RU (495) 989 48 46
Пленка на бампер

АНТИГРАВИЙНАЯ ЗАЩИТА БАМПЕРА

 

Температура вспышки масла


Как определение температуры вспышки масла помогает в диагностике оборудования

По небольшому образцу работающего/отработанного масла можно оценить состояние как самого масла и степень его отработки, так и состояние смазываемого механизма без остановки производства. Одно из замечательных достоинств анализа масел как способа упреждающего обслуживания машин — это его невероятная чувствительность к слабым сигналам о зарождающихся неисправностях.

Что происходит в топливной системе во время эксплуатации оборудования?

В работающем механизме при повышении температуры масло разжижается и частично теряет свои смазывающие свойства. Трение увеличивается, ускоряется износ. Это приводит к дальнейшему повышению температуры, начинается кипение. Более легкие фракции нефтепродукта испаряются и заполняют масляный картер. В какой-то момент происходит самовозгорание или микровзрыв образовавшейся смеси из паров и кислорода.

Когда сгорание углеводородов происходит не полностью или в неподходящих условиях, образуются шлаки и сажа. По сути, они становятся абразивами в системе смазки. Твердые продукты забивают масляную систему, трубопроводы, полости, грязеуловители и фильтры. Как результат, механизм начинает быстро изнашиваться и вскоре выходит из строя. В большинстве случаев остановка производства из-за поломки оборудования влечет более высокие затраты по сравнению с ремонтом или заменой оборудования.

Суть мини-метода по определению температуры вспышки в закрытом тигле

В лаборатории SGS помимо стандартного метода используется мини-метод, основанный на опыте французских коллег из лаборатории SGS Vernolab. Преимущество данного анализа масел заключается в том, что для него требуется небольшое количество заборного образца (250 мл). Это позволяет не нарушать объем масла в системе работающего механизма.

Как проводится тестирование? Образец масла закладывается в закрытый тигель, нагревается до необходимой температуры, после чего на него кратковременно воздействуют источником воспламенения для определения температуры вспышки масла.

Температура вспышки масла — это температура, при которой в условиях испытания масло выделяет достаточное количество паров для образования воспламеняющейся смеси с воздухом. Более низкая температура вспышки свидетельствует о большем испарении с повышением температуры нагрева.

Эта характеристика служит показателем однородности масла, степени его загрязнения (например, бензином или дизельным топливом), а также соответствия его тем образцам, которые были выбраны для той или иной цели.

На что влияет температура вспышки масла? Интерпретация результатов анализа масла и дальнейшие действия

Наши диагносты установили критическую точку кипения — это 180 градусов. Если при этой температуре и ниже происходит вспышка, это говорит об износе механизма, проблемах с его эксплуатацие

Технические характеристики моторных масел: свойства, вязкость

Характеристики моторных масел регламентируют стандарты международного уровня.

Вязкость моторного масла

Характеристика определяет способность жидкого материала сопротивляться течению за счет внутреннего трения. Значение рассчитывают при разных условиях, поэтому различают два ее типа:

Индекс вязкости

Вязкость смазочных материалов меняется обратно пропорционально температуре. При нагревании масла показатель снижается, а при охлаждении – увеличивается. В продуктах разных марок изменение характеристики происходит с различной скоростью. Для измерения динамики существует специальное понятие – индекс вязкости. Чем выше его значение, тем меньше вязкостные свойства материала зависят от температуры. Продукты с большим индексом обеспечивают надежную защиту двигателя в разных климатических условиях. Масла с низким значением показателя эксплуатируются в узком диапазоне температур, так как при нагревании материалы утрачивают смазывающую способность, а при охлаждении быстро густеют.

Температура застывания

Показатель определяют в момент увеличения вязкости масла вплоть до потери текучести. В лабораторных условиях температурой застывания считают нижний предел, при котором жидкость в пробирке под наклоном 45 градусов не стекает в течение 1 минуты и остается неподвижной. Низкотемпературные характеристики масла напрямую зависят от состава, от качества компонентов. В продуктах переработки нефти вязкость возрастает при кристаллизации парафинов нормального строения. Поэтому основа проходит тщательную очистку или химическую модификацию для разветвления структуры компонентов и снижения температуры застывания. Синтетические масла имеют более однородный и прогнозируемый состав, что снижает порог кристаллизации и обеспечивает материалу стабильные свойства на морозе.

Температура вспышки

Величина этой характеристики зависит от вида и количества легколетучих фракций в составе масла. Температура вспышки косвенно указывает на потери масла на угар, испарение через вентиляционную систему картера. Параметр также позволяет оценить риск самопроизвольного воспламенения или взрыва материала при экстремальном нагревании.

Щелочное число (Total Base Number, TBN)

Общая щелочность моторного масла зависит от характеристик диспергирующих и моющих присадок, от антиокислительных свойств материала. Параметр указывает на стойкость продукта к окислению при высоких температурах и давлении в присутствии химически активных сред. От щелочного числа также зависит скорость образования отложений, величина межсервисного интервала. Характеристика определяется в (мг КОН/г). Значения щелочного числа варьируются в широком диапазоне. Выбор зависит от типа топлива, а точнее, от содержания серы, которая является главным окисляющим агентом. Например, в двигателях, работающих на мазуте, требуется высокая степень защиты, поэтому выбирают масло с показателем щелочности до 40 мг КОН/г. Моторы легковых авто работают с материалами 7–15 мг КОН/г.

Зольность

Сульфатная зола образуется при сгорании смазочного материала. Базовые масла очищаются и являются практически беззольными, но присадки вносят в состав нежелательные примеси, такие как магний, кальций, фосфор, цинк и другие. В процессе сгорания веществ на поверхности деталей двигателя образуются отложения, которые способствуют преждевременному воспламенению топливной смеси, то есть повышают детонацию. Зола также загрязняет каталитические нейтрализаторы выхлопных газов, сажевые фильтры. Соответственно, чем ниже показатель, тем меньше отложений на деталях.

Стандарты и спецификации

SAE J300

Классификация вязкостно-температурных свойств смазывающих материалов SAE J300 разработана американским обществом автомобильных инженеров Society of Automotive Engineers. Система делит масла на два типа: летние и зимние (маркировка W – winter). Для материалов, предназначенных для эксплуатации при низких температурах, дополнительно регламентируют предел прокачиваемости (тест MRV – Mini Rotary Viscometer) и проворачиваемости (CCS – Cold Cranking Simulator) коленвала. Для летних сортов определяют прочность на сдвиг при экстремальном нагревании (тест HTHS – High Temperature High Shear Rate). Класс вязкости по SAE J300 указывает на диапазон температур эксплуатации конкретной марки моторного масла. Обозначение всесезонных сортов сочетает два показателя: зимний и летний. Например, 5W-40.

Классы вязкости зимних моторных масел SAE J300

 

Низкотемпературная вязкость

Высокотемпературная вязкость

Класс

вязкости

SAE

CCS, МПа-с. Max, при темп.,°С

MRV, МПа-с, Max, при темп.,°С

Кинематическая вязкость, мм2/с при 100 °С

HTHS, МПа-с. Min при 150 °С и 10Л6 с-1,

 

 

 

Min

Max

0W

3250 при -30

30000 при -35

3,8

-

-

5W

3500 при -25

30000 при -30

3,8

-

-

10W

3500 при -20

30000 при -25

4,1

-

-

15W

3500 при -15

30000 при -20

5,6

-

-

20W

4500 при -10

30000 при -15

5,6

-

-

25W

6000 при -5

30000 при -10

9,3

-

-

Классы вязкости летних моторных масел SAE J300

Класс вязкости SAE

Высокотемпературная вязкость

Кинематическая вязкость, мм2/с при 100 °С

HTHS, МПа-с. Min при 150 °С и 10Л6 с-1,

Min

Max

8

4,0

6,1

1,7

12

5,0

7,1

2,0

16

6,1

8,2

2,3

20

6,9

9,3

2,6

30

9,3

12,5

2,9

40

12,5

16,3

2,9*

40

12,5

16,3

3,7**

50

16,3

21,9

3,7

60

21,9

26,1

3,7

* Для классов 10W40, 5W40, 10W40.

** Для классов 15W40, 20W40, 25W40, 40.

API

Классификация разработана специалистами American Petroleum Institute (API) совместно с American Society for Testing and Materials (ASTM) и Society of Automobile Engineers (SAE). Система опирается на эксплуатационные характеристики моторных масел и устанавливает стандарты для бензиновых, дизельных, двухтактных моторов и трансмиссий. По API смазочные материалы делятся на три категории:

Классификация материалов внутри категорий начинается с буквы А (SA, SB, SC…) и далее в алфавитном порядке. Каждая последующая марка может использоваться в двигателях, для которых рекомендованы предыдущие. Категории с SA до SG являются устаревшими. Знак SH маркируют только в качестве дополнения к C. Начиная с SJ все категории действующие, а SN считается высшей на сегодняшний день. Марки масел с API CA до API CG-4 признаны устаревшими. Остальные категории действующие, высшей является API CK-4.

