RU (495) 989 48 46
Пленка на бампер

АНТИГРАВИЙНАЯ ЗАЩИТА БАМПЕРА

 

Проверка плотности электролита


Как проверить плотность электролита в аккумуляторе или поднять его

Вовсе не редкостью являются ситуации, когда двигатель не хочет заводиться и возникают проблемы с пуском. Довольно часто причина кроется именно в разряженном аккумуляторе. Это становится следствием изменения свойств содержащегося внутри электролита. Её необходимо поднять.

Но прежде чем начинать мероприятия по изменению плотности, нужно понять причины, из-за которых такая ситуация возникла. Просто так качество раствора, состоящего из дистиллированной воды и серной кислоты, меняться не будет.

Определившись с причинами, удастся правильно провести ремонтно-восстановительные мероприятия, продлить срок службы АКБ и отложить покупку новой батареи. На практике повлиять на плотность вовсе не так сложно.

Причины снижения плотности

Есть несколько факторов, влияющих на показатели плотности у электролита в аккумуляторах.

К ним можно отнести такие моменты:

Если будет установлена точная причина, из-за которой плотность электролита в вашем аккумуляторе падает, вы сможете без особых сложностей её устранить. Но важно понимать, что не всегда ресурс АКБ зависит от плотности. Случается и так, что без замены батареи никак не обойтись.

В чём опасность высокой и низкой плотности

Не всем автомобилистам известно, на что именно влияет плотность содержащегося в аккумуляторе раствора электролита, а как её изменение может повлиять на АКБ.

В действительности как низкая, так и высокая плотность, наблюдаемая у электролита, может поставить крест на аккумуляторе и привести к необходимости его замены.

Когда концентрация выше допустимой нормы, батарея раньше своего времени выходит из строя. Кислота постепенно начинает разрушать пластины.

В низкой концентрации тоже нет ничего хорошего. При этом протекают такие процессы:

Как видите, последствия изменения плотности разные, но все они ни к чему хорошему для автовладельца не ведут.

Правильные показатели плотности

Теперь закономерно спросить, какая же плотность тогда должна быть в аккумуляторе автомобиля.

Обычно не предусматривается существенное изменение плотности у электролита в аккумуляторах зимой и летом, ориентируясь только на период холодов.

Существуют специальные таблицы с параметрами плотности электролита в аккумуляторах, в зависимости от климатической зоны. То есть температура окружающей среды непосредственно связана с тем, какая концентрация смеси из кислоты и воды должна быть в АКБ.

Если говорить об эксплуатации аккумулятора под капотом автомобиля зимой, то плотность и его норма должны соответствовать таким значениям:

Да, плотность электролита, используемого в аккумуляторе зимой или летом, напрямую зависит от погодных условий.

Несколько корректировать плотность у электролита в автомобильном аккумуляторе летом нужно, если наблюдается сильная жара. Концентрация несколько снижается.

Главным условием поддержания работоспособности АКБ является не плотность электролита, а уровень заряда батареи.

Поэтому старайтесь всегда следить за степенью заряда, параллельно используя ареометр для проверки плотности.

Как проверить плотность

Далее следует рассказать о том, как можно проверить плотность в аккумуляторе и что для этого потребуется использовать.

Проверять плотность можно только в обслуживаемых и малообслуживаемых АКБ, где есть доступ к содержимому батареи.

Ведь закрытые виды батарей, которые считаются необслуживаемыми, не оснащены крышками банок. То есть их не получится открутить и специальным прибором оценить состояние рабочей жидкости.

Если вы не знаете, как проверять параметры плотности электролита в аккумуляторах, ознакомьтесь со следующей инструкцией.

Для работы вам потребуется определённый набор. Состоит он из:

Именно денсиметр позволяет измерить плотность содержащегося в аккумуляторе электролита.

Этот прибор для измерения плотности представляет собой стеклянную трубочку с грушей, а также встроенный ареометр. Фактически именно ареометр способен показать, какая концентрация электролита в вашем аккумуляторе.

Далее остаётся выполнить лишь несколько пошаговых действий.

Предлагаем инструкцию о том, как правильно проверить плотность у обслуживаемого автомобильного аккумулятора:

Проводить такие работы следует только при положительной температуре. Оптимально добиться диапазона 20-25 градусов Цельсия.

У необслуживаемых АКБ предусмотрен цветовой индикатор, позволяющий понять текущую плотность и состояние батареи.

В основном этот индикатор отражает степень заряда. Зелёный означает полный заряд, белый — около 50%, а чёрный — полную потерю заряда.

Особенности повышения плотности

Приняв во внимание все нюансы, стоит рассказать о том, как поднять плотность при изменении концентрации электролита в аккумуляторе.

Сделать это можно самостоятельно. Ведь чтобы поднять сниженную плотность у электролита, никаких отверстий в аккумуляторе обслуживаемого типа делать не придётся.

Нормой измерения при комнатной температуре считается 1,25-1,29 г/см3. Если показатели ниже, нужно поднимать плотность. Снижение параметров только в одной банке указывает на короткое замыкание.

Есть несколько рекомендаций для того, чтобы повысить плотность упавшего электролита в самом аккумуляторе. Для начала нужно сделать следующее:

Далее проводится непосредственно сама корректировка параметров плотности с помощью электролита, чтобы в аккумуляторе восстановить рабочие характеристики.

Если уровень слишком низкий и упал ниже 1,18 г/см3, восстановлению такая АКБ уже не подлежит.

Если плотность выше этого порога, её требуется увеличить. Для этого нужно:

Примерно через 2-3 часа делается повторная проверка. Если концентрация ещё недостаточная, процедура повторяется.

Повышение с помощью ЗУ

Отдельного внимания заслуживает вопрос о том, как поднять упавшую плотность в своём аккумуляторе, воспользовавшись зарядным устройством.

Суть заключается в том, чтобы восстановить постепенно плотность залитого электролита путём подачи минимального тока. В необслуживаемом автомобильном аккумуляторе доступа к банкам нет. Тут единственным решением будет поставить АКБ на ЗУ и подождать 1-3 суток.

Это позволит постепенно испаряться лишней влаге, и тем самым плотность кислотно-водного раствора будет увеличиваться.

Процедура восстановления электролита не самая сложная, но при её выполнении важно соблюдать ряд рекомендаций.

Как ПРОВЕРИТЬ ПЛОТНОСТЬ аккумулятора ? и уровень электролита в домашних условиях

Проверить плотность аккумулятора можно с помощью ареометра или мультиметра, проанализировав рабочее значение напряжения. Перед диагностикой пользователь должен удостовериться в отсутствии дефектов корпуса батареи, которые могли бы привести к утечке жидкости.

Подготовительные работы перед проверкой уровня и плотности

Перед тем как в домашних условиях определять плотность с помощью специального прибора, нужно иметь в виду, что:

  1. Аккумулятор (АКБ) авто проверяется с использованием очков для защиты глаз и резиновых перчаток. Раствор электролита — агрессивная кислота, которая вызывает ожоги при попадании на тело.
  2. Уровень плотности аккумуляторной батареи машины должен измеряться после визуальной проверки устройства.
  3. Производится очистка клемм аккумулятора от окислений и загрязнений. Необходимо воспользоваться специальной железной щеткой или мелкозернистой наждачной бумагой.
  4. Прежде чем померить значение плотности жидкости в автомобильной батарее, надо убедиться в наличии электролита в банках. Если объем вещества снижен, потребуется добавить в устройство дистиллированную воду.
  5. При необходимости осуществляется демонтаж аккумулятора. От устройства отключаются клеммы и производится демонтаж фиксирующей пластины.
  6. Перед отключением аккумулятора в автомобиле деактивируется система зажигания, предварительно отключается работа электрооборудования и приборов.
  7. Батарею протирают влажной и чистой тряпкой, чтобы не допустить попадания пыли в банки с электролитом.

Видео: как снять аккумулятор с автомобиля

Канал «Аккумуляторщик» в своем видеоролике подробно рассказал о нюансах демонтажа аккумуляторной батареи с автомобиля и отключения этого устройства.

Чем и как проверяют плотность электролита в аккумуляторе

Проверять уровень электролита в рабочем растворе, помимо ареометра и мультиметра, можно и самодельным прибором.

Специальное устройство для измерения плотности (ареометр) представляет собой обычную стеклянную трубку, верхняя часть которой заужена и имеет шкалу с делениями. Нижняя часть трубки широкая в ней находится дробь или ртуть, которую засыпают строго определенное количество во время калибровки ареометра. В автомагазинах такой прибор продается в наборе с резиновой «грушей» для забора электролита и мерной колбой, в которой размещен сам ареометр.

Важно знать

Принцип действия прибора основан на законе Архимеда, а плотность электролита определяют по глубине погружения ареометра (объему жидкости, вытесненной им), и весу устройства.

Ареометр для измерения электролита

Прежде чем проверять уровень электролита в автомобильном аккумуляторе, надо учитывать следующие правила:

Измерение ареометром

Подробнее о том, как для измерения уровня плотности пользоваться ареометром:

  1. На отключенном аккумуляторе откручиваются все банки.
  2. В одну из банок концом вставляется ареометр, на другом его конце располагается груша, с ее помощью делается забор жидкости. Её в устройстве должно быть столько, чтобы его поплавок свободно болтался в емкости.
  3. Производится определение уровня плотности в соответствии с показаниями на шкале тестера. Полученные параметры записываются.
  4. Диагностика параметра плотности повторяется для каждой банки. Все полученные параметры сопоставляются с нормированными значениями, указанными в таблице.

Важно знать

Плотность аккумулятора рекомендуется проверять не реже, чем каждые 15-20 тысяч километров пробега.

Фотогалерея: диагностика уровня и плотности электролита в банках
Забор жидкости из банок в ареометр
Проверка уровня и плотности вещества
Таблица: поправка к показаниям ареометра
Температура рабочей жидкости при измерении ее плотности, ºСПоправка к показаниям, полученным в ходе тестирования ареометром, г/см3
От -55 до -41-0,05
От -40 до -26-0,04
От -25 до -11-0,03
От -10 до +4-0,02
От +5 до +19-0,01
От +20 до +300,00
От +31 до +45+0,01
От +46 до +60+0,02

Как проверить аккумулятор автомобиля мультиметром

Пошаговая инструкция, которая позволит правильно замерить и узнать плотность батареи, выглядит так:

  1. Производится сборка измерителя. Для этого к корпусу мультиметра подключаются провода с крокодилами. Сам тестер перед замером переводится в режим «вольтметра».
  2. Поворотный переключатель на устройстве переводится в положение 20 В. В результате тестер будет показывать любые параметры ниже этого порога.
  3. Затем кабеля соединяются с клеммными выходами аккумулятора — черный контакт идет на отрицательную клемму, красная — на положительную. Если цвет проводов одинаковый, то следует проверить маркировку непосредственно на корпусе мультиметра. На контактах, где кабеля выходят из тестера, должны быть знаки «-» и «+».
  4. Производится мониторинг параметра напряжения и полученные данные сравниваются с нормированными. Если батарея заряжена полностью, то рабочий параметр составит 12,7 вольт, соответственно, зарядка устройства не потребуется. В случае, если полученный параметр составил в диапазоне от 12,1 до 12,4 В, то устройство разряжено наполовину, значит, его плотность не соответствует норме. В остальных случаях требуется детальная диагностика аккумулятора и его подзарядка или замена.
Таблица: плотность электролита при проверке мультиметром
Процент заряженностиПлотность электролита, г/см3Напряжение аккумулятора, В
100%1,2812,7
80%1,24512,5
60%1,2112,3
40%1,17512,1
20%1,1411,9
0%1,1011,7

Измерение плотности электролита самодельным прибором

Принцип замера зимой или летом с помощью самодельного прибора аналогичный, и такой тестер можно соорудить самостоятельно с учетом следующих нюансов:

  1. Основным элементом ареометра является поплавок, с помощью которого производится замер.
  2. В качестве резервуара можно использовать стеклянную пробирку или другую похожую емкость.
  3. В пробирку насыпается пшено или другое сыпучее вещество, также можно использовать кусок свинца или другой грузик.
  4. Затем емкость опускается в воду. В месте, где вода будет по уровень, нужно отметить цифру 1, это связано с тем, что данная жидкость имеет плотность 1 г/см3. Затем производится градуировка величин для других растворов с более высокой плотностью.

Как измерить уровень электролита в аккумуляторе

Замер уровня рабочей жидкости осуществляется так:

  1. Первый способ — по максимальной и минимальной отметке — уровень электролита должен быть между ними.
  2. Для второго варианта проверки пользователю необходимо открыть отверстия, в которых установлены банки и осмотреть все по отдельности. При этом следует учитывать, что объем электролита одинаковый в каждом отверстии (10-15 мм над пластинами).
  3. Чтобы замерить этим способом нужно подготовить стеклянную трубочку, внутренний диаметр которой не превышает 5 мм. Затем открутить крышку на аккумуляторе и опустить трубку внутрь, пока она не упрется в предохранительный щиток. После этого закрыть наружное отверстие пальцем и достать трубочку. Уровень электролита в ней и является замеряемым параметром.

