчатым ремнем путем зацепления зубцов ремня с выступами на шкивах. Этот тип передач является промежуточным между передачами зацеплением и передачами трением. Зубчатоременная передача не требует значительного предварительного натяжения ремня и не имеет такого недостатка, как скольжение ремня, которое присуще всем прочим ременным передачам.

Клиноременную передачу в основном применяют как открытую. Клиноременные передачи обладают большей тяговой способностью, требуют меньшего натяжения, благодаря чему меньше нагружают опоры валов, допускают меньшие углы обхвата, что позволяет применять их при больших передаточных отношениях и малому расстоянию между шкивами.

Клиновые и поликлиновые ремни выполняют бесконечными и прорезиненными. Нагрузку несет корд или сложенная в несколько слоев ткань.

Клиновые ремни выпускают трех видов: нормального сечения, узкие и широкие. Широкие ремни применяются в вариаторах.

Поликлиновые ремни – плоские ремни с высокопрочным кордом и внутренними продольными клиньями, входящими в канавки на шкивах. Они более гибкие, чем клиновые, лучше обеспечивают постоянство передаточного числа.

Плоские ремни обладают большой гибкостью, но требуют значительного предварительного натяжения ремня. Кроме того, плоский ремень не так устойчив на шкиве, как клиновый или поликлиновый.

2. По взаимному расположению валов и ремня:

3. По числу и виду шкивов, применяемых в передаче: с одношкивными валами; с двушкивным валом, один из шкивов которого холостой; с валами, несущими ступенчатые шкивы для изменения передаточного числа (для ступенчатой регулировки скорости ведомого вала).

4. По количеству валов, охватываемых одним ремнем: двухвальная, трех-, четырех- и многовальная передача.

5. По наличию вспомогательных роликов: без вспомогательных роликов, с натяжными роликами (рис. 2д); с направляющими роликами (рис. 2г).

***

Достоинства ременных передач

К достоинствам ременных передач относятся следующие их свойства:

***



Недостатки ременных передач

Основные недостатки ременных передач:

***

Область применения ременных передач

Ременные передачи применяют в большинстве случаев для передачи движения от электродвигателя или двигателя внутреннего сгорания, когда по конструктивным соображениям межосевое расстояние должно быть достаточно большим, а передаточное число может быть не строго постоянным (конвейеры, приводы станков, дорожных и сельскохозяйственных машин и т. п.). Передачи зубчатым ремнем можно применять и в приводах, требующих постоянного значения передаточного числа.

Мощность, передаваемая ременной передачей, обычно до 50 кВт, но может достигать 2000 кВт и даже более. Скорость ремня v = 5…50 м/сек, а в высокоскоростных передачах – до 100 м/сек и выше.

После зубчатой передачи ременная – наиболее распространенная из всех механических передач. Часто она используется в сочетании с другими типами передач.

***

Геометрические и кинематические соотношения ременных передач

Межосевое расстояние a ременной передачи определяет в основном конструкция привода машины. Рекомендуемые значения межосевого расстояния (см. рис. 3):

- для плоскоременных передач:

a ≥ 1,5(d1 + d2);

- для клиноременных и поликлиноременных передач:

a ≥ 0,55(d1 + d2) + h;

где:
d1, d2 – диаметры ведущего и ведомого шкивов передачи;
h - высота сечения ремня.

Расчетная длина ремня Lр равна сумме длин прямолинейных участков и дуг обхвата шкивов:

Lр = 2а + 0,5π(d2 + d1) + 0,25(d2 - d1)2/a.

По найденному значению из стандартного ряда принимают ближайшую большую расчетную длину ремня Lр. При соединении концов длину ремня увеличивают на 30…200 мм.

Межосевое расстояние в ременной передаче для окончательно установленной длины ремня определяют по формуле:

a = [2Lр - π(d2 + d1)]/8 + √{[2Lр - π(d2 + d1)]2 - 8 π(d2 - d1)2}/8.

Угол обхвата ремнем малого шкива

α1 = 180° - 2γ.

Из треугольника О1ВО2 (рис. 3)

sin γ = ВО21О2 = (d2 - d1)/2a.

Практически γ не превышает π/6, поэтому приближенно принимают sin γ = γ (рад), тогда:

γ = (d2 - d1)/2a (рад) или γ° = 180°(d2 –d1)/2πa.

Следовательно,

α1 = 180° - 57°(d2 – d1)/a.

Для проскоременных передач рекомендуют α1 150°, для клиноременных и поликлиновых передач α1 110°.

Передаточное отношение ременной передачи:

u = i = d2/d1(1 – ξ),

где: ξ – коэффициент скольжения в передаче, который при нормальной работе равен ξ = 0,01…0,02.

Приближенно можно принимать u = d2/d1;    ξ = (v1 –v2)/v1.

***

Статьи по теме:


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Типы зубчатых колес ~ Машиностроение

1) Цилиндрическая шестерня -Параллельные и параллельные валы, соединенные шестернями, называются цилиндрическими шестернями. Такое расположение называется прямозубым зацеплением.


Цилиндрические шестерни с прямыми зубьями параллельны оси колеса. Цилиндрические зубчатые колеса являются наиболее распространенным типом зубчатых колес. Преимуществами цилиндрических зубчатых колес являются простота конструкции, экономичность изготовления и обслуживания, а также отсутствие концевой тяги. Они накладывают на подшипники только радиальные нагрузки.

Цилиндрические зубчатые колеса известны как тихоходные зубчатые колеса. Если шум не является серьезной проблемой конструкции, прямозубые цилиндрические шестерни можно использовать практически на любой скорости.

2) Helical Gear - Зубья цилиндрических шестерен наклонены к оси валов в форме спирали, отсюда и название косозубые шестерни.

Эти шестерни обычно считаются высокоскоростными. Цилиндрические шестерни могут выдерживать более высокие нагрузки, чем прямозубые цилиндрические шестерни аналогичного размера. Движение косозубых шестерен плавнее и тише, чем движение прямозубых шестерен.

Одиночные косозубые шестерни создают как радиальные нагрузки, так и осевые нагрузки на свои подшипники, и поэтому требуют использования упорных подшипников. Угол наклона спирали как на шестерне, так и на шестерне должен быть одинаковым по величине, но противоположным по направлению, то есть правая шестерня входит в зацепление с левой шестерней.


3) Шестерня в елочку - Шестерни в елочку напоминают две косозубые шестерни, поставленные рядом. Их часто называют «двойными спиралями». В конструкции двойных косозубых шестерен тяги уравновешены.В таких двойных косозубых передачах отсутствует осевая нагрузка на подшипники.
4) Коническая / угловая шестерня -Пересекающиеся, но копланарные валы, соединенные шестернями, называются коническими шестернями. Такое расположение известно как коническая передача. Прямые конические шестерни можно использовать на валах под любым углом, но наиболее распространенным является прямой угол. Конические шестерни имеют конические заготовки. Зубья прямозубых конических шестерен имеют коническую форму как по толщине, так и по высоте.

Спирально-конические шестерни: В этих спирально-конических зубчатых колесах зубья расположены под углом.Спирально-конические шестерни работают тише и могут воспринимать большую нагрузку по сравнению с прямыми коническими шестернями.

Зубчатая передача с нулевой конической зубчатой ​​передачей: Зубчатая передача с нулевой конической зубчатой ​​передачей аналогичны прямым коническим зубчатым колесам, но их зубья изогнуты вдоль. Эти криволинейные зубья конических шестерен с нулевым углом наклона расположены таким образом, что эффективный угол спирали равен нулю.