ILSAC

Классификация международного комитета по стандартизации и апробации моторных масел ILSAC (INTERNATIONAL LUBRICANTS STANDARDISATION AND APPROVAL COMMITTEE) – это результат совместного труда американской ассоциации American Automobile Manufacturers Association (AAMA) и японских специалистов Japan Automobile Manufacturers Association (JAMA). Стандарт устанавливает требования к смазочным материалам для бензиновых двигателей легковых автомобилей. Знак ILSAC получают масла с высокими показателями экономии топлива, энергосбережения, фильтруемости в условиях низких температур. Для продуктов характерна низкая испаряемость, стойкость к вспениванию и сдвигу, минимальное содержание фосфора. Категории моторных масел по ILSAC:

GF-1. Устаревшая спецификация с минимально допустимыми требованиями к качеству материалов для японских и американских автомобилей. Категория охватывает масла классов SAE: 0W-30, -40, -50, -60, 10W-30, -40, -50, -60 и 5W-30, -40, -50, -60. Спецификация соответствует EC-II и API SH;

GF-2. Соответствует EC-II и API SJ. Категория включает все марки масел GF-1 и дополнительно 0W-20, 5W-20. Строгие ограничения по содержанию фосфора, улучшенные низкотемпературные свойства, стойкость к пенообразованию и образованию отложений;

GF-3. Соответствует EC-II и API SL. Улучшены противоизносные и противоокислительные свойства, снижена испаряемость, увеличены показатели экономии топлива, стабильности вязкостных свойств. Спецификация устанавливает строгие требования к долгосрочным последствиям влияния моторных масел на системы нейтрализации выхлопных газов;

GF-4. Соответствует API SM. Масла проходят испытания на топливную экономичность. Категория включает классы вязкости SAE: 0W-20, 5W-20, 5W-30, 10W-30. Улучшены моющие и противоизносные свойства, снижен риск образования отложений. Содержание фосфора – не более 0,08 %;

GF-5. Соответствуют API SM с жесткими требованиями к совместимости к системам катализаторов, к топливной экономичности, к испаряемости, к стойкости к образованию отложений. Спецификация устанавливает параметры совместимости с эластомерами, защиту систем турбонаддува, возможность применения биотоплива.

Знание основных характеристик необходимо для грамотного выбора моторного масла.

Всё о температуре моторных масел (вспышка и кипение): фото и видео

Двигатели автомобилей должны выдерживать высокие механические тепловые нагрузки, поэтому к качеству смазочного вещества предъявляются высокие требования. Моторные масла имеют характеристики и множество показателей.

Содержание

[ Раскрыть]

[ Скрыть]

Диапазон рабочих температур

Вязкость моторных масел

Смазывающее вещество используют, чтобы не допустить сухого трения внутренних деталей двигателя. Моторная жидкость должна обеспечивать разделение поверхностей трения, эффективно прокачиваясь по масляным каналам. Температура (в дальнейшем темп.) вспышки моторного смазывающего — это параметр, характеризующий его испаряемость.

Характеристики моторного масла — вязкость и зависимость от темп. в широком диапазоне.
Создавая двигатель автомобиля производители, прежде всего, должны рассчитать вязкость моторного нефтепродукта, которая может изменяться с изменением температур.

Темп. вспышки определяется нагреванием рабочей жидкости в открытом или закрытом тигле, приборе, куда его заливают и подогревают. Чтобы зафиксировать темп. состояние рабочей жидкости следует провести над тиглем зажженным фитильком.

Рабочая темп. моторных масел не должна повышаться больше чем на 2 градуса в течение 1 минуты. Смазывающее вещество должно не только вспыхивать, но и гореть. Низкая темп.  моторных масел увеличивает вязкость жидкости, и наоборот.

Процесс замены моторного масла

Вязкость моторных масел, которая указана в руководстве по эксплуатации, должна быть оптимальной.
Температура вспышки моторных масел характеризует присутствие в нем легкокипящих фракций. Она связана с таким показателем, как испаряемость нефтепродукта во время эксплуатации. Хорошие рабочие вещества имеют темп. показатели вспышки более 225°C.

Фракции, обладающие слабой вязкой, которые есть в наличии только у некачественных масел, выгорают и испаряются очень быстро. В результате этого смазочный продукт также быстро расходуется. К тому же, его температурные свойства ухудшаются.

-35°С — 180°С — таковы пределы рабочих температур масел. Температурное состояние рабочей жидкости зависит от конструкции ДВС и темп. воздуха. Чтобы получить хорошие вязкостно-температурные характеристики, нефтепродукта загущают посредством специальных присадок, позволяющих меньше «разжижаться» при достижении высоких темп. и делаться гуще при низких.

Классификация

Рабочий температурный показатель обычного двигателя с водяным охлаждением должен быть между 80°C и 90°C. Исходя их этого, рабочее темп. состояние смазки должно быть выше на 10°C — 15°C температурного состояния охладителя, но не доходить до отметки 105°C.

Рабочая вязкость может падать ниже 10 мм 2/c. В результате этого масляная плёнка будет слишком тонкой, чтобы стать качественной смазкой для всех деталей в двигателе.

Стоит знать температурный диапазон применения некоторых нефтепродуктов.

В названии зимних рабочих жидкостей содержится буква «W»: 4OW, 5W, 10W, 15W, 20W, 25W.

Летние обозначаются числами — 20, 30, 40, 50, 60. Вязкость выше, если выше число.

Двойное обозначение имеют всесезонные смазывающие: SAE 15W-40.

Существует таблица значений и характеристик вязкости смазочного продукта по SAE:

Таблица значений вязкости смазочного продукта

Смазочный продукт бывает бензиновым, дизельным и универсальным, а также всесезонным, летним и зимним. Характеристики смазывающего зависят от базового вещества, которое является основой и с помощью которого различают минеральные, полусинтетические и синтетические продукты для смазки.

Если температурный диапазон, который обеспечивает нужную вязкость жидкости, широк, то выше и его индекс, а значит, такой продукт можно назвать высококачественным. У рабочего вещества может быть как низкое темп. состояние, доводящее его до застывания, так и высокое, то есть температура кипения. О застывании немного позже.

Низкая температура

 Низкотемпературные параметры

Важно помнить не только о температуре на улице, но и о рабочей темп. в двигателе, так как на него влияют пробег автомобиля и нагрузки.

В двигателе каждого автомобиля обычно применимы два режима поступления смазывающего вещества:

Существуют низкотемпературные параметры смазки. К ним относятся:

Стоит отметить, что рабочая температура прокачиваемости на 5 градусов ниже температурного состояния проворачиваемости.

Таблица температурных показателей

Существует таблица температурных состояний нефтепродукта.

Для всесезонных и зимних моторных масел важна низкая темп. застывания.
При запуске холодного двигателя или во время движения с низким температурным показателем жижа поступает в самые отдаленные места.

Температура застывания, которая влияет на поступление рабочей жидкости к трущимся деталям, при этом должна быть ниже темп. окружающей среды. Темп. застывания моторного нефтепродукта должна быть ниже на 5—10°С температуры запуска двигателя.

Таблица температурных показателей

Высокая температура

Диапазон допустимости

Что может случиться, если мотор прогрелся до рабочих темп., однако, вязкость смазки не снизилась до нужного уровня? Ничего страшного не будет при нагрузках. Немного повысятся температурные показатели мотора, а вязкость уменьшится до нормы.

Рабочие температурные показатели мотора не превысят нормы для этой нагрузки и уложится в диапазон допустимости. Но мотор может достаточно большой отрезок времени работать при высоких показателях термометра, что не приведет к увеличению его моторесурса.

Залив нового масла в двигатель

Температура кипения

Слишком высокий уровень теплоты в моторе опаснее, чем низкий. Повышение температурного состояния может довести смазку до кипения. Если ее нагреть до стадии кипения, то можно увидеть, как оно запузырится и задымится. Смазка доходит до кипения при 250-260 градусов.

При повышенном температурном состоянии понижается вязкость смазки, из-за чего она не сможет качественно смазывать детали. К тому же уменьшение зазоров может повлечь за собой повреждение механизма. Если температура смазки повысилась до отметки 125 градусов, то оно будет гореть вместе с топливом после того, как обойдет поршневые кольца.

При этом концентрация смазочного материала в горючем будет низкой, поэтому при выхлопе он не будет заметен. Жидкость будет быстро расходоваться. Поэтому потребуется частое заливание новой. Если агрегат требует добавить смазки, то обратите на это внимание.

Почему смазочный продукт нельзя доводить до кипения?

Непосильная нагрузка на двигатель и недостаточный за ним уход приводят жидкость в состояние кипения, при котором она теряет вязкость и другие необходимые качества.

Сгоревшее масло в двигателе автомобиля

 Вспышки и застывание моторного масла

Вспышки

Состояние, при котором появляется вспышка на поверхности смазки, если преподнести к нему газовое пламя, называется температурой вспышки. При нагревании смазочного продукта концентрируются масляные пары, которые способствуют воспламенению.