Можно ли проверить уровень и плотность электролита в необслуживаемом аккумуляторе

Проверить уровень и плотность электролита в необслуживаемом аккумуляторе — по специальным индикаторам, которыми оснащены батареи. Такие метки изменяют свой цвет в зависимости от плотности и степени заряда электролита. Чтобы осуществить такую проверку, необходимо найти на корпусе индикатор, очистить от пыли и грязи и оценить его цвет.

Затем следует сравнить показания индикатора со шкалой соответствия, при этом, как правило:

Шкала индикаторов на аккумуляторе

Проверить уровень и плотности рабочего раствора на аккумуляторах без индикатора можно, следуя такому алгоритму:

  1. С краю, на крышке с помощью дрели и отверстия небольшого диаметра просверливается шесть небольших отверстий. Через них пользователь сможет получить доступ к каждой банке, поэтому расстояние между ними должно быть соответствующее. Перед сверлением автовладелец должен протереть аккумулятор.
  2. Визуально производится проверка уровня жидкости и ее добавление при необходимости. Для восполнения объема применяется дистиллированная вода. Используя ареометр, выполняется диагностика плотности рабочего раствора.
  3. После проведения проверок пользователю потребуется восстановить герметичность. Для этого можно использовать силиконовый герметик или холодную сварку. Для того, чтобы при выполнении задачи материал не попал внутрь батареи, следует выпрямить часть пластика, продавленного при изготовлении отверстия. Это можно сделать с помощью самодельного металлического крюка.

Важно знать

Если корпус аккумуляторной батареи поврежден, на устройство больше не будет распространяться гарантия. Если в ходе выполнения пользователь допустит ошибку, то ресурс эксплуатации будет снижен. К примеру, грязь, попавшая в банки, снизит срок службы и разрушит пластины, установленные внутри.

Видео: как поднять плотность электролита в банках АКБ

Канал «Denis МЕХАНИК» в своем видеоролике подробно рассказал о том, как проверить и увеличить плотность электролита в аккумуляторе.

Как проверить плотность электролита в аккумуляторе?

Диагностика и ремонт4 марта 2018

Если на машине установлен источник питания обслуживаемого типа, снабженный откручивающимися пробками, автолюбитель может в любой момент проверить плотность электролита в аккумуляторе. Периодические замеры позволяют контролировать работоспособность батареи и поддерживать ее в нормальном техническом состоянии. Отсюда задача данной публикации – рассказать о процедуре измерения и способах корректировки плотности.

Условия проведения замеров

Показателем «здоровья» кислотно-свинцовых аккумуляторов является плотность электролита, измеряемая в граммах на кубический сантиметр (г/см3). Последний представляет собой раствор обессоленной (дистиллированной) воды с концентрированной серной кислотой. Когда источник питания отдает энергию бортовой сети автомобиля, данный параметр снижается, в процессе зарядки и восстановления – повышается.

Благодаря описанному свойству электролитической жидкости техническое состояние обслуживаемого аккумулятора можно контролировать. Когда в одной из секций (в просторечии – банок) плотность раствора остается низкой, невзирая на длительную подзарядку, встает вопрос о работоспособности батареи и необходимости ее замены. Превышение нормы указывает на испарение воды из электролита вследствие постоянного кипения – жидкость становится плотнее.

Справка. В процессе кипения электролита испаряется только вода, серная кислота остается в растворе, но ее концентрация возрастает. Водяной пар выходит наружу через специальный клапан.

Замер плотности производится в определенных условиях:

При соблюдении перечисленных условий нормальный показатель для всех банок исправного аккумулятора составит 1,27–1,29 г/см3, минимально допустимый – 1,25 г/см3. Если не выдержать указанные требования и измерить плотность электролита при более низкой температуре либо на разряженной батарее, то результаты не отразят реальной картины. Полученные значения будут заметно ниже нормы.

Подготовка к проверке

Чтобы добиться максимально точных результатов замеров, выполните ряд подготовительных действий:

  1. Очистите от пыли и грязи поверхность корпуса, где расположены пробки. Задача – избежать попадания мусора внутрь после выкручивания крышек.
  2. Зарядите аккумуляторную батарею до максимума.
  3. В холодный период года аккумулятор придется снять с автомобиля, занести в теплое место и дать корпусу прогреться до комнатной температуры.
  4. Перед подзарядкой выверните пробки и убедитесь, что пластины каждой секции полностью погружены в кислотный раствор. При необходимости долейте дистиллированную воду и произведите зарядку.

Оптимальный уровень электролита над пластинами – 15 мм, минимальный – 1 см. Проверить несложно: опустите в колодец тонкую стеклянную трубку, закройте с другого конца пальцем и вытащите наружу. Высота столба жидкости в трубке покажет реальный уровень над банками.

Из инструментов потребуется специальный прибор для измерения плотности – ареометр. Представляет собой стеклянную колбу с грушей для всасывания жидкости, внутрь помещен прозрачный поплавок с цифровой шкалой. Нехитрый прибор действует по закону Архимеда – чем плотнее раствор, тем сильнее он выталкивает погруженное тело.

Справка. Некоторые необслуживаемые источники питания оснащаются пластиковым глазком, позволяющим наблюдать за состоянием жидкости. Аккуратно демонтировав эту деталь, вы получите доступ хотя бы к одной секции батареи.

Перед измерениями установите источник питания на ровную поверхность либо закрепите в штатном кронштейне автомобиля. Выкрутите все крышки – поскольку секции разделены глухими стенками и не сообщаются между собой, мерить придется в каждом колодце отдельно. Правильно проверить плотность кислотного раствора поможет шкала ареометра – большинство производителей ставят на ней минимальную и максимальную отметку.

Как правильно измерять?

Процесс замера сложности не представляет и выполняется в следующем порядке:

  1. Опустите наконечник в первый открытый колодец, сдавите резиновую грушу и втяните электролит внутрь колбы.
  2. Удерживая ареометр вертикально и не вынимая из отверстия, добейтесь, чтобы поплавок не касался стенок колбы.
  3. Запомните показания и выдавите кислотный раствор обратно в аккумулятор.
  4. Операцию повторите на оставшихся банках.

Совет. Держите под рукой ветошь, чтобы обтирать наконечник от электролита после извлечения из очередного колодца. Используйте резиновые перчатки – жидкость агрессивна и способна разъесть кожу при попадании.

Выполняя измерение плотности электролита в аккумуляторе, записывайте показания по каждой секции. Чтобы освободить руки, аккуратно откладывайте ареометр на ветошь. По окончании замеров хорошенько промойте стеклянные детали прибора проточной водой и переходите к анализу результатов.

Показатель выше нормы

Если в одной либо нескольких банках электролит оказался плотнее нормы, есть повод проверить исправность регулятора напряжения и электрогенератора. Что происходит в батарее: концентрация кислоты в растворе повышается из-за недостатка воды, которая испаряется вследствие кипения. Значит, имеет место так называемая перезарядка – напряжение на клеммах аккумулятора слишком велико.

Восстановить требуемую плотность электролита довольно просто – необходимо добавить в нужные секции дистиллированную воду пользуясь инструкцией:

  1. Измерьте уровень электролита в банке. Если он оказался недостаточным, долейте нужное количество воды и повторите замер плотности.
  2. В случае когда уровень жидкости соответствует норме, доливать дистиллят нельзя. Пользуясь грушей ареометра, отсосите часть раствора и слейте его в стеклянную закрывающуюся емкость.
  3. Доливая порции чистой воды и электролита, добейтесь оптимальной концентрации кислоты в растворе – 1,27 г/см3.

После восстановления нормальной плотности во всех банках аккумулятор рекомендуется дополнительно зарядить малым током – до 3 ампер.

Пониженная плотность раствора

Если проверка ареометром выявила низкую концентрацию кислоты в одной секции, за батареей придется наблюдать. Вполне вероятно, что между пластинами произошло замыкание и срок службы источника питания исчерпан. Вариант второй – сульфатация пластин, возникающая из-за глубокого разряда либо недостаточного напряжения зарядки на автомобиле.

Сделать электролитическую жидкость плотнее можно тремя проверенными способами:

Примечание. Существует способ полной замены жидкости, предусматривающий промывку батареи. Не применяйте его без крайней нужды – в процессе опорожнения свинцовые крошки, осевшие на дне аккумулятора, могут попасть между пластин и устроить замыкание, ведущее к разрушению банки и непригодности источника питания к дальнейшей эксплуатации.

Для реализации первого способа понадобится зарядное устройство, чей ток регулируется вручную. Порядок действий выглядит так:

  1. Определите ток зарядки, взяв 3% от начальной емкости батареи. Пример: аккумулятор на 60 А*ч нужно заряжать силой тока 60 х 0,03 = 1,8 А.
  2. Поставьте автономный источник питания на зарядку и дождитесь появления пузырьков.
  3. Отрегулируйте ток заряда и по мере испарения воды измеряйте плотность. Когда она достигнет нормы, отключите «зарядник».

Если в процессе кипения уровень жидкости сильно понизился, придется купить готовый электролит нормативной плотности 1,27 г/см3 и долить нужное количество в банки.

Замещение кислотного раствора производится по аналогии с доливкой дистиллированной воды. Жидкость отсасывается из колодца грушей, на ее место заливается более плотный раствор, купленный в магазине. В продаже имеются электролиты с показателями 1,34–1,41 г/см3. Затем делается проверка плотности, при необходимости – корректировка и полная зарядка батареи.

Трудность третьего варианта заключается в отсутствии раствора серной кислоты высокой концентрации – отыскать и купить его практически невозможно. Если вам удалось достать указанное химическое вещество, добавляйте его в банки маленькими порциями, буквально по 1 см3, с помощью шприца. Действуйте осторожно и пользуйтесь средствами индивидуальной защиты – серная кислота весьма агрессивна.

каким прибором измерить параметры аккумулятора в домашних условиях

В процессе эксплуатации автомобиля у владельца часто возникает вопрос: как определить емкость аккумуляторной батареи и мощность блока питания, как проверить плотность аккумулятора. Первое и основное обследование прибора осуществляется при комплектации автомобиля и в период продажи транспортного средства. При возникновении сбоев работы двигателя и других энергозависимых приборов авто проверить заряд батареи можно дома или в сервисном центре

Этапы исследования электролита

Существует несколько причин снижения заряда прибора. Проверке подлежат только обслуживаемые АКБ, наиболее частым поводом проведения мероприятия является:

  1. Поездки по городу;
  2. Пользование системой обогрева в холодное время года;
  3. Сбои в работе генератора напряжения.

Возникновение любого из перечисленных признаков является показателем, чтобы мерить электролит для агрегата. Перед тем как проверить уровень электролита в аккумуляторной батарее, необходимо визуально оценить состояние прибора, проверить уровень электролита, измерить плотность и уровень напряжения батареи. Получить достоверные результаты поможет проверка АКБ с помощью клеммы нагрузочного тока.

Ареометр для проверки плотности

Проверка плотности аккумулятора ареометром осуществляется в несколько этапов. Прибор имеет простую конструкцию, позволяющую определить плотность жидкости по принципу закона Архимеда. По внешнему виду прибор напоминает герметично запаянную ампулу с нанесенной шкалой деления. Для калибровки ареометра используются дробь и ртуть. Прибор продается в наборе с резиновой «грушей» и стеклянной мерной колбой, позволяющей мерить раствор без риска для приспособлений

При работе с электролитом необходимо соблюдать меры индивидуальной защиты, использовать резиновые перчатки и прорезиненый фартук. Инструкция, как проверить плотность АКБ предусматривает следующий порядок:

  1. АКБ очищают от пыли и загрязнений;
  2. Размещают агрегат на ровной поверхности;
  3. Снимают с банок крышки;
  4. «Грушей» набирают электролит и сливают в колбу;
  5. Опускают ареометр в жидкость.

Важным условием проведения процедуры является обязательная полная зарядка аккумулятора перед проверкой плотности электролита. Владельцу автомобиля следует учесть, что процесс зарядки АКБ сопровождается выделением из банок химически активных вещество: водорода и кислорода, соединение которых может привести к взрыву. Избежать неприятной ситуации поможет принудительная вентиляция помещения. Время зарядки может длиться до 6 часов.

Оценка количества проводника

После завершения зарядки аккумулятор необходимо выдержать в покое не менее 6 часов. Условие является обязательным, так как после воздействия током плотность электролита остается повышенной, после «отдыха» раствор серной кислоты выдает более достоверные показатели.

Перед тем, как проверить электролит в аккумуляторе, необходимо взять пробу из банки аккумулятора в количестве, чтобы ареометр свободно плавал в жидкости.

В норме плотность электролита составляет от 1,24 кг/дм3 до 1,29 кг/дм3. Если полученный результат измерений ниже нормы, то поправить ситуацию может доливка свежего раствора. Методику выяснения, как правильно проверить плотность электролита в аккумуляторе, с последующими действиями необходимо повторить с каждой банкой АКБ с периодичностью 1 раз через каждые 3 месяца. По визуальной оценке жидкость должна быть прозрачной, обладать высокой степенью чистоты.