5) Червячная передача - Червячные передачи используются для передачи мощности под углом 90 ° и там, где требуются большие редукции. Оси валов червячных передач пересекаются в пространстве.Валы червячных передач лежат в параллельных плоскостях и могут быть перекошены под любым углом от нуля до прямого угла. В червячных передачах одна шестерня имеет резьбу. Благодаря этому червячные передачи работают тихо, без вибраций и обеспечивают плавный выход. Червячные передачи и валы червячных шестерен почти всегда расположены под прямым углом.
6) Рейка и шестерня - Рейка представляет собой зубчатый стержень или стержень, который можно представить как секторную шестерню с бесконечно большим радиусом кривизны. Крутящий момент можно преобразовать в линейную силу путем зацепления рейки с шестерней: шестерня вращается; стойка движется по прямой.Такой механизм используется в автомобилях для преобразования вращения рулевого колеса в движение рулевой тяги слева направо. Стойки также используются в теории геометрии зубчатых колес, где, например, форма зуба сменного набора зубчатых колес может быть указана для зубчатой ​​рейки (бесконечный радиус), а формы зуба для зубчатых колес конкретных фактических радиусов затем могут быть определены из этого. Зубчатая передача реечного типа используется в зубчатой ​​железной дороге.
7) Внутренняя и внешняя шестерни - Наружная шестерня - это зубчатая передача, зубья которой сформированы на внешней поверхности цилиндра или конуса.И наоборот, внутренняя шестерня - это зубчатая передача, зубья которой сформированы на внутренней поверхности цилиндра или конуса. Для конических шестерен внутренняя шестерня - это шестерня с углом наклона более 90 градусов. Внутренние шестерни не вызывают изменения направления вращения. 8) Торцевые шестерни - Торцевые шестерни передают мощность под (обычно) прямыми углами при круговом движении. Торцевые зубчатые передачи не очень распространены в промышленном применении.
9) Звездочки - Звездочки используются для работы цепей или ремней.Обычно они используются в конвейерных системах.

Шестерни также можно классифицировать по положению оси вала:

a. Параллельная

1. Цилиндрическая шестерня

2. Цилиндрическая шестерня

3. Рейка и шестерня

b. Пересечение

Коническая шестерня

c. Непересекающиеся и непараллельные

червячные и червячные передачи



.

типов шестерен | Бесплатная инструкция по передаче

Что такое шестерня?

Зубчатая передача - это разновидность элемента машины, в которой зубья нарезаны на цилиндрические или конусообразные поверхности с равным интервалом. Зацепляя пару этих элементов, они используются для передачи вращений и сил от ведущего вала к ведомому валу. Шестерни можно разделить по форме на эвольвентные, циклоидальные и трохоидальные. Кроме того, они могут быть классифицированы по положению валов как шестерни с параллельными валами, шестерни с пересекающимися валами и шестерни с непараллельными и непересекающимися валами.История шестеренок давняя, и использование шестерен уже появилось в Древней Греции до нашей эры. в сочинении Архимеда.


Ящик с образцами различных типов шестерен

Типы шестерен


Различные типы шестерен

Существует много типов зубчатых колес, таких как прямозубые, косозубые, конические, червячные, зубчатые рейки и т. Д. Их можно в целом классифицировать, глядя на положения осей, таких как параллельные валы, пересекающиеся валы и непересекающиеся валы. .

Необходимо точно понимать различия между типами шестерен, чтобы обеспечить передачу необходимой силы в механических конструкциях. Даже после выбора общего типа важно учитывать такие факторы, как: размеры (модуль, количество зубьев, угол наклона спирали, ширина лица и т. Д.), Стандарт класса точности (ISO, AGMA, DIN), необходимость шлифования зубьев. и / или термообработка, допустимый крутящий момент и эффективность и т. д.

Помимо этой страницы, мы представляем более подробную техническую информацию о передаче в разделе «Знания о передаче» (отдельная страница в формате PDF).В дополнение к списку, приведенному ниже, для каждого раздела, например червячной передачи, зубчатой ​​рейки, конической шестерни и т. Д., Есть собственное дополнительное пояснение относительно соответствующего типа шестерни. Если PDF-файл просматривать сложно, обратитесь к этим разделам.

Лучше всего начать с общих знаний о типах шестерен, как показано ниже. Но помимо них есть и другие типы, такие как торцовая шестерня, шестеренчатая шестерня (двойная косозубая шестерня), коронная шестерня, гипоидная шестерня и т. Д.


Обзор шестерен

(Важная терминология передач и номенклатура передач на этом рисунке)

Есть три основных категории шестерен в соответствии с ориентацией их осей

Конфигурация:

  1. Параллельные оси / прямозубая шестерня, косозубая шестерня, зубчатая рейка, внутренняя шестерня
  2. Пересекающиеся оси / угловая шестерня, прямая коническая шестерня, спирально-коническая шестерня
  3. Непараллельные, непересекающиеся оси / винтовая передача, червячная передача, червячная передача (червячное колесо)
  4. Другое / Эвольвентный шлицевой вал и втулка, зубчатая муфта, собачка и трещотка

Разница между шестерней и звездочкой

Проще говоря, шестерня входит в зацепление с другой шестерней, в то время как звездочка зацепляется с цепью, а не шестерней.Помимо звездочки, предмет, который чем-то похож на шестеренку, является храповым механизмом, но его движение ограничено одним направлением.

Классификация типов зубчатых колес с точки зрения позиционных соотношений присоединяемых валов

  1. Когда два вала шестерен параллельны (параллельные валы)
    Цилиндрическая шестерня, реечная, внутренняя шестерня, косозубая шестерня и т. Д.
    Как правило, они обладают высокой эффективностью передачи.
  2. Когда два вала шестерен пересекаются друг с другом (пересекающиеся валы)
    Коническая шестерня относится к этой категории.
    Обычно они обладают высокой эффективностью передачи.
  3. Когда два вала шестерен не параллельны или не пересекаются (смещенные валы)
    Червячная передача и винтовая передача относятся к этой группе.
    Из-за скользящего контакта эффективность передачи относительно низкая.

Класс точности шестерен

Когда типы шестерен группируются по точности, используется класс точности. Класс точности определяется стандартами ISO, DIN, JIS, AGMA и т. Д.Например, JIS определяет погрешность шага каждого класса точности, погрешность профиля зуба, отклонение спирали, погрешность биения и т. Д.

Наличие шлифовального круга

Наличие шлифовки зубьев сильно влияет на работоспособность шестерен. Поэтому при рассмотрении типов шестерен шлифование зубьев является важным элементом, который следует учитывать. Шлифовка поверхности зубьев делает шестерни более тихими, увеличивает пропускную способность и влияет на класс точности. С другой стороны, добавление процесса шлифования зубьев увеличивает стоимость и подходит не для всех шестерен.Чтобы добиться высокой точности, кроме шлифовки, существует процесс, называемый бритьем с использованием бритвенных ножей.

Виды формы зуба

Чтобы широко классифицировать типы зубчатых колес по их форме зуба, различают эвольвентную форму зуба, циклоидную форму зуба и трохоидную форму зуба. Среди них чаще всего используется эвольвентная форма зуба. Их легко производить, и они обладают способностью правильно соединяться, даже когда расстояние между центрами немного отклоняется. Циклоидная форма зуба в основном используется в часах, а трохоидная форма зуба - в насосах.

Создание шестерен

Эта статья воспроизводится с разрешения автора.
Масао Кубота, Хагурума Нюмон, Токио: Ohmsha, Ltd., 1963.