В температурных состояниях вспышки и воспламенения есть различия, которые связаны со способом проведения испытания и с самим аппаратом. Температурное состояние вспышки и воспламенения — это показатели летучести рабочего вещества, которые определяют его тип, а также степень его очистки.

Но температурные состояния воспламенения и вспышки не могут характеризовать работу смазки в двигателе и его качество.

Застывание

Если вещество перестаёт быть тягучим и подвижным, то это называется температурой застывания. Резкое увеличение вязкости и процесс кристаллизации парафина — то, что характеризует застывание. Смазочный продукт, который находится в условиях низких температур, становится неподвижным и вязким. Он получает более твердую консистенцию и пластичность из-за выделения углеводородных компонентов.

Температура застывания равноценна предельной минимальной темп. циркуляции жидкости и системе смазки мотора.

Моторные масла от ЛиквиМоли

Рекомендации по выбору и замене

  1. Смазочный продукт, у которого высокий показатель высокотемпературной вязкости, используют для спортивных автомобилей.
  2. Но не стоит использовать продукт с таким показателем в обычном автомобиле. Выбирая смазку, необходимо ориентироваться на инструкции по эксплуатации автомобиля.
  3. Не следует использовать продукт с высоким уровнем свойств, которые выше, чем указал производитель автомобиля.
  4. Не нужно обращать особого внимания на цвет смазочного продукта, так как присадки, которые в нем содержатся, делают его темным.
  5. Замену смазывающего производите в те сроки, которые указал производитель вашего авто.
  6. Если автомобиль часто движется по бездорожью, то такие условия требуют замены смазки в 1,5-2 раза чаще, чем это положено инструкцией.
  7. Замену оксоли стоит производить чаще, если у автомобиля значительный пробег.
  8. Если цвет оксоли изменился, то это вовсе не означает, что утратились его эксплуатационные свойства. Смазка смывает отложения в моторе.
  9. Лучше не смешивать минеральное и синтетические нефтепродукты.
  10. Доливайте тот же сорт, который уже есть в двигателе.
  11. Можно не промывать мотор, если жижу заменяли вовремя.
Автомеханики производящие замену

Видео «Температура вспышки»

Посмотрите видео о влиянии температуры на нефтепродукты.

Разбираемся в терминологии моторных масел

ACEA

ACEA (Association des Constructeurs Européens de I`Automobile) – это Ассоциация европейских изготовителей автомобилей, которая была основана в 1991 году.

Ассоциация представляет на уровне Евросоюза интересы 15 разных европейских производителей легковых автомобилей, грузовых автомобилей и автобусов. В число членов организации входят такие производители как BMW, Scania, Volkswagen, MAN, Volvo и т.д. Помимо этого в организацию ACEA также входят представители поставщиков присадок и производителей смазочных материалов, которые подбирают для спецификации испытательные методы и двигатели. Организация разрабатывает спецификации ACEA и в качестве испытательных машин в основном используются двигатели европейских производителей. Спецификации ACEA объединяют лабораторные и технические требования, предъявляемые различными европейскими производителями транспортных средств к маслам. Спецификации также определяют основные требования к чистоте двигателя, стойкости к старению, противоизносной защите, расходу топлива и выбросу загрязняющих веществ. В целях обеспечения постоянного роста качества моторных масел ACEA начала при- менять в декабре 2010 года новые классы ACEA. Классификация ACEA, изданная в 2010 году, определяет минимальные требования всех европейских производителей транспортных средств и двигателей:

Номер года – это год издания соответствующей серии испытаний.

Сравнительно «недавний» год указывает на то, что введено новое испытание, параметр испытания или предел значения. В большинстве случаев масло с более новым номером года более качественное и дорогое, нежели масло, которое отвечает старым и устаревшим требованиям. Номер издания (Issue) обновляют без изменения года только в том случае, если спецификацию редактируют без внесения поправок в технические параметры, влияющие на эффективность масла. На большинстве упаковок масел отсутствует информация об издании спецификации. Эта информация может быть указана в листах описания производителя, которые часто публикуются в Интернете. Производитель должен по меньшей мере суметь предоставить информацию об издании спецификации.

API

API (American Petroleum Institute) – это Американский институт нефти, который выдает классификации API, распространенные в США и Азии.

Издание классификаций API происходит аналогично выдаче спецификаций ACEA. В качестве же испытательных машин в основном используются двигатели американских производителей. Система классификации API разделяет моторные масла только на две группы:

Обозначение класса API, как правило, состоит из двух букв, первая из которых указывает на тип моторного масла и вторая на соответствие определенному стандарту качест- ва. Чем дальше от начала алфавита находится вторая буква, тем выше качество масла, напр., масло API SJ более низкого качества, чем API SM. Американские производители двигателей не требуют альтернативы классам ACEA A и B, поскольку они не производят высокооборотистые дизельные двигатели для легковых автомобилей – в США не популярны легковые автомобили с дизельным двигателем.

Стандарты API регулярно дополняют, а также ужесточают, и вторая буква классификации, в сущности, показывает, каким требованиям к качеству отвечает масло, а также в каком году действовали эти требования.

JASO

JASO – это спецификация и знак качества моторных масел для мотоциклов. Классы качества JASO подразделяются на группы M, требования которой распространяются на масла для четырехтактных двигателей и F, которая действует в отношении масел для двухтактных двигателей.

Масла группы M, в свою очередь, делятся на масла категории MA и MB, различающиеся величиной коэффициента трения, создаваемого в смазываемой муфте сцепления.

Масла категории MA характеризуются высоким коэффициентом трения. Они не создают проблем в двигателях мотоциклов с высоким крутящим моментом при сравнительно небольшой муфте сцепления и идеально подходят для муфт сцепления.

К классу MB относят масла, которые хотя и выполняют все остальные критерии спецификации JASO, но не достигают достаточно высокого коэффициента трения. Они лишь ограниченно применимы в мотоциклах с «чутким сцеплением».

Самые высокие требования к моторным маслам для четырехтактных двигателей в на- стоящее время определены стандартом JASO MA-2. Данный класс качества обозначает еще более высокие коэффициенты трения в муфте сцепления и, следовательно, максимальную совместимость с муфтами сцепления даже в случае с двигателями со сверхвысоким крутящим моментом.

Low SAPS

Аббревиатура SAPS образуется от первых букв английских слов Sulphated Ash, Phosphorus и Sulphur, а английское слово low в русском языке означает «низкий». Следовательно, моторное масло с характеристикой low SAPS является маслом, которое содержит минимальное количество сульфатной зольности, фосфора и серы. Поскольку такие масла образуют мало золы, их также называют маслами low ash. Применения моторных масел low SAPS требуют именно современные транспортные средства.

Mid SAPS

Аббревиатура mid образуется от английского слова middle, что в русском языке означает «средний». Таким образом, моторные масла mid SAPS характеризуются средним содержанием сульфатной зольности, фосфора и серы.

SAE

SAE (Society of Automotive Engineers) – это организация, разработавшая классы вязко- сти, которыми обозначают текучесть масел для четырехтактных двигателей.

Классы вязкости указывают на текучесть масла и его зависимость от температуры, но не связаны напрямую с качеством масла. Первая цифра, за которой обычно следует буква W, показывает текучесть масла при низких температурах, то есть т.н. зимнюю вязкость (Winter). Вторая цифра показывает свойство масла сохранять достаточную густоту и при высоких температурах, то есть вязкость масла при 100 °C.

Чем меньше число зимнего класса (SAE 0W, 5W, 10W и т.д.), тем при более низких температурах масло остается жидким – это облегчает пуск двигателя и защищает холодный двигатель. Чем больше число летнего класса (SAE 30, 40, 50 и т.д.), тем выше вязкость масла при 100-градусной температуре и тем лучше оно сможет защитить двигатель при экстремальных условиях эксплуатации.

Большинство двигателей создано для работы на маслах класса вязкости SAE 10W-40, что является достаточным при погоде от -25 до +40 градусов.

Учитывая климатические условия Эстонии, наиболее распространенными моторными маслами являются масла вязкостью SAE 5W-30; 5W-40 и 10W-40.

Вязкость

Вязкость отвечает за способность масла препятствовать износу поверхностей трения за счет образования масляной пленки. Также вязкость характеризует текучесть масла при определенной температуре. Каждое масло имеет индивидуальную зависимость вязкости от температуры. На изменение вязкости в зависимости от температуры влияют подобранное базовое масло и специальные присадки, например улучшители индекса вязкости

(ИВ, или VI). Вязкость HTHS

У современных всесезонных моторных масел с улучшителями ИВ вязкость однако за- висит не только от температуры, но и от давления и градиента скорости сдвига. Градиент скорости сдвига получают при делении скорости движущейся детали (м/с) на тол- щину масляной пленки (м). Чтобы сделать выводы о вязкости используемого масла, уже некоторое время применяют вязкость HTHS (High Temperature High Shear). Данный параметр описывает поведение масла в смазочном отверстии при температуре 150°C и при высоком градиенте скорости сдвига, который типичен для высоких скоростей двига- теля.