Неочищенная серная кислота может вызвать ускоренную самостоятельную зарядку аккумулятора. Обеспечить нормальный уровень электролита также поможет дистиллированная вода, повышенные показатели раствора снижает сроки службы аккумулятора.

На шкале ареометра полоски зеленого цвета показывают уровень допустимой плотности раствора. При цифровых значениях, отмеченных между верхним и нижним пределом жидкости, показатель считается нормальным, добавлять электролит не требуется.

Считывая показатели ареометра, необходимо помнить, что мерить концентрацию кислоты необходимо с поправкой на климатическую зону, так как существуют индивидуальные значения плотности.

Если плотность электролита падает до критического уровня, то никакие мероприятия, кроме как проверить плотность аккумулятора в домашних условиях с добавлением аккумуляторной кислоты, не помогут исправить ситуацию. Проверять электролит в аккумуляторе можно ранее описанным способом после добавления каждой порции кислоты. В случае, когда не удается получить нужный результат, то жидкость лучше всего просто заменить полностью.

Методика замены осуществляется после откачки раствора. Крышки банок и вентиляционные клапаны АКБ плотно закрываются, батарея укладывается на бок. В каждой банке делаются отверстия сверлом 3,5 мм, сливается остаток жидкости. Пустые банки тщательно промывают водой, проверяют на наличие осадка, отверстия запаиваются кислостойкой пластической массой, заливается свежий раствор с чуть большей плотностью, рекомендуемой для отдельно взятой климатической зоны.

Перед запуском прибора в работу рекомендуется еще раз померить концентрацию электролита.

Важная информация для автолюбителя

Так же без острой необходимости не следует заменять электролит полностью. Если кислоту необходимо разбавить водой, то следует помнить, что плотность жидкостей отличается. По этой причине кислоту вливают в воду тонкой струей с постоянным размешиванием.

Обращение с источником питания должно быть максимально осторожным, нельзя АКБ переворачивать вверх дном из-за возможного возникновения в процессе эксплуатации короткого замыкания. Перед завинчиванием крышек на банках необходимо воспользоваться рекомендацией специалистов, как проверить плотность аккумулятора ареометром перед эксплуатацией агрегата.

проверка и методы повышения плотности

Владельцы автомобилей часто сталкиваются с проблемой отказа двигателя от запуска. Подобное случается из-за разрядки аккумулятора и ухудшения свойств электролита. Перед тем как поднять плотность в аккумуляторе, нужно выяснить причину ухудшения качества кислотного раствора. После этого можно приступать к восстановлению батареи. Действия не представляют особых сложностей.

В процессе эксплуатации снижение плотности аккумулятора обычное явление, особенно при несвоевременной замены старого электролита.

Почему снижается плотность электролита

Снижению плотности способствуют такие факторы:

  1. Разряд. При потере заряда снижается и плотность наполнителя. Во процессе зарядки этот параметр постепенно увеличивается. Если батарея утрачивает большую часть емкости, речь идет о падении концентрации кислоты.
  2. Длительная эксплуатация или хранение в условиях низких температур.
  3. Выкипание электролита при перезаряде. Если зарядное устройство подает слишком высокое напряжение, жидкий электролит переходит в газообразное состояние и выводится наружу через имеющиеся на корпусе отверстия.
  4. Частое добавление воды. Водители добавляют жидкость для поддержания стабильного уровня электролита. Не все пользуются ареометром, измеряющим плотность. Вместе с водой выкипает и кислота, что приводит к снижению концентрации.

Пример сульфатации пластин автомобильного аккумулятора.

Опасности низкой и высокой концентрации кислоты

Повышенная концентрация электролита становится причиной преждевременного выхода батареи из строя. Кислота разрушает металлические пластины. К воздействию составов на основе серной кислоты чувствительна даже сталь.

Низкая концентрация приводит к таким проблемам:

  1. Сульфатация. На пластинах появляется налет, состоящий из сульфата свинца. Аккумуляторная батарея становится неспособной принимать заряд.
  2. Повышение порога замерзания. Жидкость кристаллизуется уже при -5°С. Лед сдвигает и повреждает металлические детали. При деформации пластин и коротком замыкании емкостей батарею восстановить невозможно. При плотности 1,28 г/см³ электролит замерзнет только при -58°С.
  3. Проблемы при запуске двигателя. Наиболее выражен этот признак в зимний период.

Для проверки плотности электролита используют денсиметр (справа).

Проверка плотности электролита

Определить плотность электролита можно в домашних условиях. Процедуру рекомендуется проводить при комнатной температуре.

Перед началом работы подготавливают такие инструменты:

  1. Защитные перчатки, костюм и очки. В состав наполнителя аккумулятора входит кислота. При попадании на кожу вещество вызывает химический ожог. Опасными являются и пары кислоты, поэтому работают только в хорошо проветриваемом помещении.
  2. Денсиметр. Прибор используется для измерения плотности. Имеет вид стеклянной трубки с грушей и встроенным ареометром.

Самостоятельно измерение плотности выполняют так:

Для проверки плотности электролита конец денсиметра погружают в ёмкость аккумулятора.

  1. Аккумулятор вынимают из посадочного гнезда. Защитный кожух демонтируют, вывинчивают пробки.
  2. Проверяют уровень электролита. В свинцово-кальциевых батареях раствор должен на 1,5 см закрывать пластины.
  3. Батарею полностью заряжают. Проверку плотности начинают через 5-6 часов после завершения зарядки. При нормальном уровне электролита трубку денсиметра погружают в банки, выкачивая небольшое количество жидкого наполнителя.
  4. Оценивают показатели прибора. Ареометр должен свободно плавать в растворе. Соприкосновение прибора со стенками емкости не допускается. Показания оценивают с учетом температуры окружающей среды.
  5. Проверяют плотность электролита в остальных банках. Показания записывают и сравнивают с нормальной плотностью.

Такой способ проверки подходит только для разборной батареи, когда имеется доступ к электролиту. Необслуживаемый аккумулятор снабжен индикатором, цвет которого меняется в зависимости от плотности наполнителя.

Как откорректировать плотность раствора

Нормальное показание лежит в диапазоне 1,25-1,29 г/см³. Если при температуре +25°С отмечается более низкое значение, его нужно повышать. Падение концентрации в одной из банок свидетельствует о коротком замыкании.

Высокие значения выявляются после зарядки мощным током, сопровождающейся кипением электролита. Повысить плотность можно путем добавления кислоты, заправки готового состава или использования зарядного устройства.

Плотность раствора в холодный период

В холодное время года плотность наполнителя заряженного аккумулятора должна составлять 1,27 г/см³. Дополнительная корректировка в регионах с суровым климатом при смене сезона не проводится.

Таблица зависимости плотности электролита в аккумуляторе от температуры.

Подготовка к восстановлению батареи

На этапе подготовки выполняют такие действия:

  1. Зарядка батареи. Нельзя начинать восстановление при низком заряде. Добавление электролита способствует резкому повышению концентрации кислоты. Это приводит к разрушению металлических пластин, при котором батарею утилизируют.
  2. Нормализация температуры электролита. Показатель лежит в пределах +20…+25°С. Уровень электролита в каждой банке должен быть нормальным.
  3. Осмотр батареи. Корпус не должен иметь трещин и сколов, особенно возле выводов. Повреждению способствует раскачивание при попытке снять прикипевшую клемму.

Повышение плотности электролита

Если плотность составляет более 1,18, доливают готовый состав с нормальной концентрацией серной кислоты.

Процедура включает такие этапы:

  1. Разрядка батареи. Долив электролита проводится только при полном разряде. Для этого АКБ подключают к мощной лампе или другому потребителю энергии.
  2. Подготовка корректирующего компонента. Уровень кислоты в таком средстве должен составлять не менее 1,4 г/см³.
  3. Добавление корректирующего состава. Предварительно откачивают часть имеющегося электролита. Густота раствора должна повыситься до 1,25. Действие выполняется для каждой банки. Объем доливаемой жидкости должен составлять не более 50% от откачанного. После добавления жидкости АКБ встряхивают, давая наполнителю перемешаться.
  4. Зарядка батареи. Аккумулятор оставляют на полчаса, что позволяет концентрации в банках выровняться. Элемент питания подключают к зарядному устройству на 30 минут. Сила тока должна быть минимальной. Через 2 часа после прекращения зарядки замеряют плотность и количество наполнителя. Если концентрация не поднимается, вышеуказанные действия повторяют.

Можно ли повысить минимальную плотность

Когда плотность падает до отметки ниже 1,18, добавление кислоты оказывается неэффективным. Для восстановления батареи используют раствор, содержащий большее, чем электролит, количество действующего вещества.

Перед заливкой нового электролита старый нужно слить.

Для замены наполнителя выполняют такие действия:

  1. Слив содержимого. Максимальное количество жидкости выкачивают грушей. Затем аккумулятор помещают в большую емкость и переворачивают на бок. В дне каждой банке формируют небольшое отверстие. Батарею возвращают в прежнее положение и дожидаются вытекания жидкого наполнителя.
  2. Добавление воды. Жидкость заливается через крышки банок для удаления остатков старого наполнителя. Сделанные ранее отверстия закрываются полимерным материалом, устойчивым к воздействию кислот.
  3. Заправка батареи новым раствором. Если все действия выполнены правильно, АКБ становится готовой к использованию. Недостатком метода является снижение срока эксплуатации аккумулятора. Несколько недель устройство проработает, однако потом придется покупать новое.

Как повысить при помощи зарядного устройства

Если концентрация кислоты упала за зиму, ее можно восстановить путем подачи слабого тока. Зарядка занимает не менее 3 суток, она считается эффективной при невозможности восстановления АКБ другими методами. Содержимое набравшей полную мощность батареи при зарядке начинает кипеть. Признаком испарения воды является образование мелких пузырьков на поверхности.

Избыток жидкости испарится, концентрация кислоты увеличится. Общий уровень наполнителя станет маленьким, поэтому придется добавлять готовый аккумуляторный раствор. После завершения процедуры пользуются ареометром. Если показатели прибора слишком низкие, зарядку и добавление электролита повторяют.

Как правильно измерить плотность электролита аккумулятора? 2 способа проверки и 5 полезных советов

Автомобиль с плохим аккумулятором не является надёжным транспортным средством. Опытные водители знают, что такое «севший» аккумулятор, и к каким неприятностям это в итоге приводит. Чтобы не случалось неприятных сюрпризов в дороге, АКБ нужно правильно и вовремя обслуживать — в том числе знать и о том, как самостоятельно проверить плотность аккумулятора.

Содержание статьи

Неисправности батареи

Большинству водителей знаком надрывный вой стартера или щёлканье, а то и вовсе тишина под капотом машины во время запуска двигателя. Этот неприятный момент связан со следующими неисправностями:

  1. Неисправность электропроводки автомобиля. Возможно, где-то пропал контакт, чаще всего это объясняется частичным отсутствием «массы».
  2. Неисправность втягивающего реле стартера.
  3. Предельный износ втулок стартера.
  4. Неисправность обмоток стартера.
  5. Низкое напряжение в цепи из-за разряженного аккумулятора.

Последняя причина, как правило, наиболее вероятная. Самым логичным ходом станет проверка плотности электролита в аккумуляторе. От чего она зависит:

  1. От климатической зоны.
  2. От времени года.

Для того чтобы правильно проверить плотность электролита в аккумуляторе, нужно знать её значение и иметь прибор, который называется ареометр.

Узнать правильную плотность просто — существуют специальные нормы. Средний их показатель составляет 1,24 — 1,29 кг/дм 3. Более точно:

Следует не реже одного раза в три месяца производить проверку плотности аккумулятора. Даже небольшое отклонение от нормы требует немедленного дозаряда батареи.

За показателями нужно внимательно следить — для того, чтобы АКБ проработала как можно дольше и не подводила владельца в самый ответственный момент. Особенно она «не прощает» халатного к себе отношения в зимний период. Дело в том, что на морозе теряется её ёмкость, и порой даже один неудачный пуск двигателя ведёт к разрядке АКБ.

Имея простейший прибор, проверить плотность аккумулятора в домашних условиях не представляет особого труда.

Плотность — плотностью, но и за уровнем электролита надо следить не с меньшим вниманием, особенно летом, когда аккумулятор выкипает более интенсивно.

Очень много мнений относительно уровня электролита в батарее:

  1. Одни считают, что достаточно покрыть сетки сепараторов этой жидкостью.
  2. Другие полагают, что чем больше уровень электролита, тем лучше.
  3. Третьи вообще не заглядывают под пробки аккумулятора — до того самого момента, когда перестаёт крутить стартер, что частенько вызывает у таких горе-владельцев неподдельное удивление.