Шестерни - это колеса с зубьями, которые иногда называют зубчатыми колесами.

Шестерни - это механические компоненты, которые передают вращение и мощность от одного вала к другому, если каждый вал имеет выступы (зубья) соответствующей формы, равномерно распределенные по его окружности, так что при вращении следующий зуб входит в пространство между зубьями другого. вал.Таким образом, это компонент машины, в котором вращательная сила передается поверхностью зуба первичного двигателя, толкающей поверхность зуба ведомого вала. В крайнем случае, когда одна сторона представляет собой линейное движение (это можно рассматривать как вращательное движение вокруг бесконечной точки), это называется стойкой.

Существует множество способов передачи вращения и мощности от одного вала к другому, например, посредством трения качения, передачи намотки и т. Д. Однако, несмотря на простую конструкцию и относительно небольшой размер, шестерни имеют много преимуществ, таких как надежность передачи точное угловое соотношение скорости, длительный срок службы и минимальные потери мощности.

От маленьких часов и прецизионных измерительных приборов (приложения для передачи движения) до больших шестерен, используемых в морских системах передачи (приложения для передачи энергии), шестерни широко используются и считаются одним из важных механических компонентов наряду с винтами и подшипниками.

Есть много типов шестерен. Однако самые простые и часто используемые шестерни - это те, которые используются для передачи определенного передаточного числа между двумя параллельными валами на определенном расстоянии.В частности, наиболее популярными являются шестерни с зубьями, параллельными валам, как показано на рисунке 1.1, так называемые цилиндрические шестерни.


[Рисунок 1.1 Цилиндрические зубчатые колеса]

Самый простой способ передачи определенного передаточного отношения угловой скорости между двумя параллельными валами - это привод трения качения. Это достигается, как показано на рисунке 1.2, за счет наличия двух цилиндров с диаметрами, обратными передаточному отношению, находящихся в контакте и вращающихся без проскальзывания (если два вала вращаются в противоположных направлениях, контакт находится снаружи; и если они вращаются в одном направлении направление, контакт внутри).То есть вращение достигается за счет силы трения контакта качения. Однако избежать некоторого пробуксовки невозможно и, как следствие, нельзя надеяться на надежную передачу. Для получения большей передачи мощности требуются более высокие контактные силы, что, в свою очередь, приводит к высоким нагрузкам на подшипники. По этим причинам такое устройство не подходит для передачи большого количества энергии. В результате была изобретена идея создания подходящей формы зубьев, равномерно расположенных на поверхностях качения цилиндров, таким образом, чтобы по крайней мере одна пара или более зубцов всегда находились в контакте.Сдвигая зубья ведущего вала зубцами ведущего вала, обеспечивается надежная передача. Это называется цилиндрической шестерней, а контрольный цилиндр, на котором вырезаны зубья, является цилиндром шага. Цилиндрические зубчатые колеса представляют собой один из видов цилиндрических зубчатых колес.


[Рисунок 1.2 Шаговые цилиндры]

Когда два вала пересекаются, ориентирами для нарезания зубьев являются конусы, контактирующие с качением. Это конические шестерни, как показано на рисунке 1.3, где основной конус, на котором вырезаны зубья, называется продольным конусом. (Рисунок 1.4).


[Рисунок 1.3 Конические шестерни]


[Рисунок 1.4 Шаговые конусы]

Когда два вала не параллельны и не пересекаются, искривленных поверхностей, контактирующих с качением, не существует. В зависимости от типа шестерен, зубья создаются на паре опорных контактирующих вращающихся поверхностей. Во всех случаях необходимо настроить профиль зуба таким образом, чтобы относительное движение контактирующих поверхностей шага совпадало с относительным движением зацепления зубьев на контрольных криволинейных поверхностях.

Когда шестерни рассматриваются как твердые тела, для того, чтобы два тела могли поддерживать заданное передаточное отношение угловой скорости, находясь в контакте на поверхностях зубьев, не сталкиваясь друг с другом и не разделяясь, необходимо, чтобы общие нормальные составляющие скорости передачи две шестерни в точке контакта должны быть равны. Другими словами, в этот момент нет относительного движения поверхностей зубчатого колеса в направлении общей нормали, а относительное движение существует только вдоль контактной поверхности в точке контакта.Это относительное движение есть не что иное, как скольжение поверхностей шестерен. Поверхности зубьев, за исключением особых точек, всегда связаны с так называемой передачей скользящего контакта.

Для того, чтобы формы зубов удовлетворяли условиям, как объяснено выше, использование огибающей поверхности может привести к желаемой форме зуба в качестве общего метода.

Теперь укажите одну сторону поверхности шестерни A как криволинейную поверхность FA и задайте обеим шестерням заданное относительное вращение.Затем в системе координат, прикрепленной к шестерне B, рисуется группа последовательных положений поверхности шестерни FA. Теперь подумайте об огибающей этой группы кривых и используйте ее как поверхность FB зубьев шестерни B. Тогда из теории огибающих поверхностей ясно, что две поверхности зубчатых колес находятся в постоянном линейном контакте, и эти две шестерни будут иметь желаемое относительное движение.

Также возможно привести к форме зубов следующим методом. Рассмотрим, помимо пары шестерен A и B с заданным относительным движением, третью воображаемую шестерню C в зацеплении, где A и B находятся в зацеплении, и придайте ей поверхность FC произвольной формы (изогнутая поверхность только без тела зуба) и соответствующее относительное движение.

Теперь, используя тот же метод, что и ранее, из воображаемого зацепления шестерни A с воображаемой шестерней C, получим форму зуба FA как огибающую формы зуба FC. Обозначим линию соприкосновения поверхностей зубьев FA и FC как IAC. Аналогичным образом получают контактную линию IBC и поверхность FB зубьев из воображаемого зацепления шестерни B и воображаемой шестерни C. Таким образом, поверхности FA и FB зубьев получаются посредством FC. В этом случае, если линии контакта IAC и IBC совпадают, шестерни A и B находятся в прямом контакте, а если IAC и IBC пересекаются, шестерни A и B будут иметь точечный контакт на этом пересечении.

Это означает, что с помощью этого метода можно получить как формы зубьев точечного контакта, так и формы зубьев линейного контакта.

Однако существуют ограничения для геометрически полученных форм зубьев, как объяснено выше, особенно когда тела зубьев поверхностей FA и FB вторгаются друг в друга или когда эти области не могут использоваться в качестве зубных форм. Это вторжение одного тела зуба в другой называется интерференцией профилей зубов.

Как ясно из приведенного выше объяснения, теоретически существует множество способов изготовления зубных форм, которые создают заданное относительное движение.Однако в действительности учет зубчатого зацепления, прочности формы зуба и трудностей нарезания зуба ограничит использование таких форм зубьев всего несколькими.

Технические данные Free Gear доступны в формате PDF.

KHK предлагает бесплатно книгу «Технические данные редуктора» в формате PDF. Эта книга очень полезна для изучения шестерен и передач. В дополнение к типам зубчатых колес и терминологии зубчатых колес в книгу также включены разделы, касающиеся профиля зуба, расчетов размеров, расчетов на прочность, материалов и термической обработки, идей о смазке, шумах и т. Д.Из этой книги вы можете многое узнать о редукторе.

Способы использования шестерен в ситуациях механического проектирования

Шестерни в основном используются для передачи энергии, но, согласно идеям, они могут использоваться в качестве элементов машин по-разному. Ниже представлены некоторые способы.