Для того чтобы всесезонные моторные масла с улучшителями индекса вязкости обес- печивали необходимую смазку также при высоких температурах и скоростях, в категории ACEA C установлены предельные значения вязкости HTHS. Моторные масла, у которых вязкость HTHS составляет менее 3,5 мПа∙с, также помогают снизить расход топлива, однако их нельзя применять в двигателях, не предназначенных для таких масел.

Индекс вязкости

Индекс вязкости – это величина, которая характеризует зависимость вязкости от температуры: чем выше индекс вязкости, тем меньше текучесть масла зависит от температуры, т.е. тем лучше масло выдерживает низкие и высокие температуры. Значения индекса вязкости минеральных масел обычно находятся в диапазоне 90– 110, у синтетических базовых масел индекс вязкости почти всегда превышает 140. Чем выше индекс вязкости, тем меньше энергии потребуется при холодном пуске двигателя или при низких температурах с такой же номинальной вязкостью масла.

Температура вспышки (flash point)

Параметром, который косвенно характеризует испаряемость моторного масла, является температура вспышки, или точка вспышки. Это самая низкая температура, при которой пары нагреваемого моторного масла при определенных условиях образуют смесь с воздухом, взрывающуюся при поднесении пламени (первая вспышка). При температуре вспышки моторное масло еще не воспламеняется. Температуру вспышки определяют при нагревании моторного масла в открытом или закрытом тигле. Результаты имеют разные значения, в закрытом тигле температура вспышки ниже на 20–25 °C.

При выборе моторного масла следует знать, что чем ниже температура вспышки моторного масла, тем оно интенсивнее испаряется и сгорает на высокотемпературных поверхностях, а также загрязняет двигатель золой, сажей и прочими продуктами горения. Более качественным является моторное масло, имеющее более высокое значение температуры вспышки. У современных моторных масел температура вспышки превышает 200 °C, обычно она равна 210–230 °C и выше.

Температура воспламенения (fire point)

Температура воспламенения моторного масла – это температура, при которой моторное масла при нагревании в открытом тигле (метод Бренкена) воспламеняется от огня и горит не менее 5 секунд. Температура воспламенения моторных масел выше температуры вспышки по меньшей мере на 20–30 °C. Температура воспламенения не является определяющим параметром в случае с моторными маслами.

Летучесть (volatility)

Летучесть – свойство наиболее легких фракций моторного масла испаряться при высоких температурах, что выражается в процентах потери от испарения после нагревания моторного масла в течение часа при температуре 250 °C. Для определения испаряемости, или летучести моторного масла, применяется метод Нок. Если после нагревания в течение часа 1 000 г моторного масла при температуре 250 °C остается 850 г масла, это означает, что его летучесть составляет 15 % (минус 150 г). В соответствии с требованиями ACEA, испаряемость моторных масел класса A1/B1 не смеет превышать 15 %, у масел классов A3/B3, A3/B4, A5/B5, C1, C2, C3, E4, E6, E7, E9 этот показатель должен быть меньше 13 % или равен 13 %, а у масел класса C4 испаряемость должна быть меньше 11 % или равна 11 %. Если моторное масло слишком летуче, его придется чаще заливать в двигатель и по- этому расход масла будет высоким.

Общее щелочное число (ОЩЧ)

Общее щелочное число является мерой количества резервных щелочных добавок, вводимых в смазочные материалы для нейтрализации кислот, замедления окисления и коррозии, повышения смазывающей способности, улучшения вязкостных характеристик и уменьшения тенденции к выпадению осадка. Проще говоря, это тест для оценки способности к нейтрализации агрессивных кислот, которые могут образовываться в процессе нормальной эксплуатации оборудования.

Составы присадок в маслах различных производителей значительно различаются, поэтому наиболее важным аналитическим параметром является изменение щелочного числа свежего либо используемого смазочного материала по отношению к состоянию предыдущей пробы.

Числа нейтрализации моторных масел

Температура затвердевания (setting point)

Температура затвердевания – температура, при которой масло перестает быть жидкостью и застывает. При охлаждении масло перестает течь под воздействием силы тяжести. Температура затвердевания часто ниже температуры застывания на 3–5 °C. Затвердевание масла обусловлено кристаллизацией парафинов, которые присутствуют в базовом масле. При соединении кристаллов парафина консистенция масла становится твердой и похожей на воск.

Температура застывания (pour point)

Температура застывания (точка текучести) – это самая низкая температура, при которой масло еще обладает способностью течь. Температура застывания (pour point) и температура затвердевания (setting point) характеризуют физические свойства смазочного материала при низких температурах.

TBN – Total Base Number, или общее щелочное число

Общее щелочное число показывает количество кислоты, необходимой для нейтрализации щелочей, содержащихся в 1 грамме моторного масла (выражается в мг KOH, или гидроокиси калия). Таким образом, TBN описывает количество слабых и сильных щелочей в составе моторного масла.

TAN – Total Acid Number, или общее кислотное число

Общее кислотное число показывает количество гидроокиси калия (KOH) в миллиграммах, которое необходимо для нейтрализации свободных кислот, находящихся в 1 грамме моторного масла. Таким образом, TAN выражает количество слабых и сильных кислот, содержащихся в моторном масле.

SBN – Strong Base Number, или щелочное число для определения сильных кислот

Щелочное число для определения сильных кислот показывает количество кислоты, которое потребуется для нейтрализации сильных щелочей, содержащихся в 1 грамме моторного масла. Таким образом, SBN выражает количество сильных щелочей, преж- де всего неорганических щелочей, присутствующих в моторном масле, что крайне редко встречается на практике.

SAN – Strong Acid Number, или число сильных кислот

Число сильных кислот показывает количество щелочи, необходимой для нейтрализации сильных кислот, содержащихся в 1 грамме моторного масла (выражается в мг KOH). Таким образом, SAN показывает количество сильных, или неорганических ки- слот, в составе моторного масла.


Температура кипения моторного масла (температура горения и вспышки)

Проблема закипания смазочного вещества внутри двс является достаточно распространенной и возникает она обычно в весенне-летний период, когда чрезмерная жара может спровоцировать дополнительное повышение температуры внутри силовой установки. Однако, данный недуг не исключен и в условиях сильных морозов. Поговорим сегодня о том, какая температура кипения устанавливается для моторного масла, что может стать причиной закипания жидкости и к каким последствиям может привести ее горение.

Температура кипения автомобильного масла характеризует свойства каждого используемого в его составе ингредиента. И определяется она самым низким параметром. Так, например, если для одной из присадок будет характерна температура кипения 180 градусов, а для остальных составляющих – 195, то для моторного масла будет устанавливаться именно первый показатель кипения.

Процесс кипения сопровождается пузырением смазки, ее летучестью и образованием большого количества отложений, которые забивают междетальные зазоры и каналы системы смазки.

Т.к. масло, независимо от основы – минеральной, полусинтетической или синтетической – относится к горючим продуктам, то его свойства также характеризует главный параметр — температура вспышки масла. Достижение критической величины вызывает воспламенение ГСМ. Несмотря на то, что многими производителями технических жидкостей указывается температура воспламенения в диапазоне от 230 до 240 градусов Цельсия, в реальных условиях она оказывается гораздо ниже и составляет 150-190 градусов. Связано это с тем, что в процессе сгорания масла в двигателе образуются дополнительные пары, которые и становятся причиной раннего воспламенения смазки. Таким образом, реальная температура вспышки масла зависит от количества пара, образовавшегося в результате его кипения.

Симптомы сгорания масла

Существует четыре основных симптома закипания смазочного вещества. Среди них:

Что делать, если закипело масло?

Если вы стоите в пробке или на парковочном месте и заметили горение масла, сразу же заглушите мотор. Паниковать не нужно, главное – остановить работу двигателя.

При появлении дыма из подкапотного пространства во время езды останавливать машину нужно следующим образом:

  1. Минимизируйте нагрузку на силовую установку – для этого уберите ногу с педали газа, чтобы понизить обороты.
  2. Включите автомобильную печь на максимальный обдув – это позволит вывести из рабочей зоны часть перегретого воздуха и снизить его концентрацию в движке.
  3. Если позволяют дорожные условия, прокатитесь накатом до полной остановки автомобиля. Встречный поток ветра охладит моторный отсек.
  4. Как только машина остановится, выждите еще 5 минут и только после этого глушите двс.

Помните! Во время повышения температурного параметра внутри двигательной системы нельзя допускать резкого торможения транспортного средства.

Причины образования проблемы

Разберем причины, из-за которых температура моторного масла начинает повышаться:

Аналогичная ситуация возникает и с высококачественным смазочным материалом после его устаревания. Если владелец автомобиля пренебрег заменой масла, то нефтепродукт также может спровоцировать повышение температуры внутри двигательной системы.

Это две основные причины, которые могут вызвать кипение масла внутри силовой установки.

Чем опасна высокая температура?