Есть аккумуляторы, у которых имеется метка на корпусе, указывающая уровень электролита. Пользоваться ею не очень удобно, да и на точные показатели надеяться не приходится. Здесь поможет проверенный «дедовский» метод: стеклянная трубка с наружным диаметром 5 − 6 мм. На её корпус в нижней части следует нанести риски, указывающие правильный уровень электролита (согласно паспортным данным батареи). Трубка опускается в каждую банку поочерёдно, до упора в сетку сепаратора. Далее пальцем затыкается верхняя сторона трубки, и приспособление вынимается из банки, не отпуская пальца. Жидкость останется в трубке, и будет виден точный её уровень.

Если уровень низкий, следует понемногу наливать дистиллированную воду в банку, производя после каждой доливки контрольный замер. Если уровень слишком высок, что тоже не является правильным показателем, то с помощью ареометра лишняя жидкость откачивается. Этот способ является самым надёжным.

Необходимость зарядного устройства

Этот очень нужный прибор для содержания батареи в исправности, его необходимо иметь каждому автовладельцу. С помощью этого прибора можно всегда дозарядить АКБ, не прибегая к услугам СТО или местных «умельцев».

Имея правильный прибор с амперметром, водитель прекрасно сделает это сам. Порядок действий зарядки батареи:

  1. Нужно подключить зарядное устройство к батарее.
  2. Включить устройство.
  3. Установить зарядный ток. Его величина должна соответствовать десяти процентам от ёмкости АКБ. Например: если ёмкость батареи составляет 60 а/ч, то ток должен быть 6 ампер, 63 — то 6, 3 а/ч.

Время зарядки напрямую зависит от степени разряда, который определяется проверкой плотности аккумулятора ареометром. На шкале обозначен процент разрядки. К примеру, батарея разряжена на 50% и имеет паспортную ёмкость 50 а/ч. Из этого следует, что надо дозарядить недостающие 25 а/ч. Если заряжать батарею током в два ампера, то на это понадобится двенадцать с половиной часов, а если показатель тока четыре ампера — шесть часов 15 мин. и т. д.

Принцип прост и понятен, если бы не одно «но»: каждая АКБ имеет свой неповторимый «норов», особенно когда она уже далеко не новая. Она берёт зарядку по-разному: быстрее или медленнее.

Доливка жидкости

Многие «светлые головы» горячо советуют в случае сильной разрядки батареи доливать в неё серную кислоту, что является недопустимым. Кислота не сразу смешается с оставшейся жидкостью, и для этого надо заряжать АКБ. Тем временем агрессивная жидкость будет интенсивно разъедать пластины, «съедая» заодно и активную массу — порошок, нанесённый на них.

Если же долить электролит, то последствия не будут такими плачевными, но такая жидкость также плохо повлияет на состояние аккумулятора.

Доливать рекомендуется только воду. Исключения представляют те случаи, когда нужно менять весь электролит, поскольку имеющийся в батарее уже не подлежит зарядке из-за крайне низкой плотности.

Если плотность чересчур велика, нужно откачать ареометром жидкость, а потом долить дистиллированную воду. Далее производить зарядку малым током, не забывая о периодическом контроле плотности электролита.

Если электролит подлежит замене, нужно приготовить новый. Для правильного приготовления в стеклянную или кислотостойкую пластиковую ёмкость вначале наливается дистиллированная вода, а потом, тонкой струёй, кислота.

Добавляя кислоту малыми порциями, нужно часто проверять плотность электролита, доведя её до нужной величины, в зависимости от региона проживания и сезона.

Техника безопасности

Во время работы с кислотой или проверки плотности аккумулятора нужно соблюдать осторожность:

  1. Работать только в спецодежде, которую не жалко выбросить. Даже электролит, не говоря уже о концентрированной кислоте, легко приводит любую одежду и обувь в плачевное состояние.
  2. Работать нужно в резиновых перчатках, чтобы предотвратить возможные химические ожоги. Даже измерять плотность аккумулятора не стоит без них.
  3. Защитные очки тоже не помешают, особенно при приготовлении электролита, когда опасность попадания этой агрессивной жидкости в глаза особенно велика. Некоторые люди по неопытности льют воду в кислоту, а не наоборот, как это положено, и в результате может произойти её всплеск.
  4. Перед зарядкой АКБ следует правильно подключить её к устройству, не путая полярность.
  5. Не стоит забывать и об эффективной вентиляции. Если нет принудительной вытяжки, то вполне подойдёт хорошо проветриваемое помещение.

Во время подобных работ курить запрещается. Важно помнить о том, что кислота состоит из водорода, который взрывоопасен, и это особенно вероятно тогда, когда проводится обслуживание большого числа АКБ.

Заряжая батарею, нужно обязательно проверить чистоту вентиляционных отверстий в пробках всех банок, а ещё лучше — вывернуть их полностью.

Батарею нужно беречь от ударов.

Нельзя переворачивать АКБ вверх дном, особенно если батарея уже «в возрасте». Осыпавшаяся активная масса, доселе мирно покоившаяся на дне корпуса, замкнёт пластины. Прикрепляя аккумулятор к его штатному месту, следует помнить о том, что он не любит коротких замыканий, которые возникают вследствие неосторожной работы с ним.

Вывод

Проверка плотности электролита в аккумуляторе — залог долгой и надёжной эксплуатации батареи. Проводя регулярные измерения, водитель заботится не только о надёжности своего автомобиля, но и состоянии своего кошелька.

Тест электролита - NHS

Тест электролита может помочь определить, есть ли дисбаланс электролита в организме.

Электролиты - это соли и минералы, такие как натрий, калий, хлорид и бикарбонат, которые содержатся в крови. Они могут проводить в теле электрические импульсы.

Тест иногда проводится во время обычного медицинского осмотра или может использоваться как часть более полного набора тестов.

Например, ваш уровень электролитов может быть проверен, если вам прописаны определенные лекарства, такие как диуретики или ингибиторы ангиотензинпревращающего фермента (АПФ), которые часто используются для лечения высокого кровяного давления.

Помимо проверки уровня электролитов в крови, электролитная панель (группа конкретных анализов крови) также может использоваться для определения наличия кислотно-щелочного дисбаланса (нормальный диапазон pH артериальной крови составляет от 7,35 до 7,45).

Электролитный тест также можно использовать для контроля эффективности лечения дисбаланса, влияющего на функционирование органа.

Лечение дисбаланса электролитов будет зависеть от того, какой электролит нарушен и в каком количестве.Например, если у вас дисбаланс натрия, вам могут посоветовать снизить потребление соли (если натрия слишком высокий) или уменьшить потребление жидкости (если натрия слишком низкий).

Узнайте больше о тесте электролита на сайте Lab Tests Online UK.

.

Что такое электролиты в химии? Сильные, слабые и неэлектролиты

Электролиты - это химические вещества, которые распадаются на ионы (ионизируются) при растворении в воде. Положительно заряженные ионы называются катионами , а отрицательно заряженные ионы - анионами . Вещества можно разделить на сильных электролитов , слабых электролитов или неэлектролитов .

Сильные электролиты

Гидроксид натрия - это сильное основание и сильный электролит.(Ben Mills)

Сильные электролиты полностью ионизируются в воде. Это означает, что 100% растворенного химического вещества распадается на катионы и анионы. Однако это не означает, что химическое вещество полностью растворяется в воде! Например, некоторые виды плохо растворяются в воде, но являются сильными электролитами. Это означает, что растворяется не очень много, но все, что растворяется, распадается на ионы. Примером является гидроксид стронция с сильным основанием, Sr (OH) 2 . Он имеет низкую растворимость в воде, но полностью диссоциирует на ионы Sr 2+ и OH - .В то время как колба с гидроксидом натрия (NaOH) в воде будет содержать ионы Na + и OH - в воде, но не фактический NaOH, колба с водным гидроксидом стронция будет содержать ионы Sr 2+ и OH -. , Sr (OH) 2 и вода.

Примеры : Сильные кислоты, сильные основания и соли являются сильными электролитами.

Слабые электролиты

Аммиак - слабое основание и слабый электролит. (Бен Миллс)

Слабые электролиты частично ионизируются в воде.Практически любая диссоциация на ионы от 0% до 100% делает химическое вещество слабым электролитом, но на практике от 1% до 10% слабого электролита распадается на ионы.

Примеры : Слабые кислоты и слабые основания являются слабыми электролитами. Большинство азотсодержащих молекул - слабые электролиты. Некоторые источники считают воду слабым электролитом, потому что она частично диссоциирует на ионы H + и OH -, но неэлектролитом по другим источникам, потому что только очень небольшое количество воды диссоциирует на ионы.

Неэлектролиты

Если вещество вообще не ионизируется в воде, это неэлектролит.

Примеры : Большинство соединений углерода неэлектролиты. Жиры, сахара и спирты в значительной степени неэлектролиты.

Почему вам должно быть все равно?

Самая важная причина узнать, является ли химическое вещество электролитом и насколько сильно оно диссоциирует в воде, заключается в том, что вам нужна эта информация для определения химических реакций, которые могут происходить в воде.Кроме того, если у вас есть контейнер с химическим веществом в воде, неплохо узнать, растворяется ли это вещество в воде (его растворимость) и диссоциирует ли оно на ионы.

Классическим примером того, почему это важно, является раствор цианида натрия (NaCN). Вы, наверное, знаете, что цианид является реактивным и чрезвычайно токсичным, поэтому не могли бы вы открыть бутылку цианида натрия в воде? Если вы узнаете, что цианид натрия является солью, вы будете в безопасности (при условии, что не пьете раствор), потому что в воде нет цианида натрия, только ионы Na + и CN - в воде. .Ионы цианида не летучие и не вызывают болезней. Сравните это с бутылкой цианистого водорода (HCN) в воде. Вы бы открыли эту бутылку? Если вы узнаете, что цианистый водород является слабой кислотой, вы будете знать, что бутылка содержит газообразный цианистый водород, ионы водорода, ионы цианида и воду. Открытие этой бутылки может стоить вам жизни!

Как узнать, какие химические вещества являются электролитами?

Теперь, когда вы заинтересованы в том, чтобы узнать, что такое электролит, вы, вероятно, задаетесь вопросом, как определить, к какому типу электролита относится химическое вещество, по его названию или структуре.Вы делаете это путем исключения. Вот несколько шагов, которые необходимо выполнить, чтобы определить сильные, слабые и неэлектролиты.

  1. Это сильная кислота? Их всего 7 штук, и вы будете часто сталкиваться с ними по химии, так что это хороший план, чтобы их запомнить. Сильные кислоты - сильный электролит.
  2. Это сильная база? Это немного большая группа, чем сильные кислоты, но вы можете определить сильные основания, потому что они являются гидроксидами металлов. Любой элемент из первых двух столбцов периодической таблицы в сочетании с гидроксидом является сильным основанием.Сильные основания - сильные электролиты.
  3. Это соль? Соли - сильные электролиты.
  4. Содержит ли химическая формула азот или «N»? Это может быть слабое основание, что делает его слабым электролитом.
  5. Химическая формула начинается с водорода или «H»? Это может быть слабая кислота, которая делает ее слабым электролитом.
  6. Это соединение углерода? Большинство органических соединений не являются электролитами.
  7. Ничего из вышеперечисленного? Есть большая вероятность, что это неэлектролит, хотя это может быть слабый электролит.

Таблица сильных электролитов, слабых электролитов и неэлектролитов

В этой таблице обобщены группы сильных, слабых и неэлектролитов с примерами каждой категории.

Сильные электролиты
сильные кислоты HCl (соляная кислота)
HBr (бромистоводородная кислота)
HI (йодистоводородная кислота)
3 (азотная кислота)
HClO 3
HClO 4
H 2 SO 4 (серная кислота)
сильные основания NaOH (гидроксид натрия)
KOH (гидроксид калия)
LiOH
Ba (OH) 2
Ca (OH) 2
соли NaCl
KBr
MgCl 2
Слабый электро лайты
слабые кислоты HF (плавиковая кислота)
HC 2 H 3 O 2 (уксусная кислота)
H 2 CO 3 (угольная кислота)
H 3 PO 4 (фосфорная кислота)
слабые основания NH 3 (аммиак)
(N-соединения) C 5 H 5 N (пиридин)
Неэлектролиты
сахара и углеводы C 6 H 12 O 6 (глюкоза)
жиры и липиды холестерин
спирты C 2 H 5 OH (этиловый спирт)
другие соединения углерода C 5 H 12 (ручка tane)

Связанные сообщения

.

Электролиты: использование, дисбаланс и добавки

Мы включаем продукты, которые, по нашему мнению, полезны для наших читателей. Если вы покупаете по ссылкам на этой странице, мы можем заработать небольшую комиссию. Вот наш процесс.

Электролит - это вещество, которое при растворении в воде проводит электричество. Они необходимы для ряда функций организма.

Всем людям для выживания нужны электролиты. Многие автоматические процессы в организме зависят от небольшого электрического тока, и электролиты обеспечивают этот заряд.

Электролиты взаимодействуют друг с другом и клетками тканей, нервов и мышц. Баланс различных электролитов жизненно важен для здорового функционирования.