  1. Захватывающий механизм
    Используйте две прямозубые цилиндрические шестерни одинакового диаметра в зацеплении, чтобы при реверсировании ведущей шестерни ведомая шестерня также реверсировалась. Используя это движение, вы можете получить механизм захвата заготовки.За счет регулировки угла раскрытия захватного захвата можно разместить заготовки различных размеров, что обеспечивает универсальную конструкцию захватного механизма.
  2. Механизм прерывистого движения
    Существует Женевский механизм в качестве механизма прерывистого движения. Однако из-за необходимости в специализированных механических компонентах он стоит дорого. Используя шестерни с отсутствующими зубьями, можно получить недорогой и простой прерывистый механизм.
    Под шестерней с отсутствующими зубьями мы понимаем шестерню, у которой любое количество зубьев шестерни удалено от корней.Шестерня, которая сопряжена с шестерней с отсутствующими зубьями, будет вращаться до тех пор, пока она находится в зацеплении, но остановится, как только встретит часть с отсутствующими зубьями ведущей шестерни. Однако его недостаток состоит в том, что он переключается при приложении внешней силы, когда шестерни выключены. В этих случаях необходимо поддерживать его положение, например, с помощью фрикционного тормоза.
  3. Специальный механизм передачи мощности
    Установив одностороннюю муфту (механизм, который позволяет вращательное движение только в одном направлении) на одной ступени зубчатой ​​передачи редуктора скорости, вы можете создать механизм, который передает движение в одном направлении, но на холостом ходу задом наперед.
    Используя этот механизм, вы можете создать систему, которая управляет двигателем, когда электроэнергия включена, но при отключении электроэнергии он перемещает выходной вал за счет силы пружины.
    За счет внутренней установки пружины (спиральной пружины кручения или спиральной пружины), которая наматывается в направлении вращения в зубчатой ​​передаче, редуктор скорости приводится в действие по мере наматывания пружины. Как только пружина полностью заведена, двигатель останавливается, и встроенный в двигатель электромагнитный тормоз удерживает это положение.
    Когда электричество отключено, тормоз отпускается, и сила пружины приводит в движение шестерню в направлении, противоположном тому, в котором работал двигатель.Этот механизм используется для закрытия клапанов при отключении питания (аварийный) и называется «аварийным запорным клапаном с пружинным возвратом».

Почему сложно достать нужные шестерни?

Нет стандарта на саму шестерню

Шестерни используются во всем мире с древних времен во многих областях и являются типичными компонентами элементов машин. Однако, что касается класса точности шестерен, в разных странах существуют промышленные стандарты, такие как AGMA (США), JIS (Япония), DIN (Германия) и т. Д.С другой стороны, нет стандартов в отношении факторов, которые в конечном итоге определяют [саму шестерню], таких как его форма, размер, диаметр отверстия, материал, твердость и т. Д. В результате нет единого подхода, но это сбор фактических спецификаций зубчатых колес, выбранных отдельными разработчиками, которые подходят для дизайна их машин или тех, которые определены отдельными производителями зубчатых колес.

Существует множество спецификаций передач

Как упоминалось выше, существует множество спецификаций передач.За исключением очень простых передач, не будет преувеличением сказать, что существует столько же видов, сколько и мест, где используются шестерни. Например, среди многих зубчатых колес, когда угол давления, шаг зуба и количество зубьев совпадают, существует много других спецификаций, которые определяют зубчатые колеса, такие как размер отверстия, ширина поверхности, термообработка, окончательная твердость, шероховатость поверхности после шлифования, наличие вала и т. д. Можно сказать, что вероятность того, что две шестерни будут совместимы, мала.Это одна из причин, почему (например, при поломке шестерни) трудно получить замену.

Невозможно получить желаемую передачу

Иногда случается, что вы не можете получить замену изношенной или сломанной шестерни в том месте, где используется машина. В этом случае в большинстве случаев нет проблем, если есть руководство или список деталей для машины, который содержит чертеж, необходимый для изготовления шестерни. Также нет проблем, если есть возможность связаться с производителем станка и что производитель может поставить необходимое оборудование.К сожалению, во многих случаях:
- В руководстве станка не показан чертеж шестерни как таковой.
- Невозможно получить только шестерню от производителя станка и т. Д. передача. В этих случаях возникает необходимость составить производственный чертеж сломанной шестерни. Это часто бывает сложно без специальных знаний в области техники. Ситуация часто бывает такой же сложной для производителей зубчатых передач из-за недостатка данных о них.Кроме того, для создания рисунка из сломанной шестеренки требуется много инженерных кадров, и это поднимает вопрос о том, кто будет нести эти затраты.

Когда требуется только одна передача, стоимость производства высока

Когда машина, использующая шестерню, производится серийно, то также и шестерня, которая изготавливается для определенного размера партии, что позволяет распределять удельную стоимость шестерни за счет экономии на масштабе. С другой стороны, пользователи, использующие машину после ее изготовления, и когда одна или две шестерни нуждаются в замене, они часто сталкиваются с высокими производственными затратами, из-за чего стоимость окончательного ремонта иногда бывает очень высокой.Короче говоря, разница в двух методах производства (массовое или мелкосерийное) сильно влияет на стоимость снаряжения. Например, покупка 300 зубчатых колес за один выстрел для проекта по производству нового оборудования (изготовление 300 зубчатых колес одной партией) по сравнению с покупкой одного запасного зубчатого колеса позже (с производственной партией из 1 штуки) имеет огромную разницу в стоимости единицы продукции. Такая же ситуация на этапе проектирования новой машины, когда для прототипа требуется одна шестерня с такой же высокой стоимостью.

Возможность использования стандартных передач

При разработке новой машины, если характеристики используемых шестерен могут быть согласованы со спецификациями стандартных шестерен изготовителя шестерен, упомянутые выше проблемы могут быть решены. Таким способом:

Вот некоторые из удобств, которыми вы можете воспользоваться.

Кроме того, когда зубчатая передача в используемом механизме нуждается в замене, если ее технические характеристики аналогичны характеристикам редуктора, ее можно заменить на стандартную передачу отдельно или на стандартную передачу с дополнительной работой. В этой ситуации также можно избежать неудобств, связанных с выполнением следующих задач:

Ссылки по теме:
齿轮 的 种类 - 中文 页
Знать о типах шестерен и соотношениях между двумя валами
Номенклатура шестерен
Вычислитель шестерен
Типы и характеристики шестерен
Типы шестерен и терминология
Зубчатая рейка и шестерня

.

Различные типы карьеры механиков

По мере того, как отрасль механики достигает новых высот, люди, обдумывающие новую карьеру, могут изучить различные возможности трудоустройства в этой отрасли.

В зависимости от транспортной или транспортной компании требуются разные типы механики для обслуживания внутренних компонентов и неисправностей двигателя, которые возникают при регулярном износе.

Понимание того, что требует каждый сектор, поможет начинающим механикам выбрать правильную область знаний при поступлении на работу.

Автомеханики

Также известные как специалисты по обслуживанию, механики по обслуживанию автомобилей проверяют, ремонтируют и обслуживают легковые грузовики и легковые автомобили.

Автомеханики должны быть знакомы с электронными системами и механическими компонентами, включая двигатели, приводные ремни, трансмиссии, системы рулевого управления и тормоза.

Сервисные специалисты должны уметь использовать различные инструменты, такие как компьютеризированные диагностические инструменты, гаечные ключи и токарные станки.

Многие компании, нанимающие автомехаников, ожидают, что они будут выполнять определенные должностные требования, в том числе:

Виды автомеханики

Некоторые механики специализируются на определенных видах ремонта, требующих соблюдения определенных правил и процедур, в то время как другие работают в обычных условиях ремонта автомобилей.