Если температура масляного материала становится выше 105 градусов Цельсия, то его вязкость быстро снижается, и детали из-за нарушенного защитного слоя начинают соприкасаться друг с другом. Как только это произойдет, сила трения внутри силовой конструкции возрастет, что послужит причиной сокращения теплового зазора между элементами. Повышение температуры моторного масла активирует его окисление и быстрое устаревание.

Отложения на маслозаборнике

От циркуляции в моторе испорченной смазки на всех узлах конструкции остаются частички шлама, лаки и нагар. Из-за возгорания масла количество вредных отложений существенного возрастает.

Нагар образуется на поверхностях деталей в результате окисления углерода и представляет собой скопление твердых веществ. Среди них – свинец, железо и прочие металлические частицы. В больших количествах нагар провоцирует троение двигателя, калильное зажигание, а может и вовсе стать причиной детонационного взрыва.

В результате окислительных реакций в силовой установке образуются масляные пленки – лаки, которые под воздействием высоких температур запекаются на движущихся элементах системы. В состав лаков входят зола, кислород, водород и углерод. Основную опасность они представляют поршням, поршневым кольцам и канавкам, а также цилиндрам двс.

Как только температура моторного масла превысит отметку в 125 градусов, оно полностью утратит былую вязкость и начнет вытекать сквозь неплотности конструкции. Таким образом, двигательная система начнет испытывать масляное голодание.

Самым опасным последствием перегрева моторной смазки может стать пожар — после него восстановить автомобиль будет уже невозможно.

И напоследок

Как уже стало понятно из вышесказанного, повышение рабочей температуры смазочного состава – опасный недуг, с которым может столкнуться каждый автолюбитель. Обезопасить себя и свое средство передвижения можно при помощи своевременно проводимых технических обслуживаний. При этом экономия на смазочном ГСМ не уместна. Используемая для автомобильных моторов смазка должна полностью соответствовать требования автопроизводителя.

Загрузка...

Моторные масла

Содержание статьи

Функции моторных масел

Условия работы моторных масел

Моторные масла работают в исключительно тяжелых условиях. Другим смазочным материалам, применяемым в автомобилях – трансмиссионным маслам и пластичным смазкам, – несравненно легче выполнять свои функции, не теряя нужных свойств, так как они работают в среде относительно однородной, с более-менее постоянными температурой, давлением и нагрузками. У моторных же режим “рваный” – одна и та же порция масла длительное время подвергается ежесекундным перепадам тепловых и механических нагрузок, поскольку условия смазки различных узлов двигателя далеко не одинаковы. Кроме того, моторное масло подвергается химическому воздействию – кислорода воздуха, других газов, продуктов неполного сгорания топлива, да и самого топлива, которое неминуемо попадает в масло, хотя и в очень малых количествах.

Условия работы моторных масел

В таких, мягко говоря, не комфортных условиях моторное масло должно в течение длительного времени выполнять возложенные на него функции. А именно:

Некоторые основные характеристики масел

Вязкость – это одна из важнейших характеристик масел. Моторные масла, как и большинство смазочных материалов, изменяют вязкость в зависимости от своей температуры. Чем ниже температура, тем больше вязкость и наоборот. Чтобы обеспечить холодный пуск двигателя (проворачивание коленвала стартером и прокачивание масла по системе смазки) при низких температурах, вязкость не должна быть очень большой. При высоких температурах, наоборот, масло не должно иметь очень малую вязкость, чтобы создавать прочную масляную пленку между трущимися деталями и необходимое давление в системе.

Индекс вязкости – показатель, который характеризует зависимость вязкости масла от изменения температуры. Это безразмерная величина, т.е. не измеряется в каких-либо единицах– это просто число. Чем выше индекс вязкости моторного масла, тем в более широком температурном диапазоне масло обеспечивает работоспособность двигателя. Для минеральных масел без вязкостных присадок индекс вязкости составляет 85-100, масла с вязкостными присадками и синтетические масла-компоненты могут иметь индекс вязкости 120-150. У маловязких глубокоочищенных масел индекс вязкости может достигать 200.

Температура вспышки. Этот показатель характеризует наличие в масле легкокипящих фракций, и, соответственно, связан с испаряемостью масла в процессе эксплуатации. У хороших масел температура вспышки должна быть выше 225°С. У недостаточно качественных масел маловязкие фракции быстро испаряются и выгорают, ведя к высокому расходу масла и ухудшению его низкотемпературных свойств.

Температура застывания – это температура, при которой масло практически полностью теряет текучесть (подвижность). Температура застывания характеризует момент резкого увеличения вязкости при снижении температуры, или кристаллизации парафина вместе с повышением вязкости в такой степени, что масло становится твердым.

Щелочное число (TBN). Показывает общую щелочность масла, включая вносимую моющими и диспергирующими присадками, которые обладают щелочными свойствами. TBN характеризует способность масла нейтрализовывать вредные кислоты, поступающие в него в процессе работы двигателя и противодействовать отложениям. Чем ниже TBN, тем меньше активных присадок осталось в масле. TBN большинства масел для бензиновых двигателей обычно имеет значения в пределах 8-9 единиц, а для дизельных двигателей около 11-14. При работе моторного масла общее щелочное число неизбежно снижается, нейтрализующие присадки срабатываются. Значительное падение числа TBN приводит к кислотной коррозии, а также загрязнению внутренних частей двигателя.

Кислотное число (TAN). Кислотное число является показателем, характеризующим наличие в моторных маслах продуктов окисления. Чем меньше его абсолютное значение, тем лучше условия работы масла в двигателе и тем больше его остаточный ресурс. Повышение числа TAN служит показателем окисления масла, вызванного длительным временем использования и/или рабочей температурой. Общее кислотное число определяется для анализа состояния моторных масел, как показателя степени окисления масла и накопления кислых продуктов сгорания топлива.

Базовые масла

Моторное масло состоит из основы (базового масла) и присадок. Свойства масла определяются прежде всего химическим составом основы, присадки же предназначены для корректировки и улучшения этих характеристик. С помощью присадок можно значительно повысить эксплуатационные свойства моторных масел, даже изготовленных из не самых лучших базовых масел. Но при длительной эксплуатации и особенно при высоких нагрузках присадки разрушаются, и конечное качество моторного масла, проработавшего в двигателе более половины положенного срока, определяется качеством базового масла. Основы масла бывают минеральные (т.е. полученные путём очистки соответствующей фракции нефти) и синтетические (т.е. полученым путём каталитического синтеза из газов). Комбинация минеральных и синтетических основ, при условии не менее 25 % синтетического базового масла, называется полусинтетической базой.

Молекулы минерального и синтетического масла

Масла — это углеводороды с определенным количеством атомов углерода. Эти атомы могут быть соединены как в длинные и прямые цепи, так и разветвленные, как крона какого-нибудь дерева. Чем более «прямыми» будут цепи, тем лучше будут свойства масла. Так, например, «ветвистым» молекулам легче свернуться в шарик, поскольку они более компактные — именно так происходит замерзание. То есть они будут замерзать при более высокой температуре, чем их «коллеги», состоящие из прямых цепей. Итак, нам нужно получить масло, состоящее из красивых одинаковых прямых углеводородных цепей. Никаких вредных примесей, ненасыщенных связей или колец. Получаемое из нефти масло идет к «идеалу», отсеивая все ненужное более или менее изощренными способами. Если менее — это обычная «минералка», более — гидрокрекинговое масло. В процессе каталитического гидрокрекинга происходит «выпрямление» цепей — изомеризация, но строя отборных молекул таким способом не получить. Ну а синтетическое масло? Его получают из легких газов, «наращивая» длину цепи до нужного числа атомов углерода. Условия этой реакции намного лучше контролируются, поэтому можно получить практически линейные цепи заданной длины.

Условные эксплуатационные характеристики (по возрастанию качества), в %
(минеральное базовое масло принято за 100 %)

По классификации Американского института нефти (API) базовые масла подразделяются на пять категорий:

Химический состав минеральных основ зависит от качества нефти, пределов выкипания отбираемых масляных фракций, а также методов и степени их очистки. Минеральная основа – самая дешевая. Это продукт прямой перегонки нефти, состоящий из молекул разной длины и разного строения. Из-за этой неоднородности – нестабильность вязкостно – температурных свойств, высокая испаряемость, низкая стойкость к окислению. Минеральная основа – самая распространенная в мире моторных масел.

Совершенствование минеральных базовых масел проводится по двум основным направлениям. Первое, при котором масло очищается только до такой степени, чтобы в нем осталось оптимальное содержание смол, кислот, соединений серы, азота и, дополнительно, вводятся присадки для улучшения некоторых функциональных свойств. Такой метод не позволяет получить масла достаточно высокого уровня качества. Второе направление, при котором базовое масло полностью очищается от всех примесей и проводится молекулярная модификация методом гидрокрекинга. В результате получается масло, обладающее ценными свойствами для тяжелых режимов работы (высокая стойкость к деформациям сдвига при высоких скоростях, нагрузках и температурах, высокий индекс вязкости и стабильность параметров).