Краткие сведения об электролитах

Поделиться на Pinterest Когда люди думают об электролите, на ум часто приходят спортивные напитки. Однако электролиты - это гораздо больше, чем просто отдых после тренировки.

Электролиты - это химические вещества, которые при смешивании с водой проводят электричество.

Они регулируют функции нервов и мышц, увлажняют тело, уравновешивают кислотность и давление крови и помогают восстановить поврежденные ткани.

Мышцы и нейроны иногда называют «электрическими тканями» тела.Они полагаются на движение электролитов через жидкость внутри, снаружи или между ячейками.

Электролиты в человеческом организме включают:

Например, мышцам для сокращения необходимы кальций, натрий и калий. Когда эти вещества становятся несбалансированными, это может привести либо к мышечной слабости, либо к чрезмерному сокращению.

Сердце, мышцы и нервные клетки используют электролиты для передачи электрических импульсов другим клеткам.

Уровень электролита в крови может стать слишком высоким или слишком низким, что приведет к дисбалансу. Уровень электролитов может меняться в зависимости от уровня воды в организме, а также других факторов.

Важные электролиты, в том числе натрий и калий, теряются с потом во время упражнений. На концентрацию также может влиять быстрая потеря жидкости, например, после приступа диареи или рвоты.

Эти электролиты необходимо заменить для поддержания нормального уровня. Почки и несколько гормонов регулируют концентрацию каждого электролита. Если уровень вещества слишком высок, почки отфильтровывают его из организма, а различные гормоны балансируют уровни.

Дисбаланс представляет собой проблему для здоровья, когда концентрация определенного электролита становится выше, чем может регулировать организм.

Низкий уровень электролитов также может повлиять на общее состояние здоровья. Наиболее распространены дисбалансы натрия и калия.

Симптомы электролитного дисбаланса

Симптомы будут зависеть от того, какой электролит не сбалансирован, а также от того, слишком ли высокий или слишком низкий уровень этого вещества.

Опасная концентрация магния, натрия, калия или кальция может вызвать один или несколько из следующих симптомов:

Может также наблюдаться избыток кальция, особенно у пациентов с раком груди, раком легких и множественной миеломой.Этот тип избытка часто возникает из-за разрушения костной ткани.

Признаки и симптомы повышенного содержания кальция могут включать:

Поскольку эти симптомы также могут быть результатом рака или лечения рака, иногда бывает трудно определить высокий уровень кальция в первом случае.

Существует несколько причин электролитного дисбаланса, в том числе:

Панель электролитов используется для выявления дисбаланса электролитов в крови и измерения кислотно-щелочного баланса и функции почек.Этот тест также может контролировать ход лечения известного дисбаланса.

Врач иногда включает электролитную панель как часть обычного медицинского осмотра. Его можно выполнять самостоятельно или в составе ряда тестов.

Уровни измеряются в миллимолях на литр (ммоль / л) с использованием концентрации электролитов в крови.

Людям часто дают электролитную панель во время пребывания в больнице. Это также проводится для тех, кто доставлен в отделение неотложной помощи, поскольку как острые, так и хронические заболевания могут влиять на уровни.

Если уровень отдельного электролита окажется либо слишком высоким, либо слишком низким, врач будет продолжать проверять этот дисбаланс, пока уровни не вернутся к норме. При обнаружении кислотно-щелочного дисбаланса врач может провести анализ газов крови.

Они измеряют уровни кислотности, кислорода и углекислого газа в образце крови из артерии. Они также определяют серьезность дисбаланса и то, как человек реагирует на лечение.

Уровни также могут быть проверены, если врач прописывает определенные лекарства, которые, как известно, влияют на концентрацию электролитов, такие как диуретики или ингибиторы АПФ.

Поделиться на Pinterest Одно из решений небольшого дисбаланса электролитов - просто пить больше воды.

Лечение дисбаланса электролитов включает либо восстановление уровней, если они слишком низкие, либо снижение слишком высоких концентраций.

Если уровни слишком высоки, лечение будет зависеть от причины превышения. Низкие уровни обычно лечат путем добавления необходимого электролита. В Интернете можно приобрести различные добавки к электролиту.

Тип лечения также будет зависеть от тяжести дисбаланса.Иногда безопасное восстановление уровня электролита у человека с течением времени без постоянного контроля.

Однако иногда симптомы могут быть серьезными, и во время лечения может потребоваться госпитализация и наблюдение.

Пероральная регидратационная терапия

Эта процедура используется в основном для людей, испытывающих нехватку электролитов наряду с обезвоживанием, обычно после тяжелой диареи.

Всемирная организация здравоохранения (ВОЗ) одобрила раствор для использования в пероральной регидратационной терапии, содержащий:

Их растворяют в 1 литре (л) воды и принимают внутрь.

Электролитозаместительная терапия

В более тяжелых случаях нехватки электролитов это вещество можно вводить пациенту перорально или через капельницу.

Нехватка натрия, например, может быть восполнена инфузией раствора соленой воды или соединения лактата натрия.

Избыток может произойти, если организм теряет воду без потери электролитов. В этих случаях дается раствор воды и сахара в крови или глюкозы.

Профилактика

Некоторые причины нехватки электролитов, например, болезнь почек, предотвратить невозможно. Однако правильно подобранная диета может снизить риск дефицита. Употребление умеренного количества спортивного напитка после физических нагрузок или упражнений может помочь ограничить влияние потери электролитов с потом.

Людям, которым не требуется пребывание в больнице, врач может порекомендовать изменения в диете или добавки для балансировки концентраций электролитов.

Когда уровень электролита слишком низкий, важно включать продукты питания с высоким содержанием этого вещества. Вот несколько источников пищи для каждого из основных электролитов:

тыквенный йогурт
банан семена
шпинат
Требуемый электролит Источники
Натрий маринованные огурцы
томатные соки, соусы
224 и 902 супы
Хлорид томатные соки, соусы и супы
салат
оливки
поваренная соль
Калий картофель с кожицей
йогурт без добавок
банан
Кальций йогурт
молоко
рикотта
зелень капусты
шпинат
капуста
сардины

Важно иметь в виду, сколько каждого пищевого электролита содержится в каждом источнике пищи.Министерство сельского хозяйства США (USDA) предлагает полезный ресурс для проверки пищевой ценности продуктов.

Добавки также можно использовать для управления низким уровнем электролита. Например, пожилые люди часто не потребляют достаточное количество калия, и его уровень также может быть снижен за счет лечения кортикостероидами или мочегонными препаратами. В этих случаях таблетки калия могут повысить его концентрацию в крови.

Поделиться на PinterestСпортивные напитки могут помочь восполнить потерю электролитов, но слишком частое их употребление может привести к их избытку.

Некоторые спортивные напитки, гели и конфеты рекомендованы для пополнения запасов электролитов во время и после тренировки. Они помогают восстановить потерянные натрий и калий и удерживают воду.

Однако эти напитки обычно содержат высокое содержание электролита, и чрезмерное употребление может привести к их избытку. Многие также содержат высокий уровень сахара.

Важно постоянно следовать всем предлагаемым курсам приема добавок электролитов и придерживаться рекомендованного плана лечения.

Рекомендуемое потребление

Потребление правильного количества несбалансированного электролита должно привести к улучшению симптомов. Если этого не произойдет, могут потребоваться дополнительные тесты для выявления любых других основных условий, которые могут вызывать дисбаланс.

Нормальное потребление некоторых из наиболее распространенных электролитов следующее:

4,716 902 902 902 902
Электролит Рекомендуемая доза в миллиграммах (мг) Рекомендуемая доза для людей старше 50 лет (мг) Рекомендуемая доза для людей старше 70 лет
Натрий 1,500 1,300 1,200
Калий
4,716 4,716 1,000 1,200 -
Магний 320 для мужчин, 420 для женщин - -
Хлорид 2316

Электролиты являются важной частью химического состава человека, d дисбаланс может повлиять на нормальное функционирование.Возможно, причина в том, что вы чувствуете слабость после тренировки.

Регулярный контроль и потребление электролитов после интенсивных упражнений или обильного потоотделения может помочь сохранить уровень. Обязательно избегайте обезвоживания.

.

Теоретическое и экспериментальное исследование электроосаждения меди в модифицированной ячейке корпуса

Распределение первичного тока и сопротивление модифицированной ячейки корпуса рассчитываются с использованием техники конформного отображения в сочетании с численной оценкой полученных интегральных уравнений. Представлено приближенное аналитическое выражение для первичного распределения тока модифицированной ячейки Халла. Замечено, что первичное распределение тока по поверхности катода изменяется контролируемым образом в зависимости от положения на подложке.Распределения тока (первичный, вторичный и третичный) в ячейке также были рассчитаны при различных приложенных средних плотностях тока (2, 4,1 и 8,2 мА · см -2 ) посредством численного моделирования с использованием программного обеспечения на основе конечных элементов. Затем результат численного моделирования распределения первичного тока сравнивается с аналитическим решением и обнаруживается хорошее совпадение. Экспериментально электроосаждение одиночного металлического Cu проводят при различных приложенных средних плотностях тока (2, 4.1 и 8,2 мА см −2 ) в модифицированном корпусе. Текущее распределение (первичное, вторичное и третичное) результаты, полученные в результате численного моделирования, сравниваются с экспериментальными результатами, и обнаруживается удовлетворительное совпадение. Морфология поверхности отложений Cu исследуется с помощью сканирующей электронной микроскопии (SEM).

1. Введение

Электроосаждение - универсальный, экономичный и простой метод, который используется для изготовления металлических покрытий. Параметры процесса электроосаждения, особенно плотность тока, могут влиять на морфологию поверхности, химический состав (в случае сплавов) и свойства покрытий, что четко описано во многих сообщениях литературы [1, 2].Перед электроосаждением материалов основной задачей специалистов по гальванике, а также исследователей является изучение распределения плотности тока по поверхности электрода в электрохимической ячейке во время электроосаждения [3].

При нанесении гальванических покрытий необходимо сначала понять данную конфигурацию электрохимической ячейки с расчетом распределения плотности тока в ячейке с учетом других эффектов, таких как кинетика электрохимической реакции и массоперенос.Однако для анализа и понимания электрохимической системы начальным шагом является расчет первичного распределения тока (PCD) вдоль поверхности электрода и первичного сопротивления электрохимической ячейки, в котором поверхностным перенапряжениями пренебрегают, а эквипотенциальная поверхность раствора, прилегающая к электрод предполагается [4].

Первичный ток вдоль электрода и распределение потенциала в электролите рассчитываются на основе решения уравнения Лапласа ().В литературе доступно множество методов для решения уравнения Лапласа, таких как метод изображений [5, 6], разделение переменных [7], суперпозиция [8, 9] и конформное отображение [10–19]. Аналитические решения для PCD для различных геометрий уже давно были рассмотрены Флеком [20]. Среди этих методов конформное отображение - мощный и простой метод, используемый для решения уравнения Лапласа как для плоской, так и для сложной геометрии [21–23].

В литературе можно найти множество статей [10, 12, 13, 19], посвященных расчету PCD в электрохимических ячейках с использованием техники конформного картирования.В общем, введение и приложения конформного отображения и преобразования Шварца-Кристоффеля в задачах комплексных переменных также рассматриваются в учебниках [21–24].

Техника конформного картирования уже давно используется для расчета распределений тока в электрохимических ячейках различной геометрии [10–19] и объясняется ниже. Этот метод впервые был использован Моултоном для определения распределения тока в прямоугольных проводниках [10]. Оразем и Ньюман [4] изучали PCD и сопротивление ячейки с щелевыми электродами с использованием преобразования Шварца-Кристоффеля в сочетании с числовыми интегралами.Влияние небольших изменений угла между электродом и изолятором на PCD для утопленных электродов также изучалось с использованием техники конформного картирования [18]. Недавно в статье, опубликованной West et al. [19] аналитическое решение PCD в ячейке Халла и связанных с ним трапециевидных геометрий исследуется с использованием преобразований Шварца-Кристоффеля.

Обычно COMSOL Multiphysics, программное обеспечение на основе метода конечных элементов, используется для изучения распределения тока и потенциала вдоль катода в нескольких электрохимических ячейках [26–28].В литературе разработаны математические модели для исследования осаждения одиночного металла в ячейке Халла трапециевидной формы [3, 19, 29, 30]. В настоящем исследовании используется модифицированная ячейка Халла, имеющая аналогичную трапециевидную геометрию. Библиотеки легированных тонкопленочных материалов были изготовлены в модифицированной ячейке Халла путем электроосаждения [2, 31–33]. Чтобы понять модифицированную структуру ячейки Халла, было проведено численное моделирование распределения тока вдоль электрода во время электроосаждения Cu с использованием программного обеспечения на основе конечных элементов.