Типы технических специалистов включают:

Перспективы карьеры

Согласно отчету 2012 года, опубликованному Бюро статистики труда США (BLS), перспективы занятости для механиков автосервиса прогнозируют увеличение числа рабочих мест в Америке на девять процентов к 2022 году, что приведет к дополнительным 60 400 возможностям трудоустройства для механиков.

Механики, выбравшие профессию в этой области, могут рассчитывать на среднюю годовую зарплату в размере 36 610 долларов США, при этом самые низкие 10 процентов составляют 20 810 долларов, а самые высокие 10 процентов - 60 070 долларов.

Механики обслуживания дизельных двигателей

Механики по обслуживанию дизельных двигателей играют важную роль в осмотре, ремонте и капитальном ремонте автомобилей с дизельными двигателями. Благодаря долговечности и эффективности этих двигателей все больше и больше отраслей используют дизельные автомобили для перевозки товаров и услуг по стране и по воде.

Дизельные механики могут работать с бульдозерами, кранами, коммерческими судами, пикапами, легковыми автомобилями и рабочими автомобилями.

Помимо использования компьютеризированного диагностического оборудования для диагностики неисправностей дизельного двигателя, механики также будут использовать различные станки и электроинструменты для ремонта двигателя, включая пневматические ключи, шлифовальные станки, сварочное оборудование и токарные станки.

Должностные обязанности будут включать:

Типы дизельной механики

Некоторые механики работают с электрическими системами, а другие работают над ремонтом двигателей или модернизацией выхлопной системы.

В зависимости от предыдущего образования, опыта работы и области знаний, дизельные механики могут найти работу в следующих отраслях:

Перспективы карьеры

Отчет BLS за 2012 год показывает, что перспективы занятости в дизель-механической отрасли к 2022 году принесут дополнительные 21 600 рабочих мест для дизельных механиков. самые низкие 10 процентов зарабатывают 26 820 долларов, а самые высокие 10 процентов - 63 250 долларов.

Проверьте школы дизельных технологий штата со всеми требованиями и информацией о заработной плате.

Механики самолетов и авионики

Работа на ремонтных станциях, ремонтных ангарах или на аэродромах, механики самолетов и авионики ремонтируют и обслуживают воздушные суда, выполняя требуемые Федеральным авиационным управлением (FAA) инспекции воздушных судов.

Из-за сложности современных самолетов механики должны уметь ремонтировать, обслуживать и проводить инспекции различных самолетов, например самолетов с поршневым двигателем, реактивных самолетов и вертолетов.

Для того, чтобы работать на гражданских самолетах на законных основаниях, механики должны получить по крайней мере один из сертификатов ФАУ на корпус и силовую установку (A&P), который дает им право ремонтировать большинство деталей самолета.

В зависимости от компании и специализации авиамеханики могут выполнять следующие должностные требования:

Типы авиамехаников

Некоторые авиамеханики специализируются на определенных частях самолетов, таких как гидравлика, двигатели или электрические системы.Остальные работают в независимых ремонтных мастерских, проверяя и ремонтируя разные типы самолетов.

Авиамеханики могут найти различные возможности трудоустройства в секторах этой отрасли, в том числе:

Перспективы карьеры

Согласно BLS, перспективы занятости в индустрии авионики прогнозируют рост на два процента к 2022 году, что медленнее, чем в среднем по стране.

Это увеличение обеспечит дополнительно 3 500 рабочих мест в авиамеханической отрасли.Люди, которые задумываются о карьере авиамеханика, могут получать среднюю годовую зарплату в размере 55 230 долларов США, при этом самые низкие 10 процентов зарабатывают 35 190 долларов, а самые высокие 10 процентов - 76 660 долларов.

Обучение самолетам и авионике

Механики тяжелой техники и мобильной техники

Механики тяжелых транспортных средств и мобильной техники проверяют, ремонтируют и обслуживают машины и транспортные средства, используемые в сельском хозяйстве, строительстве и железнодорожном транспорте.

Эти механики ремонтируют двигатели, трансмиссии, гидравлические системы и электрические системы для промышленного, сельскохозяйственного, железнодорожного и строительного оборудования, обеспечивая безопасность и производительность тормозов, топливопроводов, трансмиссий и компонентов.

Используя диагностическое оборудование для выявления неисправностей, механики в этой отрасли используют различные станки и электроинструменты, включая токарные станки, пневматические ключи и сварочное оборудование.

Должностные обязанности механика тяжелых транспортных средств и мобильной техники могут включать:

Типы механиков тяжелых транспортных средств

Играя важную роль во многих отраслях промышленности, механики могут работать с тракторами, бульдозерами, кранами, железнодорожными вагонами и другими видами тяжелых транспортных средств.

В зависимости от предыдущего образования, полученных сертификатов и опыта работы механики могут найти возможности трудоустройства в следующих секторах механической промышленности:

Перспективы карьеры

Отчет за 2012 год, опубликованный BLS, показывает, что перспективы занятости в этой отрасли обеспечат дополнительные 16 200 рабочих мест механиков тяжелых транспортных средств по всей Америке к 2022 году.

Механики, которые хотят работать с большегрузными автомобилями, могут получать среднюю зарплату в размере 43 820 долларов в год, при этом самые низкие 10 процентов составляют 27 730 долларов в год, а самые высокие 10 процентов - около 62 960 долларов в год.

Механика малых двигателей

Механики малых двигателей обслуживают, проверяют и ремонтируют моторизованные транспортные средства и оборудование, специализируясь на мотоциклах, открытом силовом оборудовании или моторных лодках.

Механики, работающие в этой области знаний, определяют механические, топливные и электрические неисправности различных небольших двигателей, производя необходимый ремонт для обеспечения оптимального срока службы.

Механики малых двигателей используют различные ручные инструменты, такие как гаечные ключи, плоскогубцы и отвертки, для выполнения обычных ремонтных работ. Они также могут использовать манометры, вольтметры и амперметры для проверки и диагностики уровней производительности двигателя.

Пневматические электроинструменты и диагностическое оборудование - необходимые инструменты для более сложных процедур.

Механики малых двигателей могут выполнять следующие должностные обязанности:

Типы механики малых двигателей

Поскольку задачи могут различаться по сложности и сложности, некоторые механики фокусируются на незначительных корректировках и заменах определенных компонентов.

Другим необходимо хорошо разбираться в компонентах моторизованного транспортного средства, таких как замена свечи зажигания и калибровка поршня, чтобы полностью разобрать двигатель.

Физические лица могут специализироваться в определенном секторе, найдя работу по следующему адресу:

Перспективы карьеры

По данным BLS, прогноз занятости предсказывает шестипроцентный рост рабочих мест по всей Америке, что предоставит дополнительные возможности для трудоустройства 3800 к 2022 году.

Лица, работающие в этом секторе механической промышленности, могут рассчитывать на среднюю годовую зарплату в размере 32 640 долларов США, при этом 10 процентов самых низких зарплат - 20 490 долларов, а самые высокие 10 процентов - 51 040 долларов.

Когда дело доходит до стабильности работы и возможностей карьерного роста, работа в сфере механики - верный способ получить достойную зарплату в хорошей компании.

При соответствующем образовании люди, которым нравится работать руками и разбирать двигатели, найдут различные возможности трудоустройства в механической отрасли.

.