К какому классу относить такие масла? По цене «гидрокрекинг» ближе к «минералке», а по качеству, как уверяет продавец, ничуть не хуже «синтетики». Но мы же понимаем, что если бы дело обстояло именно так, такое дорогое удовольствие, как синтетическое масло, вымерло бы как класс… Гидрокрекинговое масло ближе к минеральному не только по цене, но и по способу получения, потому что оно тоже производится из нефти. Чем же оно тогда лучше? Как следует из названия, оно проходит более глубокую обработку при помощи гидрокрекинга. А на первых этапах его производство ничем не отличается от производства минерального масла. Из обычного минерального масла разнообразными физико-химическими методами удаляются нежелательные примеси, вроде соединений серы или азота, асфальтеновые (битумные) вещества и ароматические полициклические соединения, которые усиливают коксование и зависимость вязкости от температуры. Депарафинизацией удаляются парафины, повышающие температуру застывания масел. Однако понятно, что удалить все ненужные примеси таким методом невозможно — грубо говоря, это и служит причиной худших свойств «минералки». Обработка масла может продолжиться и дальше. Ведь остались еще ненасыщенные углеводороды, которые ускоряют старение масла из-за окисления, да и примеси тоже остались. Гидроочистка (воздействие водородом при высокой температуре и давлении) превращает непредельные и ароматические углеводороды в предельные, что увеличивает стойкость масла к окислению. Таким образом, масло, прошедшее гидроочистку, обладает дополнительным преимуществом. А что же гидрокрекинг? Это еще более глубокий вид обработки, когда одновременно протекает сразу несколько реакций. Каких? Удаляются все те же ненавистные серные и азотистые соединения, Длинные цепочки разрываются (крекинг) на более короткие с однородной структурой, места разрывов в новых укороченных молекулах насыщаются водородом (гидрирование). Отсюда и название – «гидрокрекинг». Таким образом, при гидрокрекинге налицо все признаки синтеза – создания из исходного сырья нового соединения, с новой структурой и свойствами. Поэтому гидрокрекинг часто называют НС- синтезом. Но не все так просто. Некоторые компоненты нефти, которые обычно считаются вредными, местами могут быть весьма ценными. Например, смолы, жирные и нафтеновые кислоты улучшают липкость и стойкость адсорбционной пленки масла и тем самым улучшают смазывающую способность масла. Некоторые соединения серы и азота обладают антиокислительными свойствами. Таким образом, при глубокой очистке масла некоторые его смазывающие, антиокислительные и антикоррозионные свойства могут ухудшиться. Эта неприятность исправляется специальными присадками, которые добавляют уже на маслосмесительных заводах.

Итак, гидрокрекинговые масла — это продукты перегонки и глубокой очистки нефти. Гидрокрекинг отбрасывает все «ненужное», ну а если захватывается что-то «полезное», необходимые свойства придаются с помощью присадок. Но четко отфильтровать ненужные примеси сложно — поэтому имеет место большее нагарообразование и «содействие» коррозии у гидрокрекинговых масел по сравнению «синтетикой». Гидрокрекинговое масло получается близким по качеству к «синтетике», но быстрее стареет, теряет свои свойства. Зато они обладают высоким индексом вязкости, противоокислительной стойкостью и стойкостью к деформациям сдвига, а от износа могут защищать даже лучше, чем синтетические. С другой стороны, «синтетика» более однородна в смысле линейности углеводородных цепей, что дает преимущества, например, в температуре замерзания. Есть еще один нюанс. Гидрокрекинг — процесс каталитический, как, впрочем, и синтез. Но если первый идет, например, на никеле, то второй — на углероде. Понятно, что углерод в этом смысле лучше, так масло будет избавлено от нежелательных примесей соединений катализаторов.

Самое интересное, что подавляющее большинство моторных масел, позиционируемых как полусинтетические, и даже полностью синтетические, являются ни чем иным, как гидрокрекинговыми маслами. Это общая тенденция крупнейших производителей масел. Программа BP (кроме Visco 7000), Shell (кроме 0W-40), частично Castrol, Mobil, Esso, Chevron, Fuchs построена на гидрокрекинге. Все масла южно-корейской фирмы ZIC- это только гидрокрекинг.

Полусинтетика – это смесь минеральных и синтетических базовых масел, и может содержать в своем составе от 20 до 40 процентов «синтетики». Специальных требований к производителям полусинтетических смазочных материалов в отношении того, какое количество синтетического базового масла (синтетического компонента) должно быть в готовом моторном масле – нет. Также нет никаких предписаний, какой синтетический компонент (базовое масло группы III или группы IV) использовать при изготовлении полусинтетического смазочного материала. По своим характеристикам эти масла занимают промежуточное положение между минеральными и синтетическими маслами, т.е. их свойства лучше обычных минеральных масел, но хуже синтетических. По цене же эти масла значительно дешевле синтетических.

Синтетические масла обладают исключительно удачными вязкостно-температурными характеристиками. Это, во-первых, гораздо более низкая, чем у минеральных, температура застывания (-50°С, -60°C) и очень высокий индекс вязкости, что существенно облегчает запуск двигателя в морозную погоду. Во-вторых, они имеют более высокую вязкость при рабочих температурах свыше 100°C – благодаря этому масляная пленка, разделяющая поверхности трения, не разрушается в экстремальных тепловых режимах. К прочим достоинствам синтетических масел можно отнести повышенную стойкость к деформациям сдвига (благодаря однородности структруры), высокую термоокислительную стабильность, то есть малую склонность к образованию нагаров и лаков (лаками называют откладывающиеся на горячих поверхностях прозрачные, очень прочные, практически ничем не растворимые пленки, состоящие из продуктов окисления), а также небольшие по сравнению с минеральными маслами испаряемость и расход на угар. Немаловажно и то, что синтетика требует введения минимального количества загущающих присадок, а особо высококлассные ее сорта не требуют таких присадок вообще, следовательно, эти масла очень стойкие – ведь разрушаются в первую очередь именно присадки. Все эти свойства синтетических масел способствуют снижению общих механических потерь в двигателе и уменьшению износа деталей. Кроме того, их ресурс превышает ресурс минеральных в 5 и более раз. Основным фактором, ограничивающим применение синтетических масел, является их высокая стоимость. Они в 3-5 раз дороже минеральных.

В роли синтетической базы выступают обычно полиальфаолефины (ПАО) или эстеры, либо их смесь. ПАО – это углеводороды с длиной цепочки порядка 10…12 атомов. Получают ее путем полимеризации (проще говоря – соединения) коротких углеводородных цепочек – мономеров из 3…5 атомов. Сырьем для этого обычно служат нефтяные газы – бутилен и этилен. Эстеры представляют собой сложные эфиры – продукты нейтрализации карбоновых кислот спиртами. Сырье для производства – растительные масла, например рапсовое, или, даже, кокосовое. Эстеры обладают рядом преимуществ перед всеми другими известными основами. Во-первых, молекулы эстеров полярны, то есть электрический заряд распределен в них так, что молекула сама «прилипает» к металлу. Во вторых, вязкость эстеров можно задавать еще на этапе производства основы: чем более тяжелые спирты используются, тем большей получается вязкость. Можно обойтись без всяких загущающих присадок, которые «выгорают» в ходе работы в двигателе, приводят к «старению» масла. Современная технология позволяет создавать полностью биологически разлагаемые масла на основе эстеров, т. к. эстеры являются экологически чистыми продуктами и легко утилизируются. Однако все эти плюсы могут показаться слишком дорогим удовольствием. Эстеровая база стоит в 5…10 раз дороже минеральной! Поэтому их содержание в моторных маслах обычно ограничено 3-5%, и применяются они лишь в самых совершенных продуктах, обычно составляющих вершину товарного ряда компаний-лидеров.

Присадки

При современном уровне развития двигателестроения использование масла без присадок практически невозможно, т.к. невозможно создание масел, которые обеспечили бы эффективную защиту двигателя и одновременно не разрушались в течение длительного времени. Все современные моторные масла содержат в своем составе пакет (набор) присадок, содержание которых суммарно может достигать 20%.

Присадки можно разделить на несколько типов:

Механизм действия загущающих присадок

Вязкостно-загущающие присадки. Механизм их действия основан на изменении формы макромолекул полимеров в зависимости от температуры. В холодном состоянии эти молекулы, будучи свернутыми в спиральки, не влияют на вязкость масла, при нагреве же они распрямляются, и масло густеет, или, точнее, не становится слишком жидким. Фактически эта присадка повышает индекс вязкости масла. Масла, в состав которых входят вязкостные присадки (до 10%), называют загущенными – это зимние и всесезонные сорта. В зависимости от количества добавленной вязкостно-загущающей присадки можно получить масла с разными вязкостями. Чем выше изначальный индекс вязкости базового масла, тем меньше вязкостно-загущающей присадки необходимо добавлять. Если индекс вязкости достаточно высок, можно получить моторное масло, не содержащее загустителей. Современные тенденции в области разработки моторных масел направлены на создание моторных масел с невысокими диапазонами вязкостей. Причина заключается в том, что такие масла, как правило, обеспечивают энергосберегающие свойства (т.е. позволяют экономить топливо) и содержат невысокое количество загустителя или вообще его не содержат. Почему большое количество загустителя в моторном масле нежелательно для двигателя? В двигателе множество пар трения, где масло подвергается высоким сдвиговым нагрузкам, в результате которых происходит разрушение загустителя. Это приводит к потере вязкости моторного масла, ухудшению функций смазывания (уменьшение толщины смазывающей пленки), а продукты разрушения загустителя являются потенциальным источником нагаров и лаковых отложений в двигателе. Масла с большими диапазонами вязкостей ориентированы исключительно на спортивное применение. Они предназначены только для экстремальных условий эксплуатации, в которых наиболее важны высокие вязкостные свойства, а не их стабильность с течением времени.