Обычно используется электроосаждение чистой меди из кислых сульфатных электролитов для сравнения с результатами моделирования [3, 28, 34]. В отличие от других типов электроосаждения Cu, описанных в литературе, в настоящем исследовании тонкие пленки чистой Cu экспериментально изготавливаются из электролита на основе цитрата. Доступно ограниченное количество статей по электроосаждению Cu из цитратных электролитов [35, 36]. Цитрат - это комплексообразующий и буферный агент. Недавно Chassaing et al. [35] изготовили пленки чистой Cu из цитратных электролитов, содержащих разные концентрации цитрата, и разработали модель, объясняющую влияние концентрации цитрата на кинетику электроосаждения Cu.

В данной работе основной целью является расчет первичного распределения тока и первичного сопротивления ячейки модифицированной ячейки Халла с использованием техники конформного отображения. Представлены разработка аналитического выражения для PCD и расчет значения сопротивления первичной клетки с использованием техники конформного картирования (преобразования Шварца-Кристоффеля). Кроме того, численно исследуются распределения плотности тока (PCD, вторичный (SCD) и третичный (TCD)) в ячейке во время электроосаждения Cu, выполняемого при различных приложенных средних плотностях тока, и его PCD сравнивается с аналитической кривой PCD.Наконец, Cu осаждается экспериментально посредством импульсного электроосаждения в модифицированной ячейке Халла при аналогичных приложенных средних плотностях тока, и ее нормированные распределения толщины сравниваются с результатами численного моделирования распределения тока (PCD, SCD и TCD).

2. Вычислительные и экспериментальные методы
2.1. Аналитический раствор PCD в модифицированной корпусной ячейке
2.1.1. Описание модифицированной ячейки корпуса

Модифицированная ячейка корпуса, простая небольшая ячейка электроосаждения, имеет трапециевидную структуру, которая состоит из катода (размеры: 7 × 3.5 см 2 ), размещенный под углом 51,5 ° с анодом (размеры: 4,35 × 3,5 см 2 ) и двумя изоляционными стенками (схематическая диаграмма показана на рисунке 1). Ближайшее (конец с высокой плотностью тока (HCD)) и самое дальнее (конец с низкой плотностью тока (LCD)) расстояния между электродами сохраняются на уровне 1 см и 6,5 см соответственно. Градиент плотности тока устанавливается по длине наклонного рабочего электрода из-за геометрии электродов в модифицированной ячейке Халла, где он увеличивается от конца LCD к концу HCD рабочего электрода.Это позволяет исследователям изучить влияние широкого диапазона плотностей тока на качество покрытия в одном эксперименте. Следовательно, изучение распределения тока в ячейке имеет первостепенное значение в методе электроосаждения, в основном для определения оптимальных условий нанесения покрытия на практике.


2.1.2. Расчет PCD в модифицированной ячейке корпуса

В отличие от стандартной геометрии ячейки корпуса, модифицированная ячейка корпуса с углом между электродами 51.5 ° и измененные размеры анода и катода предназначены для изготовления пленок Cu в настоящем исследовании. Как указано во введении, изучение распределения тока в сконструированной модифицированной ячейке Халла является первоочередной задачей, и ее необходимо знать перед электроосаждением металлов.

Размеры модифицированной ячейки Халла до и после масштабирования показаны на рисунках 1 и 2 (а). Масштабирование проводилось по длине анода. Уравнения, используемые для получения аналитического решения PCD в модифицированной ячейке Халла, включают безразмерные величины.Следовательно, масштабирование измененных геометрических размеров ячеек корпуса также должно быть выполнено для получения безразмерных величин.

Техника конформного картирования является мощным инструментом и используется для получения аналитического решения PCD модифицированной ячейки Халла. Фактическая геометрия ячейки, трапеция (-плоскость, рисунок 2 (а)), отображается двумя преобразованиями Шварца-Кристоффеля ((1) и (2)) в прямоугольник (-плоскость, рисунок 2 (c)) через промежуточные система координат (-плоскость, рисунок 2 (б)).Распределения тока и потенциала для прямоугольной геометрии определяются просто из решения дифференциальных уравнений с граничными условиями (a и b), а затем решение снова связывается с фактической геометрией ячейки с использованием преобразований Шварца-Кристоффеля, которые уже объяснены подробно в этих ссылках [4, 18, 19]:

.

Не содержащий хлоридов электролит и органический катод повысили плотность энергии и стабильность - ScienceDaily

Исследователи из Хьюстонского университета и Американского исследовательского института Toyota обнаружили многообещающую новую версию высокоэнергетических магниевых батарей с потенциальными применениями, начиная от электрических автомобили для аккумуляторов для систем возобновляемой энергии.

Батарея, о которой сообщалось 21 декабря в Джоулях , является первой, о которой сообщалось, что она работает с ограниченным количеством электролитов при использовании органического электрода, изменение, по словам исследователей, позволяет ей накапливать и разряжать гораздо больше энергии, чем предыдущие магниевые батареи.Они использовали электролит, не содержащий хлоридов, что является еще одним изменением от традиционного электролита, используемого в магниевых батареях, что позволило сделать открытие.

Янь Яо, доцент кафедры электротехники и вычислительной техники в UH, сказал, что исследователи смогли подтвердить, что хлорид в обычно используемом электролите способствует снижению производительности. «Проблема, которую мы пытались решить, - это воздействие хлорида», - сказал он. «Это повсеместно используется».

Яо, который также является главным исследователем Техасского центра сверхпроводимости в UH, и его команда использовали электролит, не содержащий хлоридов, для испытания катодов из органических хиноновых полимеров с анодом из металлического магния, сообщив, что они выдавали до 243 ватт-часов на килограмм. , с мощностью до 3.4 киловатта на килограмм. Батарея оставалась стабильной через 2500 циклов.

Ученые потратили десятилетия на поиск высокоэнергетической магниевой батареи, надеясь воспользоваться естественными преимуществами магния перед литием, элементом, который используется в стандартных литий-ионных батареях. Магний гораздо более распространен и, следовательно, менее дорог, и он не склонен к нарушениям своей внутренней структуры, известным как дендриты, которые могут вызвать взрыв и возгорание литиевых батарей.

Но магниевые батареи не будут конкурентоспособными с коммерческой точки зрения, пока они не смогут накапливать и разряжать большое количество энергии. Яо сказал, что предыдущие материалы для катодов и электролитов были камнем преткновения.

Катод - это электрод, от которого течет ток в батарее, а электролиты - это среда, через которую протекает ионный заряд между катодом и анодом.

Среди других исследователей проекта - первые авторы Хуэй Донг, докторант UH, и Янлян Леонард Лян, доцент-исследователь UH; Оскар Тутусаус и Рана Мохтади из Исследовательского института Toyota в Северной Америке; и докторанты UH Е Чжан и Фан Хао.

«Благодаря () оптимальной комбинации катодов из органического карбонильного полимера и электролитов, способных накапливать магний, мы можем продемонстрировать высокую удельную энергию, мощность и стабильность при циклических нагрузках, которые редко встречаются в Mg-батареях», - пишут они.

Лян отметил, что до сих пор лучшим катодом для магниевых батарей был сульфид молибдена в фазе Шевреля, разработанный почти 20 лет назад. По его словам, у них нет ни мощности, ни емкости для хранения энергии, чтобы конкурировать с литиевыми батареями.

Но недавние отчеты показывают, что органические катодные материалы могут обеспечивать высокую емкость хранения при комнатной температуре. «Нам было любопытно, почему», - сказал Лян.

Донг сказал, что оба испытанных катода из органического полимера обеспечивали более высокое напряжение, чем фазовый катод Шевреля.

Яо сказал, что дальнейшие исследования будут направлены на дальнейшее улучшение удельной емкости и напряжения батарей, чтобы они могли конкурировать с литиевыми батареями.

«Магния гораздо больше и он безопаснее», - сказал он.«Люди надеются, что магниевая батарея может снизить риски литиевых батарей».

Яо получил Премию Хьюстонского университета за выдающиеся достижения в области исследований и был назван высоко цитируемым исследователем, выбранным Clarivate Analytics на основании «исключительной исследовательской эффективности, которая входит в 1% лучших цитируемости в Web of Science» в 2018 году.

История Источник:

Материалы предоставлены Университетом Хьюстона . Оригинал написан Джинни Кевер. Примечание. Содержимое можно редактировать по стилю и длине.

.

Frontiers | Новые твердые электролиты для литий-ионных аккумуляторов: перспективы исследований электронной микроскопии

Введение

В связи с исчерпанием ископаемых видов топлива в последние годы большое внимание уделяется высокоэффективным накопителям энергии (Quartarone and Mustarelli, 2011; Bruce et al., 2012). Хотя литий-ионный аккумулятор (LIB) является очень многообещающим альтернативным источником питания, проблемы безопасности и недостаточная плотность энергии препятствуют его применению в тяжелых условиях, например.г., электромобили и сетевое хранилище энергии (Quartarone and Mustarelli, 2011; Bruce et al., 2012). К счастью, эти проблемы можно решить путем интеграции новых твердых электролитов (Quartarone and Mustarelli, 2011; Takada, 2013; Wang et al., 2015). С одной стороны, эти твердые материалы обычно негорючие и не имеют утечки, что позволяет избежать проблем безопасности, связанных с обычными органическими жидкими электролитами. Это необходимое условие для крупномасштабного применения. С другой стороны, также можно эффективно улучшить плотность энергии.Гораздо большее электрохимическое окно позволяет использовать современные электродные материалы, несовместимые с обычными жидкими электролитами. Кроме того, устраняя необходимость в громоздких предохранительных механизмах, можно значительно уменьшить размер батареи. Из-за этих преимуществ твердые электролиты в последние годы вызывают огромный интерес.

Однако перед тем, как твердые электролиты можно будет использовать в коммерческих аккумуляторах, необходимо решить две большие проблемы. Во-первых, их ионная проводимость, как правило, низкая, что препятствует быстрой зарядке и разрядке (Takada, 2013; Wang et al., 2015). Во-вторых, сложно сформировать стабильную проводящую поверхность раздела между твердым электролитом и электродом (Zhu et al., 2015 и 2016; Richards et al., 2016). Преодоление первой проблемы требует механистического понимания взаимодействия между миграцией Li и атомной структурой материала. Для решения второй задачи сначала необходимо систематически установить корреляцию между структурой интерфейса / химией и ионным транспортом. Очевидно, что обе задачи требуют структурного и химического анализа со сверхвысоким пространственным разрешением.

Просвечивающая электронная микроскопия (ПЭМ), в первую очередь сканирующая просвечивающая электронная микроскопия с коррекцией аберраций (STEM), является идеальным инструментом для получения критически важных сведений на атомном уровне. Он не только способен непосредственно визуализировать атомные конфигурации, но также может прояснять химическую информацию с пространственным разрешением суб-ангстрема с помощью спектроскопии потерь энергии электронов (EELS) и энергодисперсионной рентгеновской спектроскопии (EDS) (Pennycook, 1992; Muller et al. al., 2008; Chi et al., 2011; Yabuuchi et al., 2011; Wu et al., 2015). Однако исследования твердых электролитов методом STEM создают многочисленные проблемы, так как высокая подвижность Li и плохая электронная проводимость делают эти материалы очень уязвимыми для повреждений электронным облучением (Egerton et al., 2004). К счастью, благодаря значительно улучшенным возможностям визуализации и подготовки образцов для ПЭМ в последние годы эта проблема значительно уменьшилась. Некоторые светочувствительные материалы, которые ранее не могли быть изучены, теперь могут быть проанализированы в атомном масштабе (Ma et al., 2015), и многие из этих исследований внесли значительный вклад в исследования твердых электролитов.

В данном мини-обзоре будут рассмотрены исследования с помощью электронной микроскопии трех важных факторов, определяющих поведение твердых электролитов: (1) влияние атомной конфигурации внутри зерна на ионную проводимость, (2) влияние границ зерен и (3) поведение твердого тела. границы раздела электролит – электрод. На основе этого будут обсуждены возможности, проблемы и перспективы будущих исследований.

Влияние внутренней атомной конфигурации зерна на ионную проводимость

Миграция Li внутри кристаллической решетки продиктована атомным каркасом, который формирует каналы для транспорта Li. Для объяснения ионного переноса внутри решетки требуется точное понимание атомной структуры. Обладая сверхвысоким пространственным разрешением и чувствительностью к тонким различиям в дифракции, (S) ПЭМ не только дополняет исследования рассеяния рентгеновских лучей и нейтронов, но также предоставляет уникальные возможности для понимания на атомном уровне.Недавние микроскопические исследования в основном были сосредоточены на двух системах: Li 7 La 3 Zr 2 O 12 (LLZO) и Li 3 x La 2 / 3− x TiO 3 (LLTO).