19+ Инновации в машиностроении, которые помогли определить современную механику

Машиностроение - очень обширная дисциплина. Его широта частично объясняется необходимостью охватывать проектирование и производство почти всего в движущейся системе.

Это варьируется от мельчайших компонентов системы до готовой, иногда огромной машины в целом. На протяжении всей истории некоторые инновации определяли механику и современную машину, следующие изобретения являются яркими примерами.

СВЯЗАННЫЕ: 35 ИЗОБРЕТЕНИЙ, ИЗМЕНИВШИХ МИР

Эти инженерные инновации простираются от любой из классических «простых машин» до сложных концепций, таких как полет. Этот список далеко не исчерпывающий и в произвольном порядке.

1. Aeolipile был ранней паровой реакционной турбиной.

Источник: Gts-tg / Wikimedia Commons

Aeolipile был первым в мире вращающимся паровым двигателем или, точнее говоря, паровой реакционной турбиной.Он был изобретен великим Героном Александрийским в году 1-го века нашей эры года и подробно описан в своей книге Pneumatica .

Это относительно простое устройство работает, нагревая резервуар с водой внутри устройства для генерации пара. Затем пар проходит через одну из медных опор к шарнирной латунной сфере.

Когда пар достигает сферы, он выходит через одно из двух сопел на концах двух маленьких, направленных в противоположных направлениях рычагов.Выходящий пар создает тягу и заставляет шар вращаться.

Основной принцип прост, но настоящая гениальность устройства заключается в том, что только один из поддерживающих рычагов пропускает пар к сфере (через подшипник скольжения).

Это толкает шар против другой, «твердой», поддерживая руку, которая также имеет упорный подшипник. Сплошное плечо включает коническую точку, которая упирается в соответствующее углубление на поверхности сферы. Эта комбинация удерживает сферу на месте, пока она вращается.

2. Колесо и ось - мощная простая машина

Источник: Vikiçizer / Wikimedia Commons

В машиностроении очень мало инноваций, которые оказали такое же влияние, как колесо и ось. Без них современный мир выглядел бы совсем иначе.

Колесо и ось - одна из шести простых машин, определенных в древности и расширенных в эпоху Возрождения.

Первые изображения колесных транспортных средств появляются на глиняном горшке Bronocice из Польши и датируются примерно 4000 г. до н.э. г.На горшке четко изображена какая-то повозка с четырьмя колесами, установленными на двух осях.

Самое раннее фактическое свидетельство физической комбинации колеса и оси происходит из Словении и датируется примерно 3360-3030 годами до нашей эры.

Изобретение колеса и оси буквально изменило мир и было неизменной особенностью транспортных средств человека в течение последних 6000 лет, и, вероятно, так и останется в будущем.

3. Ветряные мельницы начали заменять рабочую силу.

Модель «персидской» ветряной мельницы с вертикальным парусом, Источник: Saupreiß / Wikimedia Commons

Ветряные мельницы - невероятно гениальные устройства, которые могут преобразовывать энергию ветра в полезную механическую работу.Это достигается за счет использования больших «парусов», обычно сделанных из дерева, для передачи вращающей силы на главный вал. Это, в свою очередь, можно использовать для работы, например, для измельчения муки.

Персы были одними из первых людей, которые использовали силу ветра для работы, когда они начали строить первые ветряные мельницы в Иране и Афганистане примерно в г., 7 веке нашей эры, г.

Эти ранние ветряные мельницы состояли из парусов, расходящихся по вертикальной оси внутри здания, с двумя большими отверстиями для входа и выхода ветра, диаметрально противоположными друг другу.Мельницы использовались для прямого привода отдельных пар жерновов без использования шестерен.

Они были одним из первых средств, с помощью которых цивилизации смогли напрямую заменить людей машинами в качестве основного источника энергии.

Ветряные мельницы стали широко распространяться по всей Европе в средние века и оставались в общем использовании вплоть до 19 века.

Развитие паровой энергии во время промышленной революции привело к окончательному упадку ветряных мельниц.

4. Шкивы упрощают подъем.

Источник: GK Bloemsma / Wikimedia Commons

Шкивы представляют собой одно или несколько колес на оси или валу, которые поддерживают движение и изменение направления троса или ремня (что обычно тугая). Они передают мощность между валом и кабелем и обеспечивают механическое преимущество, которое идеально подходит для подъема тяжелых предметов.

Шкивы бывают различных типов:

- фиксированный шкив имеет ось, установленный на подшипниках, прикрепленных к опорной конструкции

- Подвижные блоки имеют оси смонтированы на подвижных блоков.

- Составные шкивы представляют собой смесь двух вышеперечисленных. Прекрасный пример - система блокировочных шкивов.

Шкив был определен великим Героном Александрийским как одна из шести основных простых машин. Сегодня шкивы являются неотъемлемой частью многих механических систем, включая ремни вентиляторов, флагштоки и колодцы.

5. Одержимость человечества полетами уменьшила мир

Источник: Дэвид Чедвик / Twitter

Задолго до того, как родились братья Райт, люди пытались подняться в воздух.Одним из таких малоизвестных пионеров полетов был брат Эйлмер. Эйлмер был монахом из аббатства Малмсбери, Англия, который сделал раннюю попытку полета в 1010 годах нашей эры году.

Отчет об этом событии можно найти в книге Уильяма Малмсбери XII века « Gesta Regum Anglorum ».

Говорят, что брат Эйлмер был вдохновлен легендой об Икаре, чтобы построить простой планер и попытаться летать. Его планер был построен из деревянного каркаса и полотна или пергамента.

Ему удалось взлететь с высоты около 18 метров над землей и пролететь около 200 метров, , прежде чем впоследствии запаниковать и разбиться, сломав обе ноги.

Эйлмер вернулся к чертежной доске и планировал следующий полет, но был остановлен приказом своего настоятеля во избежание дальнейших попыток.

Желание брата Эйлмера летать, как и других, последовавших за ним, от османского Хезарфена Ахмеда Челеби семнадцатого века до великого Леонардо да Винчи, будет способствовать нашему пониманию полета и аэродинамики.

6. Сталь была предшественником многих более поздних чудес машиностроения.

Висячий мост Клифтон, Бристоль, Великобритания, Источник: Мэттбак / Wikimedia Commons

Сталь, сплав железа и углерода, известна со времен железа Возраст.Но большую часть этого времени качество производимой стали сильно варьировалось.

Первые доменные печи, способные производить полезную сталь, начали появляться в Китае примерно в 6 веке до нашей эры год до нашей эры и распространились в Европе в средние века. К 17 веку производство стали было более или менее хорошо изучено, а к 19 веку методы производства и качество были значительно улучшены с развитием процесса Бессемера.

Первые металлурги понимали, что когда железо сильно нагревается, оно начинает поглощать углерод.Это, в свою очередь, снижает температуру плавления железа в целом и делает конечный продукт хрупким.

Вскоре они поняли, что им необходимо найти способ предотвратить высокое содержание углерода, чтобы изделия из железа были менее хрупкими.

Примерно 1050 год нашей эры был разработан предшественник современного Бессемеровского процесса. Этот процесс обезуглероживает металл путем многократной ковки под струей холодного воздуха.

Хотя этот процесс был гораздо менее эффективен, чем более поздняя разработка Бессемера, он стал важным шагом в развитии металлургии чугуна и стали.

Самая важная разработка была сделана самим Генри Бессемером в 1856 году. Он разработал способ продувки кислородом через расплавленный чугун, чтобы относительно дешево и в больших масштабах снизить содержание углерода, тем самым создав современную сталелитейную промышленность.