Моющие присадки. Моющие присадки нужны для предотвращения образования лаковых и сажевых (в дизелях) отложений на деталях двигателя. Они, как правило, состоят из детергирующих компонентов, которые вымывают продукты окисления масла и износа деталей и несут их к фильтру, и диспергирующих, способствующих дроблению крупных частиц нагара на мелкие (не больше микрона).

Детергенты. Принцип действия этих присадок в двигателе в точности такой же, как и у моющих средств, использующихся в быту. Кроме этого,детергенты обладают щелочными свойствами, т.е. могут нейтрализовать кислоты. Кислоты образуются при сгорании серы, содержащейся в топливе, особенно дизельном и при окислении самого масла. Нейтрализуя такие кислые продукты, эффективно предотвращается коррозия деталей двигателя. Т.е. вторая важная функция таких присадок – нейтрализация кислот и антикоррозионные свойства.

Действие дисперсантов

Дисперсанты. Основная задача этих присадок – поддержание загрязнений в масле в растворенном состоянии, предотвращение их отложений на деталях двигателя, масляных каналах и др., диспергирование (растворение) крупных загрязнений. Диспергирующие добавки удерживают грязь в мелкодисперсном состоянии, не дают ей слипнуться в большие комки и пригореть к металлу. Естественно, грязь проходит по всей системе смазки, фильтр ее пропускает, но это гораздо меньшее зло, чем если бы она осаждалась на металле. Кстати, результаты работы моющих присадок можно наблюдать почти сразу после замены старого масла на новое. Вроде только-только залил, немного поездил – и уже черное! Не волнуйтесь. В данном случае чернота масла свидетельствует о высокой моющей способности его присадок – они смыли грязь со стенок, довели ее до безопасной консистенции, и масло гоняет ее по системе смазки.

Противоизносные присадки. Основная функция – предотвращение изнашивания трущихся деталей двигателя в местах, где невозможно образование масляной пленки необходимой толщины. Они работают путём абсорбирования в поверхность металла, а затем химически реагируя с ней в процессе контакта металл-металл, тем более активно, чем больше тепла при этом контакте образуется, создавая при этом особую металлическую плёнку со “скользящими” свойствами, чем и предотвращают абразивный износ.

Ингибиторы окисления (антиокислительные присадки). В процессе работы масло в двигателе постоянно подвергается воздействию высоких температур, кислорода воздуха и окислов азота, что вызывает его окисление, разрушение присадок и загущение. Противоокислительные присадки замедляют окисление масел и неизбежно следующее за ним образование коррозионно-активных осадков. Принцип их действия заключается в химической реакции при высоких температурах с продуктами, вызывающими окисление масла. Делятся на присадки-ингибиторы, работающие в общем объеме масла, и на термоокислительные присадки, выполняющие свои функции в рабочем слое на нагретых поверхностях.

Ингибиторы коррозии и ржавления. Ингибиторы коррозии призваны защищать поверхность деталей двигателя от коррозии, вызываемой органическими и минеральными кислотами, образующимися при окислении масла и присадок. Механизм их действия – образование защитной пленки на поверхности деталей и нейтрализация кислот. Ингибиторы ржавления в основном призваны защищать стальные и чугунные стенки цилиндров, поршни и кольца. Механизм действия схожий. Противокоррозионные присадки часто путают с противоокислительными. Это разные вещи. Противоокислительные, как говорилось выше, защищают от окисления само масло. Противокоррозионные же – поверхность металлических деталей. Они способствуют образованию на металле прочной масляной пленки, предохраняющей его от контакта с всегда присутствующими в объеме масла кислотами и водой.

Антипенные присадки. При сильном перемешивании масла с воздухом, что в частности наблюдается при работе двигателя, когда коленвал интенсивно взбалтывает масло в картере, возможно повышенное образование пены. Этому процессу также способствуют различные загрязнения, присутствующие в масле. Ее формирование значительно ухудшает эффективность смазывания деталей двигателя, что может привести к повышенному износу и ухудшению теплоотвода. Противопенные присадки (обычно это силиконы или полилоксаны) не растворяются в моторных маслах, а присутствуют в виде мельчайших капелек. Их действие основано на разрушении пузырьков воздуха. Обойтись без этих присадок практически невозможно, но их присутствие не должно превышать тысячных долей процента – при термическом разложении силикона образуется оксид кремния, который является сильным абразивом.

Модификаторы трения. Для современных двигателей все чаще стараются использовать масла с модификаторами трения, позволяющими снизить коэффициент трения между трущимися деталями с целью получения энергосберегающих масел. Наиболее известные модификаторы трения – графит и дисульфид молибдена. В современных маслах их очень сложно использовать, поскольку эти вещества нерастворимы в масле, а могут быть только диспергированы в нем в виде маленьких частиц. Это требует введения в масло дополнительных дисперсантов и стабилизаторов дисперсии, однако это все равно не позволяет использовать такие масла в течение длительного времени. Поэтому в настоящий момент в качестве модификаторов трения обычно используют маслорастворимые эфиры жирных кислот, обладающих очень хорошим прилипанием к металлическим поверхностям, формированием на них слоя молекул, снижающих трение.

Депрессорные присадки (для минеральных масел). При сильном понижении температуры масла в нем начинают образовываться кристаллы парафинов, что ведет к потере подвижности масла и в результате ухудшается низкотемпературный пуск двигателя и прокачиваемость масла по каналам. В процессе производства базовых масел часть парафинов удаляют, но полное их удаление по технологическим и экономическим причинам невозможно (сильно возрастают затраты на получение базового масла). Обычно минеральное базовое масло имеет температуру застывания около -15°С. Возможность получения минеральных моторных масел с температурами застывания -30°С…-35°С достигается путем введения в масло депрессорных присадок. Эти присадки предотвращают срастание кристаллов парафина, но не предотвращают их появление вообще (принцип действия такой же, как у дизельных антигелей).

Классификация масел

Для облегчения выбора масла требуемого качества для конкретного типа двигателя и условий его эксплуатации существуют системы классификации. В настоящее время одновременно существуют несколько систем классификации моторных масел — API, ILSAC, АСЕА и ГОСТ (для стран СНГ). В каждой системе моторные масла подразделяются на ряды и категории, основанные на уровне качества и назначении. Эти ряды и категории созданы по инициативе национальных и международных организаций нефтеперерабатывающих компаний и автопроизводителей. Назначение и уровни качества являются основой ассортимента масел. Наряду с общепринятыми системами классификаций существуют и требования (спецификации) производителей автомобилей. Кроме классификаций масел по уровню качества используется и система классификации по вязкости- SAE.

Точки воспламенения - Жидкости

Точка воспламенения химического вещества - это самая низкая температура, при которой достаточно жидкости может испариться, образуя горючую концентрацию газа.

Температура вспышки показывает, насколько легко химическое вещество может гореть. Материалы с более высокими температурами вспышки менее воспламеняемы или опасны, чем химические вещества с более низкими температурами вспышки.

Некоторые жидкости и их температуры вспышки при атмосферном давлении:

См. Также Температура самовоспламенения и точка вспышки различных углеводородов

Примечание! - Температура самовоспламенения отличается от температуры воспламенения - Температура самовоспламенения указывает минимальную температуру, необходимую для воспламенения газа или пара в воздухе без наличия искры или пламени.Температурная классификация оборудования во взрывоопасных зонах связана с температурой самовоспламенения окружающих веществ. .

видов топлива> точка воспламенения

топлива> точка воспламенения

Температура вспышки и температура самовоспламенения обычных автомобильных жидкостей

Лабораторные измерения

Лабораторные измерения температуры вспышки предоставляют полезную информацию о температуре, при которой жидкость может выделять достаточно пара для поддержания пламени в идеальных условиях. Измерения температуры самовоспламенения требуют дополнительной интерпретации.В лаборатории самовоспламенение измеряется путем помещения образцов в почти закрытые камеры, без воздушного потока, и с помощью приборов для выявления даже хрупких и мимолетных событий возгорания. Значения, приведенные в следующей таблице, говорят нам о минимально возможных температурах воспламенения для перечисленных жидкостей в идеальных условиях.