Li 7 La 3 Zr 2 O 12 в настоящее время является наиболее многообещающим оксидным твердым электролитом благодаря сосуществованию превосходной стабильности по отношению к металлическому Li и относительно высокой проводимости (Муруган и др., 2007; Кассен, 2010). Он кристаллизуется в структуре граната с двумя полиморфами (Cussen, 2010): кубической фазой с относительно высокой проводимостью (c-LLZO) и менее проводящей тетрагональной фазой (t-LLZO). Различение этих двух фаз имеет решающее значение для правильной интерпретации поведения ионного транспорта. Исследование прецессионной дифракции электронов (PED) Buschmann et al. (2011) успешно разграничили эти две фазы, избежав влияния двойной дифракции. Этот результат дополнительно подтвердил, что легирование алюминием имеет решающее значение для стабилизации кубической фазы.В сочетании с дифракцией нейтронов было обнаружено, что позиции Li в c-LLZO, в отличие от тех, что в t-LLZO, частично заполнены. Высокая концентрация вакансий в c-LLZO приводит к более высокой подвижности лития и превосходной проводимости. Помимо исследования PED, Buschmann et al. также пытались выполнить ПЭМ с высоким разрешением (ПЭМВР), но подробный анализ был невозможен из-за повреждения электронным пучком. Недавно эта проблема была успешно решена Ma et al. (2015). Тщательный выбор условий получения изображений и подготовки образцов позволил провести высококачественный анализ TEM / EELS с атомным разрешением (S) (Рисунки 1A, B).Исследования Ма показали, что c-LLZO сохраняет свою кубическую кристаллическую структуру даже в водной среде с pH> 7. Такая высокая структурная стабильность указывает на то, что c-LLZO предлагает надежную атомную основу для транспорта Li. Учитывая высокую ионную проводимость, совместимость с литием и желаемую структурную стабильность по отношению к водным растворам с широким диапазоном значений pH, LLZO является многообещающим кандидатом в качестве сепаратора в новых водных литиевых батареях.

Рисунок 1.(A) Атомная структура чувствительного к электронному лучу твердого электролита LLZO успешно визуализирована с помощью STEM-изображения в высокоугловом кольцевом темном поле (HAADF). (B) Данные EELS LLZO после обмена Li + / H + с различными водными растворами. Содержание Li можно точно контролировать. Воспроизведено с разрешения (Ma et al., 2015).

Другой системой, которая широко исследовалась с помощью электронной микроскопии, является LLTO, которая имеет структуру типа перовскита (Stramare et al., 2003). Изменяя состав и / или условия обработки, можно получить несколько полиморфов с разной ионной проводимостью. Тем не менее, большинство из них демонстрируют чередующееся наложение между слоями A-сайта с высоким содержанием La и бедным по La, а миграции Li благоприятствуют слои с низким содержанием La. Наибольшая объемная проводимость составляет 10 −3 См · см −1 , приближаясь к проводимости обычных жидких электролитов (10 −2 См · см −1 ) (Takada, 2013). Таким образом, глубокое понимание происхождения таких исключительных характеристик имеет решающее значение для разработки твердых электролитов с высокой проводимостью.Исследования (S) TEM внесли важный вклад в это дело. Воспользовавшись чувствительностью STEM-изображения кольцевого светлого поля (ABF) к легким элементам, таким как Li, Gao et al. (2013) непосредственно визуализировали вариацию положений Li в разных полиморфах LLTO. Было обнаружено, что Li находится в окне O4 для состава с низким содержанием Li La 0,62 Li 0,16 TiO 3 , но рядом с позицией A для состава с высоким содержанием Li La 0,56 Li 0,33 TiO 3 .Содержание Li, валентное состояние катионов и геометрия кислородных октаэдров в слоях, богатых La и бедных La, также были выявлены с помощью EELS. Кроме того, были исследованы доменные структуры, связанные с упорядочением между слоями, богатыми La и бедными La (Gao et al., 2014). Было обнаружено, что с La, блокирующим пути Li, доменные границы препятствуют ионному транспорту. Помимо этого, можно также визуализировать структурные особенности, которые невозможно легко обнаружить дифракционными методами. Как упоминалось выше, транспорт Li в LLTO зависит от бедных La слоями.Однако ни одно из предыдущих дифракционных исследований не обнаружило таких важных особенностей у наиболее проводящего полиморфа, закаленного при 1350 ° C La 0,56 Li 0,33 TiO 3 (Stramare et al., 2003). В результате механизм его ионного транспорта оставался неясным в течение многих лет. Недавно исследование STEM с атомным разрешением напрямую визуализировало ранее не замеченные пути ближнего упорядочения Li в этом материале (Ma et al., 2016). Длина когерентности упорядочения оказалась на мезоскопическом масштабе (менее 10 нм), что не позволило обнаружить его большинством дифракционных методов.В сочетании с моделированием молекулярной динамики (МД) это наблюдение показало, что такая неуловимая мезоскопическая структура может наиболее эффективно максимизировать количество путей переноса лития, что приводит к высокой проводимости. Это открытие не только примирило давно существовавшее несоответствие структуры и свойств, но также указывало на новый взгляд на улучшение ионной проводимости.

Хотя ПЭМ с атомным разрешением (S) очень помог фундаментальному пониманию ионного транспорта, текущие исследования ограничиваются оксидами.Для сравнения, сульфидные твердые электролиты, несмотря на их более высокую проводимость (Takada, 2013), редко исследуются. Микроскопические исследования этих материалов чрезвычайно сложны из-за (1) уязвимости слабых связей Li – S для электронов и (2) их чувствительности к окружающей атмосфере. Если эти проблемы могут быть устранены, (S) ТЕА будет играть еще более важную роль в исследовании твердых электролитов.

Воздействие границ зерен

Хотя исследования твердых электролитов в основном сосредоточены на внутренней части зерен, границы зерен часто являются узким местом.Хотя объемная проводимость многих твердых электролитов уже сопоставима с проводимостью обычных жидких электролитов, их большое сопротивление границ зерен обычно снижает общую проводимость на порядки (Takada, 2013). Из-за отсутствия надлежащего понимания механизма проводимости Li по границам зерен целенаправленная оптимизация пока невозможна.

Границы зерен в твердых телах часто ограничиваются очень маленьким масштабом длины с шириной всего в несколько элементарных ячеек.Таким образом, STEM с его разрешением ниже ангстрема кажется идеальным инструментом для их изучения. Ma et al. (2014) успешно использовали STEM / EELS с атомным разрешением, чтобы раскрыть атомарное происхождение сопротивления границ крупных зерен в LLTO. Наблюдалось, что большинство границ зерен демонстрируют более темный контраст Z-, чем соседние зерна, что позволяет предположить, что средний атомный номер на границе зерен ниже. Дальнейший анализ в атомном масштабе показал, что атомная конфигурация границ зерен значительно отличается от конфигурации внутри зерен (рис. 2A, B).Вместо структуры перовскита ABO 3 такие реконструированные границы зерен, по существу, представляют собой бинарный слой Ti – O, запрещающий избыток носителя заряда Li + . Следовательно, они действуют как внутренние барьеры для транспорта лития. Эта тема также исследовалась HRTEM и EDS. Кроме того, Gellert et al. (2012) изучали границы зерен в литий-алюминиевом фосфате титана (LATP). В зависимости от взаимной ориентации между соседними зернами наблюдались два типа границ зерен.Если ориентации аналогичны, будет присутствовать толстая граница кристаллического зерна. Считалось, что его высокая степень кристалличности обеспечивает относительно легкий перенос ионов. Если ориентации сильно различаются, образуется более тонкий, но аморфный слой, который считается очень резистивным.

Рис. 2. (A) Изображение HAADF-STEM с атомным разрешением границы зерен в LLTO. (B) Атомная модель границы зерен LLTO с дефицитом лития, основанная на всестороннем исследовании STEM / EELS.Воспроизведено с разрешения (Ma et al., 2014).

В отличие от двух материалов, рассмотренных выше, LLZO демонстрирует сопротивление границ зерен, сравнимое с сопротивлением внутренней части зерна (Муруган и др., 2007). Однако происхождение этого доброкачественного поведения остается неизвестным. Несколько исследовательских групп пытались изучить границы зерен LLZO с помощью электронной микроскопии, но результаты противоречивы. Кумадзаки и др. (2011) наблюдали аморфный Li – Al – Si – O и нанокристаллический LiAlSiO 4 на границах зерен LLZO.Напротив, чистые границы зерен, свободные от каких-либо изменений второй фазы или состава, сообщили Wolfenstine et al. (2012). Для окончательного объяснения необходимы систематические исследования с более высоким пространственным разрешением.

Эти исследования демонстрируют, что границы зерен, несмотря на их сильно локализованный характер, можно эффективно исследовать с помощью (S) ПЭМ в сочетании с локальными аналитическими методами, такими как EELS и EDS. Однако текущие усилия в этой области очень ограничены.Прежде чем будет осуществлено систематическое понимание и рациональная оптимизация переноса лития на границах зерен, необходимы дальнейшие углубленные исследования.

Поведение границ раздела электролит-электрод

Стабильная и проводящая граница раздела электрод / электролит является предпосылкой для длительной эксплуатации аккумуляторов на основе твердого электролита (Zhu et al., 2015 и 2016; Richards et al., 2016). Тем не менее, из-за отсутствия механистического понимания, которое могло бы направить рациональное улучшение, все еще очень сложно сформировать такие интерфейсы.В качестве первого шага к этой цели необходимо прямое экспериментальное наблюдение за интерфейсами.

Хотя до настоящего времени не сообщалось об исследованиях электронной микроскопии с атомным разрешением, границы раздела между катодными материалами и несколькими твердыми электролитами были исследованы с помощью наноэлектронной дифракции (NED), STEM и EDS. Kim et al. (2011) исследовали межфазную стабильность между LLZO и LiCoO 2 (LCO). Тонкая пленка LCO была выращена на полированной поверхности керамики LLZO методом импульсного лазерного осаждения при 937 К.Наблюдения с помощью просвечивающей электронной микроскопии показали наличие межфазного реакционного слоя толщиной ~ 50 нм. Измерения профиля линии EDS и NED, полученные вблизи границы раздела, позволили предположить, что этот реакционный слой состоит из La 2 CoO 4 , который, как полагают, препятствует диффузии Li. Кроме того, граница раздела между LCO и прототипом сульфидного электролита Li 2 S – P 2 S 5 была исследована Сакудой и др. (2009). Интерфейс был просто сформирован механическим шлифованием.После зарядки образовался межфазный слой, связанный с взаимной диффузией Co, P и S, и этот слой вызвал большое сопротивление. Аналогичное поведение наблюдалось между LiMn 2 O 4 и Li 2 S – P 2 S 5 (Китаура и др., 2010). Наблюдали межфазный слой, возникающий в результате диффузии Mn в твердый электролит, и полагали, что он дает большое сопротивление. Эти исследования с помощью электронной микроскопии показывают, что реакционный слой часто может образовываться между твердым электролитом и катодом из-за взаимной диффузии.В отличие от границы раздела твердого электролита (SEI) в обычных LIB, реакционные слои на границе раздела твердый электролит / электрод обычно скорее вредны, чем полезны, поскольку они обычно препятствуют ионному переносу (Qian et al., 2015).

Помимо этих экспериментально наблюдаемых реакционных слоев, часто предполагалось сильно локализованное межфазное разложение на границах раздела твердый электролит и электрод, хотя они демонстрируют определенную степень стабильности в электрохимических измерениях (Zhu et al., 2015 и 2016; Richards et al., 2016). Однако большинство таких предположений основано на теоретических расчетах. Экспериментальная проверка является довольно сложной задачей из-за чрезвычайно малого масштаба предполагаемой толщины и высокой летучести / нестабильности металлического Li (Wenzel et al., 2015, 2016). (S) ТЕМ, который может исследовать локальные особенности с чрезвычайно высоким пространственным разрешением вплоть до уровня суб-ангстремов, предоставляет прекрасные возможности для исследования этих интригующих межфазных взаимодействий.

Итоги и перспективы

В этом мини-обзоре мы обсудили недавний прогресс в исследованиях (S) ТЕМ твердых электролитов для литиевых батарей. С успехом в решении проблем, вызванных повреждением электронным пучком, сообщается о все большем и большем количестве исследований, которые ранее не могли быть выполнены. Эти исследования прояснили несколько давних заблуждений относительно взаимосвязи структура-свойство, предоставили первые экспериментальные сведения о большом сопротивлении границ зерен и внесли вклад в понимание реакционного слоя на катоде / SEI.

Тем не менее, проблемы остаются. Для ионного транспорта внутри зерна сульфидные электролиты, которые часто демонстрируют более высокую проводимость, чем оксиды, требуют тщательного изучения на атомном уровне. Их уязвимость для электронного пучка из-за слабых связей Li с S в структуре и ограниченной электронной проводимости значительно ограничивает надежные измерения их атомной и электронной структуры в ПЭМ. Чтобы понять роль границ зерен в твердых электролитах, необходимо исследовать широкий спектр материалов, чтобы установить систематическое понимание.В частности, особого внимания заслуживают материалы с доброкачественными границами зерен, так как они могут вдохновлять на создание материалов с проводящими границами зерен. Для границы раздела твердый электролит / электрод одной из наиболее актуальных задач является проверка сильно локализованных межфазных реакционных слоев, которые недавно были предложены теоретическими работами. Кроме того, оставалось исследовать изменение этих границ раздела в зависимости от состава, условий обработки и цикличности. Следует подчеркнуть, что недавно разработанные методы ПЭМ in situ, , такие как in situ, нагрев и in situ, электрохимический цикл с желаемым пространственным разрешением, значительно облегчат эти исследования (Gu et al., 2013; Chi et al., 2015; Zeng et al., 2015). Их способность проводить структурный / химический анализ с высоким разрешением в режиме реального времени позволит получить уникальную информацию, которую невозможно получить другим способом. В связи с недавними замечательными разработками в области приборов для микроскопии, таких как быстрые камеры и детекторы, низковольтные ПЭМ и многофункциональные столики для образцов, эти проблемы должны быть преодолены в ближайшем будущем, и ожидается, что электронная микроскопия будет играть все более важную роль в исследование литий-ионных твердых электролитов.