7. Парусные корабли открывают океаны

Источник: Порт Сан-Диего / Flickr

Самое первое изображение парусного корабля датируется примерно 3300 г. до н.э. г. и встречается на египетской живописи.Эти ранние лодки имели квадратный парус, а также ряд весел.

Поскольку они были ограничены рекой Нил и зависели от ветра в узком канале, было жизненно важно сохранить весла для использования в периоды недостаточной скорости ветра.

Эта комбинация паруса и весла доминировала на ранних кораблях на протяжении веков, достигая высот технических достижений с триерой классического периода.

Первые паруса, вероятно, были сделаны из шкур животных, но в додинастическом Египте они были заменены плетеными циновками из тростника и, в конечном итоге, тканью.

Позднее паруса, использовавшиеся в Европе, были сделаны из тканого льняного волокна, которое используется до сих пор, хотя в значительной степени оно было заменено хлопком.

Парусные корабли позволят исследовать моря на большие расстояния и откроют новые торговые пути. По сути, они сократят мир и позволят ранее отключенным странам обмениваться товарами и знаниями.

Они также позволили бы некоторым странам расширить свое влияние по всему миру и, в некоторых случаях, помочь в создании империи.

Торговля и империя дадут стимулы для дальнейшего развития корабельных технологий и машиностроения до наших дней.

8. Печатный станок промышленное букмекерство

Источник: Patrice_Audet / Pixabay

Печатный станок был одним из важнейших изобретений в машиностроении и в истории человечества. Адаптация печатного станка Йоханнесом Гутенбергом была новаторской для своего времени и подготовила почву для огромных достижений в печати, достигнутых в эпоху Возрождения и промышленной революции.

Печать с подвижным шрифтом появилась за некоторое время до Гутенберга, особенно в Китае, но его устройство было первым, кто механизировал процесс массового нанесения текста и изображений на бумагу.

Пресс Гутенберга был создан по образцу древних винных прессов Средиземноморья и фактически был изготовлен из модифицированного винного пресса. Он также был разработан на существующих прессах средневекового периода.

Его печатный станок работал, катая чернила по заранее подготовленной рельефной поверхности подвижного текста, заключенного в деревянную рамку.Затем он был прижат к листу бумаги, чтобы создать копию.

Этот процесс был намного более эффективным, чем другие печатные машины того времени, не говоря уже о предыдущем процессе ручного копирования книг.

Печатная машина позволит производить книги быстрее и, что наиболее важно, дешевле, что позволит все большему количеству людей позволить себе их покупать. Это станет переломным моментом в истории человечества и инженерии.

9. Поршень - жизненно важный компонент поршневых двигателей

Поршни в демонстрационном двигателе, Источник: 160SX / Wikimedia Commons

Изобретение поршня широко приписывают французскому физику Дени Папену в 1690 году нашей эры. .Его дизайн парового поршневого двигателя был разработан более поздними изобретателями, такими как Томас Ньюкомен и Джеймс Ватт в 18 веке .

Его изобретение, наряду с другими достижениями в технологии паровых двигателей, ознаменует «истинное» начало промышленной революции.

Поршни обычно находятся внутри цилиндра, который герметичен за счет использования поршневых колец. В современных двигателях поршень служит для передачи усилия от расширяющегося газа в цилиндре возвратно-поступательному движению на коленчатом валу.

Применительно к насосам этот процесс фактически обращен вспять.

Сегодня поршни являются важными компонентами многих поршневых двигателей, насосов, компрессоров и других подобных устройств.

10. Рычаги дают вам механическое преимущество

Типы рычага, Источник: Rei-artur / Wikimedia Commons

«Дайте мне место, чтобы встать, и я сдвину Землю вместе с ним», - замечание Архимеда , который формально сформулировал правильный математический принцип рычагов »- Папп Александрийский.

Рычаг, еще один простой двигатель, состоит из балки (или жесткого стержня), которая вращается на фиксированном шарнире или опоре. Рычаги - невероятно полезные устройства, которые могут обеспечить механическое преимущество при перемещении очень тяжелых объектов с относительно небольшим усилием, также известным как рычаг.

В зависимости от того, где находится точка опоры по отношению к нагрузке и усилию, рычаги можно разделить на три типа:

Рычаги впервые упоминаются в работах Архимеда в году до нашей эры.

11. Локомотив навсегда произвел революцию в транспорте

Локомотив Коулбрукдейла Тревитика, Источник: Музей науки / Wikimedia Commons

Ричард Тревитик, в 1801–1804 , построил первый паровой вагон и экспериментальный паровоз в Пен- и-Даррен, Уэльс, Великобритания.Позже он продал патент, и в 1804 пересмотрел свою первоначальную версию, чтобы успешно перевозить 10 тонн железа, 5 вагонов, 70 человек на расстояние около 10 миль . Эта поездка заняла чуть более 4 часов , что означает, что этот ранний локомотив разогнался до 2,4 мили в час . Несмотря на это, это был один из первых паровозов, производивших настоящую практическую работу.

Скорость локомотива будет увеличиваться, что изменит облик промышленности и транспорта во всем мире.

12. Наклонные плоскости или пандусы облегчают подъем

Источник: Coyau / Wikimedia Commons

Скромный, но чрезвычайно важный пандус, или наклонная плоскость, является еще одним из шести основных простых механизмов и позволяет перемещать тяжелые грузы вертикально с помощью относительно небольшое усилие. Пандусы широко используются во многих сферах - от погрузки товаров в грузовики до пандусов для инвалидов.

Для перемещения объекта вверх по наклонной плоскости требуется меньше усилий, чем для его подъема прямо вверх, но за счет увеличения перемещаемого расстояния.Механическое преимущество пандусов равно отношению длины наклонной поверхности к высоте ее подъема.

Винт и клин - это другие простые станки, которые можно рассматривать как вариации в наклонной плоскости, а не как отдельные формы.

13. Шестерни и зубчатые колеса легко передают крутящий момент

Источник: Тим Грин / Flickr

Зубчатые колеса или зубчатые колеса являются неотъемлемыми компонентами любой вращающейся машины. Они позволяют изменять скорость, крутящий момент или направление мощности.Это одни из самых фундаментальных инноваций в машиностроении в истории.

Любое изменение крутящего момента, произведенное с использованием шестерен и зубчатых колес, обязательно создает механическое преимущество благодаря явлению передаточного числа.

Зубчатая передача также может зацепляться с линейной зубчатой ​​частью, называемой рейкой, производя поступательное движение вместо вращения.

Неясно, когда именно были изобретены шестерни и зубчатые колеса, но некоторые считают, что Архимед. Сегодня шестерни присутствуют во многих движущихся системах и машинах, от велосипедов до судовых двигателей.

14. Подшипник помогает снизить трение.

Источник: Solaris2006 / Wikimedia Commons

Подшипник - еще один фундаментальный элемент машины, который стал определять машиностроение. Эти устройства позволяют ограничить относительное движение в одном направлении или плоскости, одновременно уменьшая трение между движущимися частями.

Подшипники бывают разных форм и размеров, от компонентов, удерживающих валы или оси на месте (подшипник скольжения), до более сложных систем, таких как шариковые подшипники.

Сложные современные подшипники часто требуют высочайшего уровня точности и качества при производстве.

15. Клин отлично подходит для ломки вещей.

Источник: Анна Фродезиак / Wikimedia Commons

Клин - еще одна простая машина и фундаментальная инновация в машиностроении. С доисторических времен они использовались для раскалывания бревен (топоров) или камней (долота).