Значения в таблице представлены для общего ознакомления и не нуждаются в запоминании. Табличные значения позволяют сравнить относительную воспламеняемость различных жидкостей и могут быть использованы в качестве ресурса для практических исследований пожаров.

Жидкости Точка воспламенения [12] o F Температура самовоспламенения [13] o F
АКПП. Жидкость [2, 4] 302-383 410-417
Тормозная жидкость [2, 4, 10, 11] 210-375 540-675
Компрессорное масло (PAG и сложный эфир) [4, 8] 392-500 410-714
Охлаждающая жидкость
Этиленгликоль (100%) [1, 2, 4] 232-260 725-775
Этиленгликоль (90%) [2] 270 НЕТ
Пропиленгликоль (100%) [1, 4] 210-230 700
Дизельное топливо [1, 2, 3, 4] 100-204 350-625
Этанол (в бензоле) [1, 3, 5] 55 685
Бензин (с октановым числом 50-100) [1, 2] от -36 до -45 536-853
Бензин (неэтилированный) [4] -45 495-833
Моторное масло (обычное и синтетическое) [1, 2, 4] 300-495 500-700
Метанол (в жидкости для лобового стекла) [1, 2, 3, 4, 5,14] 52-108 725-878
Жидкость для гидроусилителя руля [2, 4] 300-500 500-700
Хладагенты
R134a 140 кПа (5.5 фунтов на квадратный дюйм) [7] 350
R134a [7,15,16] Не горюч при температуре окружающей среды. и атмосферное давление 1370-1418
Фреон 12 [17] > 1382
ГХФУ-22 [9] Воспламеняется при 60 фунт / кв. Дюйм изб.
Углеводородные хладагенты Легковоспламеняющийся Легковоспламеняющийся
Стартерная жидкость (этиловый эфир) [5,18] -49 320

Примечание к таблице: когда разные источники имели разные значения температуры вспышки или температуры самовоспламенения для одного и того же материала, диапазон в таблице был увеличен, чтобы включить все найденные значения.

Чтобы использовать характеристики воспламеняемости в исследованиях, необходимо также провести измерения в транспортной среде.

Для просмотра ссылок для этой страницы перед продолжением нажмите здесь,

.

Какова температура воспламенения дизельного топлива?

Понедельник, 14 декабря 2015 г.

Дизельное топливо является важным компонентом современной экономики, обеспечивая тягачи и поезда энергией. Дизельные двигатели долговечны и эффективны. Для тех, кто работает в топливной промышленности, важно знать температуру воспламенения дизельного топлива и роль, которую оно играет в двигателе.

Температура воспламенения дизельного топлива

Температура вспышки любой жидкости - это самая низкая температура, при которой она будет производить достаточно пара для образования легковоспламеняющейся смеси в воздухе.Чем ниже температура точки воспламенения, тем легче зажечь воздух при наличии источника возгорания. Чем выше температура воспламенения, тем безопаснее обращаться с материалом.

Температура вспышки дизельного топлива зависит от того, какое это топливо. Самый распространенный дизель, используемый сегодня на дорогах, известен как дизель №2. Согласно паспорту безопасности материалов, опубликованному ConocoPhillips, температура воспламенения дизельного топлива составляет от 125 до 180 градусов по Фаренгейту (от 52 до 82 градусов по Цельсию). Температура воспламенения любой жидкости может измениться при изменении давления в воздухе вокруг нее.

Роль точки воспламенения дизельного топлива в двигателе

И бензиновые, и дизельные двигатели работают по одним и тем же принципам. Топливо воспламеняется в камере сгорания двигателя. Сила образовавшегося взрыва перемещает поршни вверх. Поршни перемещают коленчатый вал, что создает силу для перемещения колес на автомобиле. Когда поршень движется вниз, воздух внутри камеры сжимается перед добавлением топлива, что способствует его способности гореть.

Различия между бензиновыми и дизельными двигателями заключается в том, как топливо воспламеняется в камере сгорания.Бензиновый двигатель зависит от свечи зажигания, которая воспламеняет бензиновый туман. В дизельном двигателе не используется свеча зажигания, а вместо этого используется чистая теплота сжатия для воспламенения топлива. Дизельные двигатели сжимают воздух в камере сгорания во много раз быстрее, чем в бензиновых двигателях. Когда воздух сжимается, он начинает нагреваться и достигает температуры, при которой происходит воспламенение топлива.

Специалисты, работающие в нефтегазовой отрасли, должны знать о температуре воспламенения дизельного топлива из соображений безопасности.Если пары бака, заполненного этим топливом, достигнут точки возгорания, это может стать очень опасным. При обращении с любым видом топлива и его хранении необходимо надлежащим образом соблюдать все меры безопасности.

Компания Kendrick Oil занимается оптовой продажей широкого ассортимента топлива, включая дизельное топливо и обычный газ. Если вам требуется топливо оптом или у вас есть какие-либо вопросы о наших топливных продуктах и ​​услугах, позвоните нам по телефону (806) 250-3991. Вы можете связаться с нами по электронной почте через нашу страницу «Контакты».У нас есть офисы в Техасе, Нью-Мексико, Оклахоме и Канзасе.

.

Flashpoint ароматического масла и рассылки ???

  • Регистр
  • Справка

Расширенный поиск по форуму
  • Каталог
  • Новости
  • Покупка
  • Отзывы
  • События
  • Форум
    • Публикации за сегодня
    • Новые сообщения
    • Популярные форумы
      • Общие обсуждения ароматов
      • Обсуждение женских ароматов
      • Обсуждение мужских ароматов
    • Расширенный поиск
  • Группы
  • Блоги
  • SOTD
  • Альбомы
  • Новый
Кодекс поведения
  • Форум
  • Создание и понимание ароматов
  • Аромат DIY
  • Точка воспламенения ароматического масла и рассылки ???

.

Что означает точка воспламенения аромата? - Поддержка CandleScience

У нас много вопросов о вспышках. Не волнуйтесь, волноваться не о чем.

Что такое точка возгорания?
Точка воспламенения - это температура, при которой ароматизатор может воспламениться при воздействии открытого пламени или искры. Добавление ароматического масла в воск с температурой выше точки воспламенения не вызовет его возгорания. При комнатной температуре и отсутствии пламени ароматизатор не вызывает беспокойства.

Горят ли ароматы с низкой температурой воспламенения?
Нет. Пока ароматизатор добавлен в воск и вскоре разлит, он не потеряет силы. Однако мы не рекомендуем повторно охлаждать и повторно нагревать партии ароматизированного воска. Всегда лучше ограничить размер партии до количества, которое можно сразу налить.

Так зачем вообще перечислять горячие точки?
Мы перечисляем горячие точки по двум причинам:

1) Заказчики гелевых свечей и авиаперевозки.Penreco рекомендует использовать в своих гелевых восках ароматизаторы с точкой воспламенения выше 170 ° F. Ознакомьтесь с их рекомендациями по безопасности при работе с гелевым воском.

2) Мы не можем доставлять ароматы с низкой температурой воспламенения по воздуху. Ароматизаторы с температурой вспышки 141 ° F или ниже не могут быть отправлены через USPS или UPS 2nd Day Air. Их нужно будет отправить через ИБП. Хорошая новость заключается в том, что все ароматы CandleScience имеют температуру воспламенения выше 141 ° F, поэтому все ароматы могут быть доставлены через USPS без ограничений.


<Вернуться на CandleScience.com .

BlueMaxima's Flashpoint

Добро пожаловать

Flashpoint от BlueMaxima - это проект по сохранению веб-игр.
История и культура Интернета важны, и контент, созданный на веб-платформах, включая, помимо прочего, Adobe Flash, составляет значительную часть этой культуры. Этот проект посвящен сохранению как можно большего количества возможностей этих платформ, чтобы они не терялись во времени. С начала 2018 года Flashpoint сохранил более 70000 игр и 8000 анимаций, работающих на 20 различных платформах.
Flashpoint был запущен BlueMaxima в январе 2018 года в попытке избежать исчезновения контента до смерти Flash. С тех пор он превратился в международный проект с участием более 100 участников сообщества, включающий как веб-игры, так и анимацию, созданную для многочисленных интернет-плагинов, фреймворков и стандартов. Flashpoint использует широкий выбор программного обеспечения с открытым исходным кодом. Объединив возможности Apache, настраиваемой программы запуска и нашего собственного приложения, называемого Flashpoint Secure Player, мы можем быстро воспроизводить мультимедийные файлы из Интернета в удобной для пользователя среде, не оставляя постоянных изменений или дыр в безопасности на вашем компьютере.
Мы предлагаем две версии программного обеспечения; Ultimate, который содержит все медиафайлы в автономном формате, и Infinity, меньший дистрибутив, который позволяет загружать и воспроизводить контент по желанию. Окончание поддержки Flash и других плагинов не повлияет на обе версии.
Этот проект был и всегда будет полностью некоммерческим, чтобы сохранить чувство общности и совместного использования, которое пришло с Flash и ему подобными. Чтобы узнать больше о Flashpoint, обратитесь к боковой панели слева на странице..

Смотрите также