Авторские взносы

Все перечисленные авторы внесли существенный, прямой и интеллектуальный вклад в работу и одобрили ее к публикации.

Заявление о конфликте интересов

Авторы заявляют, что исследование проводилось в отсутствие каких-либо коммерческих или финансовых отношений, которые могли бы быть истолкованы как потенциальный конфликт интересов.

Финансирование

Эта работа спонсировалась Министерством энергетики США (DOE), Управлением науки, Управлением фундаментальных энергетических наук, Отделом материаловедения и инженерии.Характеристика материалов была проведена в рамках предложения пользователя в Центре науки о нанофазных материалах, который является пользовательским центром Управления науки Министерства энергетики США.

Список литературы

Брюс П. Г., Фрейнбергер С. А., Хардвик Л. Дж. И Тараскон Ж.-М. (2012). Li-O 2 и Li-S батареи с высоким накопителем энергии. Nat. Mater. 11, 19–29. DOI: 10.1038 / nmat3191

CrossRef Полный текст | Google Scholar

Бушманн, Х., Dolle, J., Berendts, S., Kuhn, A., Bottke, P., Wilkening, M., et al. (2011). Структура и динамика быстрого литий-ионного проводника «Li 7 La 3 Zr 2 O 12 ». Phys. Chem. Chem. Phys. 13, 19378–19392. DOI: 10.1039 / c1cp22108f

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Chi, M. F., Mizoguchi, T., Martin, L. W., Bradley, J. P., Ikeno, H., Ramesh, R., et al. (2011). Атомная и электронная структура интерфейса SrVO 3 -LaAlO 3 . J. Appl. Phys. 110, 046104. doi: 10.1063 / 1.3601870

CrossRef Полный текст | Google Scholar

Чи, М. Ф., Ван, К., Лей, Ю. К., Ван, Г. Ф., Ли, Д. Г., Мор, К. Л. и др. (2015). Поверхностная огранка и поведение элементарной диффузии в атомном масштабе для наночастиц сплава во время отжига in situ и . Nat. Commun. 6, 8925. DOI: 10.1038 / ncomms9925

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Куссен, Э.Дж. (2010). Структура и ионная проводимость литиевых гранатов. J. Mater. Chem. 20, 5167–5173. DOI: 10.1039 / b925553b

CrossRef Полный текст | Google Scholar

Гао, X., Фишер, К.А.Дж., Кимура, Т., Икухара, Ю.Х., Кувабара, А., Мориваке, Х., и др. (2014). Структуры доменных границ в титанатах лития лантана. J. Mater. Chem. А 2, 843–852. DOI: 10.1039 / C3TA13726K

CrossRef Полный текст | Google Scholar

Гао, X., Фишер, К.А.Дж., Кимура, Т., Икухара, Ю.Х., Мориваке, Х., Кувабара, А. и др. (2013). Распределение атома лития и вакансии в позиции A в титанате лития лантана. Chem. Mater. 25, 1607–1614. DOI: 10,1021 / см3041357

CrossRef Полный текст | Google Scholar

Геллерт, М., Грис, К. И., Яда, К., Роскиано, Ф., Волц, К., и Ролинг, Б. (2012). Границы зерен в быстрой литий-ионной стеклокерамике литий-ионно-фосфатного типа: микроструктура и свойства нелинейного переноса ионов. J. Phys. Chem. С 116, 22675–22678. DOI: 10.1021 / JP305309R

CrossRef Полный текст | Google Scholar

Гу, М., Родитель, Л. Р., Мехди, Б. Л., Юноцич, Р. Р., МакДауэлл, М. Т., Саччи, Р. Л. и др. (2013). Демонстрация электрохимической жидкой ячейки для наблюдения с помощью просвечивающей электронной микроскопии литиирования / делитирования анодов батарей с Si-нанопроволокой. Nano Lett. 13, 6106–6112. DOI: 10.1021 / nl403402q

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Ким, К.Х., Ирияма, Ю., Ямамото, К., Кумазаки, С., Асака, Т., Танабе, К. и др. (2011). Характеристика границы раздела между LiCoO 2 и Li 7 La 3 Zr 2 O 12 в полностью твердотельной перезаряжаемой литиевой батарее. J. Источники энергии 196, 764–767. DOI: 10.1016 / j.jpowsour.2010.07.073

CrossRef Полный текст | Google Scholar

Китаура, Х., Хаяси, А., Таданага, К., и Тацумисаго, М. (2010). Полностью твердотельные литиевые вторичные батареи с использованием электрода LiMn 2 O 4 и твердого электролита Li 2 S-P 2 S 5 . J. Electrochem. Soc. 157, A407 – A411. DOI: 10.1149 / 1.3298441

CrossRef Полный текст | Google Scholar

Кумазаки, С., Ирияма, Ю., Ким, К.-Х., Муруган, Р., Танабе, К., Ямамото, К., и др. (2011). Высокая проводимость ионов лития Li 7 La 3 Zr 2 O 12 за счет включения как Al, так и Si. Электрохим. Commun. 13, 509–512. DOI: 10.1016 / j.elecom.2011.02.035

CrossRef Полный текст | Google Scholar

млн лет назад, C., Chen, K., Liang, C.D., Nan, C.W., Ishikawa, R., More, K., et al. (2014). Атомно-масштабное происхождение большого сопротивления границ зерен в перовскитных литий-ионных твердых электролитах. Energy Environ. Sci. 7, 1638–1642. DOI: 10.1039 / c4ee00382a

CrossRef Полный текст | Google Scholar

Ma, C., Cheng, Y., Chen, K., Li, J., Sumpter, B., Nan, C.-W., et al. (2016). Мезоскопический каркас обеспечивает легкий перенос ионов в твердых электролитах для литиевых батарей. Adv. Energy Mater. DOI: 10.1002 / aenm.201600053

CrossRef Полный текст | Google Scholar

Ма, К., Рангасами, Э., Лян, К. Д., Сакамото, Дж., Мор, К. Л., и Чи, М. Ф. (2015). Превосходная стабильность литий-ионного твердого электролита при обратимом обмене Li + / H + в водных растворах. Angew. Chem. Int. Эд. 54, 129–133. DOI: 10.1002 / anie.201410930

CrossRef Полный текст | Google Scholar

Мюллер, Д.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., et al. (2008). Химическое изображение состава и связи в атомном масштабе с помощью микроскопии с коррекцией аберраций. Наука 319, 1073–1076. DOI: 10.1126 / science.1148820

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Муруган, Р., Тангадурай, В., и Веппнер, В. (2007). Быстрая литий-ионная проводимость в гранатах типа Li 7 La 3 Zr 2 O 12 . Angew. Chem. Int. Эд. 46, 7778–7781. DOI: 10.1002 / anie.200701144

CrossRef Полный текст | Google Scholar

Пенникук, С. Дж. (1992). Z-контрастная просвечивающая электронная микроскопия - прямая атомная визуализация материалов. Ann. Rev. Mater. Sci. 22, 171–195. DOI: 10.1146 / annurev.ms.22.080192.001131

CrossRef Полный текст | Google Scholar

Цянь, Д., Ма, К., Мор, К. Л., Мэн, Ю. С. и Чи, М. (2015). Расширенная аналитическая электронная микроскопия для литий-ионных аккумуляторов. NPG Asia Mater. 7, е193. DOI: 10.1038 / am.2015.50

CrossRef Полный текст | Google Scholar

Quartarone, E., and Mustarelli, P. (2011). Электролиты для твердотельных литиевых аккумуляторных батарей: последние достижения и перспективы. Chem. Soc. Ред. 40, 2525–2540. DOI: 10.1039 / c0cs00081g

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Ричардс, У. Д., Миара, Л. Дж., Ван, Ю., Ким, Дж. К., и Седер, Г.(2016). Стабильность интерфейса в твердотельных аккумуляторах. Chem. Mater. 28, 266–273. DOI: 10.1021 / acs.chemmater.5b04082

CrossRef Полный текст | Google Scholar

Сакуда А., Хаяси А. и Тацумисаго М. (2009). Наблюдение на границе раздела между электродом LiCoO 2 и твердыми электролитами Li 2 S-P 2 S 5 полностью твердотельных литиевых вторичных батарей с использованием просвечивающей электронной микроскопии. Chem. Mater. 22, 949–956. DOI: 10,1021 / см

9c

CrossRef Полный текст | Google Scholar

Stramare, S., Thangadurai, V., and Weppner, W. (2003). Титанаты лития-лантана: обзор. Chem. Mater. 15, 3974–3990. DOI: 10,1021 / см0300516

CrossRef Полный текст | Google Scholar

Такада, К. (2013). Развитие и перспективы твердотельных литиевых батарей. Acta Mater. 61, 759–770. DOI: 10.1016 / j.actamat.2012.10.034

CrossRef Полный текст | Google Scholar

Wang, Y., Richards, W. D., Ong, S. P., Miara, L.J., Kim, J. C., Mo, Y., et al. (2015). Принципы проектирования твердотельных литиевых суперионных проводников. Nat. Mater. 14, 1026–1031. DOI: 10.1038 / nmat4369

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Венцель, С., Лейхтвайс, Т., Крюгер, Д., Санн, Дж., И Янек, Дж. (2015). Межфазное образование на литиевых твердых электролитах - подход in situ к изучению межфазных реакций с помощью фотоэлектронной спектроскопии. Ионика твердого тела 278, 98–105. DOI: 10.1016 / j.ssi.2015.06.001

CrossRef Полный текст | Google Scholar

Венцель, С., Вебер, Д. А., Лайхтвейс, Т., Буше, М. Р., Санн, Дж., И Янек, Дж. (2016). Межфазное образование и деградация кинетики переноса заряда между анодом из металлического лития и высококристаллическим твердым электролитом Li 7 P 3 S 11 . Ионика твердого тела 286, 24–33. DOI: 10.1016 / j.ssi.2015.11.034

CrossRef Полный текст | Google Scholar

Вольфенстин, Дж., Сакамото, Дж., И Аллен, Дж. Л. (2012). Электронно-микроскопические исследования горячепрессованного замещенного алюминия Li 7 La 3 Zr 2 O 12 . J. Sci. Mater. 47, 4428–4431. DOI: 10.1007 / s10853-012-6300-y

CrossRef Полный текст | Google Scholar

Ву, Ю., Ма, К., Ян, Дж. Х., Ли, З. К., Аллард, Л. Ф., Лян, К. Д., и другие. (2015). Исследование инициирования спада напряжения в слоистых катодных материалах с высоким содержанием лития на атомном уровне. J. Mater. Chem. А 3, 5385–5391. DOI: 10.1039 / C4TA06856D

CrossRef Полный текст | Google Scholar

Ябуучи, Н., Йошии, К., Мён, С. Т., Накаи, И., и Комаба, С. (2011). Детальные исследования материала электродов большой емкости для аккумуляторных батарей: Li 2 MnO 3 -LiCo 1 / 3Ni 1 / 3Mn 1 / 3O 2 . J. Am. Chem. Soc. 133, 4404–4419. DOI: 10.1021 / ja108588y

CrossRef Полный текст | Google Scholar

Zeng, Z. Y., Zhang, X. W., Bustillo, K., Niu, K. Y., Gammer, C., Xu, J., et al. (2015). In situ Исследование литирования и делитирования нанолистов MoS 2 с помощью просвечивающей электронной микроскопии электрохимических жидких ячеек. Nano Lett. 15, 5214–5220. DOI: 10.1021 / acs.nanolett.5b02483

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Чжу, Ю., Он, X., и Мо, Y. (2015). Источник выдающейся стабильности литиевых материалов с твердым электролитом: выводы термодинамического анализа, основанные на расчетах из первых принципов. ACS Appl. Mater. Интерфейсы 7, 23685–23693. DOI: 10.1021 / acsami.5b07517

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Чжу Ю., Хэ Х. и Мо Ю. (2016). Изучение первых принципов электрохимической и химической стабильности границ раздела твердый электролит-электрод в полностью твердотельных литий-ионных батареях. J. Mater. Chem. А . 4, 3253–3266. DOI: 10.1039 / C5TA08574H

CrossRef Полный текст | Google Scholar

.

Смотрите также