Клинья - это подвижные наклонные плоскости, которые можно использовать для разделения двух объектов (или их частей), подъема объектов или удержания объектов на месте посредством приложения силы к широкому концу.Таким образом, форма клина преобразует входящую силу в перпендикулярные силы, 90 градусов к наклонным поверхностям.

Механическое преимущество любого клина зависит от отношения его длины к толщине. Другими словами, широкие короткие клинья требуют большего усилия, но дают более быстрый результат, чем длинные клинья с низким углом.

16. Электродвигатели преобразуют электричество в движение

Изображение современного асинхронного двигателя в разрезе, Источник: S.J. de Waard / Wikimedia Commons

Двигатели - это электронные машины, преобразующие электрический ток во вращательное движение.Наиболее распространенные электродвигатели работают за счет взаимодействия магнитного поля и тока для создания силы.

Основной принцип электродвигателей, Закон силы Ампера, был впервые описан Ампера в 1820 и впервые продемонстрирован Майклом Фарадеем в 1821 . Один из первых практических двигателей был создан венгерским физиком Аньосом Едликом в 1828 .

Двигатели используются во многих областях, от промышленных вентиляторов до электроинструментов и компьютерных дисководов.

17. Пружины отлично подходят для хранения энергии

Источник: Qz10 / Wikimedia Commons

Пружина - это просто упругий объект, который может накапливать механическую энергию. Они, как правило, изготавливаются из стали и бывают разных конструкций, но чаще всего в форме спиралей.

Всякий раз, когда пружина растягивается или сжимается, она стремится создать противодействующую силу, приблизительно пропорциональную ее изменению в длине.

Маленькие пружины могут быть изготовлены из предварительно закаленного материала намотки, в то время как большие пружины обычно изготавливаются из отожженной стали, которая после изготовления закаляется.

В ранней истории механики не витые пружины, как лук, были обычным явлением, но витые пружины начали появляться примерно в 15 веке. Сегодня они имеют множество применений, от подвески автомобиля до обтягивающих игрушек.

18. Параллельное движение было впервые изобретено в 1784 году.

Параллельное движение - это форма механической связи, которая была впервые изобретена Джеймсом Ваттом в 1784 году. Она была разработана для использования в его паровой машине двойного действия Ватта. и заменил предыдущую установку балки и цепи Ньюкомена.

Его новая конструкция двигателя позволила использовать мощность как при движении поршня вверх, так и при движении вниз, эффективно удваивая эффективность. Ватт назвал это «параллельным движением», потому что и поршень, и шток насоса должны были двигаться вертикально, параллельно друг другу.

Он оказался чрезвычайно успешным и стал важным нововведением, которое помогло определить механику сегодня.

19. Винты преобразуют крутящий момент в линейную силу

Источник: Hautala / Wikimedia Commons

Винты - еще одна простая машина в использовании с древних времен.Они, как правило, состоят из цилиндрического стержня с одной или несколькими спиральными витками резьбы или выступами на внешней стороне.

Эти гениальные инновации в машиностроении преобразуют вращательное движение в линейную силу. Винты также можно рассматривать как узкую наклонную плоскость или пандус, обернутый вокруг цилиндра.

Известными ранними примерами являются винт Архимеда, который использовался как ранняя форма водяного насоса.

Винты, такие как пандусы, рычаги и шкивы, позволяют увеличить усилие.В случае винта он обеспечивает механическое преимущество, заключающееся в преобразовании небольшого крутящего момента (силы вращения) в большую осевую силу нагрузки.

Его механическое преимущество меняется в зависимости от расстояния между резьбой винта, также называемого шагом. Сегодня они широко используются в качестве крепежа или в качестве основных насосов, прессов и прецизионных устройств.

20. Воздушный насос также помог определить современную механику.

Источник : Британская энциклопедия

Воздушный насос, как следует из названия, представляет собой устройство для нагнетания воздуха.Современные примеры включают велосипедный насос, газовые компрессоры, воздушные рожки и трубные органы, и это лишь некоторые из них.

Первое зарегистрированное изобретение этого устройства было в 1649 году, когда Отто фон Герике изобрел золотниковый вакуумный воздушный насос. Его устройство, признанное сегодня одним из видов воздушного насоса, уменьшило любые возможные утечки между поршнями и соответствующими цилиндрами с помощью кожаных шайб.

Роберт Гук сделал первый практический научный образец в середине 1600-х годов, а Фрэнсис Хоксби разработал его двуствольную версию в начале 1700-х годов.

Воздушный насос оказался революционным, поскольку предоставил средства для более позднего развития вакуумной лампы, что, в свою очередь, привело к разработке таких продуктов, как электрические лампочки. Это также помогло в разработке пневматики и поршневых насосов.

21. Газовый двигатель был революционным

Изобретение газового двигателя стало еще одним нововведением, которое помогло определить современную механику. Газовые двигатели, являющиеся разновидностью двигателя внутреннего сгорания, могут работать на различных видах топлива, таких как угольный газ, биогаз, свалочный газ или природный газ, и это лишь некоторые из них.

Сегодня бензиновые двигатели могут проследить свое происхождение от этой невероятно важной инновации.

Первые разработки технологии начались в 19 веке, но первый настоящий двигатель на практике был разработан бельгийским инженером Этьеном Ленуаром в 1860-х годах. Революционный двигатель Ленуара страдал низкой выходной мощностью и высоким расходом топлива.

Новаторская работа Ленуара была продолжена немецким инженером Николаусом Августом Отто, который позже разработал первый четырехтактный двигатель для эффективного сжигания топлива непосредственно в поршневой камере.

Без развития бензинового двигателя современный мир действительно выглядел бы совсем иначе.

22. Маятник был еще одним ранним достижением в механике.

Источник: Элизабет Уильямс / Twitter

Маятник, который фактически состоит из груза, подвешенного к какой-либо оси, является еще одним важным нововведением в машиностроении. Считается, что первые модели были впервые разработаны где-то в I веке, но самые ранние образцы использовались в качестве базовых сейсмометров во времена династии Хань в Китае.

Одно из первых зарегистрированных случаев использования маятника для хронометража, как говорят, было в Египте 10-го века астрономом Ибн Юнусом, хотя это оспаривается. Именно в эпоху Возрождения маятники начали использоваться в качестве источника энергии в ручных поршневых машинах, таких как пилы, сильфоны и насосы.

Но для дальнейшей разработки маятника для использования в часах понадобился великий Галилео Галилей. Он разработал одни из первых маятниковых часов.

23.Дизельный двигатель также оказался революционным.

Источник: webandi / needpix

И, наконец, изобретение дизельного двигателя стало еще одним важным достижением в машиностроении. Иногда также называемые двигателем с воспламенением от сжатия или двигателем CI, дизельные двигатели названы в честь своего прародителя, Рудольфа Дизеля.

Являясь разновидностью двигателя внутреннего сгорания, дизельные двигатели работают за счет воспламенения топлива путем механического сжатия (адиабатическое сжатие). В этом отличие от бензиновых двигателей, в которых для воспламенения топливовоздушной смеси используется свеча зажигания.

По этой причине дизельные двигатели обладают самым высоким тепловым КПД среди существующих двигателей внутреннего сгорания. Рудольф Дизель впервые задумал эту идею в конце 1870-х годов после посещения лекции Карла фон Линде о цикле Карно.

Позже он запатентовал свою идею в 1893 году, а остальное, как говорится, уже история. Сегодня дизельные двигатели получают много плохой прессы из-за высокого уровня выбросов углерода, и многие власти находятся в процессе их полного запрета.

.

Смотрите также