RU (495) 989 48 46
Пленка на бампер

АНТИГРАВИЙНАЯ ЗАЩИТА БАМПЕРА

 

Простое автоматическое десульфатирующее зу для авто акб с защитой от кз


Зарядное устройство аккумулятора автомобиля от сульфатации пластин

На автомобильный аккумулятор во время запуска двигателя и поездки действуют меняющиеся токовые нагрузки, которые со временем его разрушают.

Предотвратить сульфатацию пластин может зарядное устройство, выдающее пульсирующие асинхронные токи для восстановления емкости.

В статье рассматриваются две простые электрические схемы зарядного устройства с трансформатором, которые несложно собрать своими руками. Они позволяют продлить ресурс АКБ, сэкономить денежные средства.


Содержание статьи

Что такое сульфатация

Внутри свинцового кислотного аккумулятора постоянно протекают химические реакции, сопровождаемые выделением кристаллов серного свинца PbSO4. Они оседают на пластинах, не растворяются в электролите, мешают его проникновению к электродам.

Эти примеси ограничивают рабочую площадь пластин. АКБ начинает терять емкость, разряжается. По этой причине аккумулятор может быстро снизить работоспособность, даже прийти в негодное состояние.

Для предотвращения сульфатации пластин существует много различных технических решений, включая применение органических активаторов типа Eco Tec Power. В статье же рассматривается метод создания пульсирующих электромеханических нагрузок при заряде в среде электролита.

Они как бы «встряхивают» жидкость, не дают кристаллам серного свинца задерживаться на пластине. Промышленность выпускает различные приборы, осуществляющие функцию десульфатации при заряде.

Можно купить зарядное устройство подобного типа, но мы рассматриваем две схемы прибора, которые легко собрать своими руками.


Самое простое зарядное устройство

Электрическая схема

Для сборки прибора потребуются:

Имеет смысл на входе трансформатора поставить защиту от коротких замыканий внутри пластин и перегрузок: предохранитель на 1 ампер.

В целях безопасности следует периодически осуществлять визуальный контроль за работой этой схемы при заряде аккумулятора.

Форма сигнала

Если обычное автомобильное зарядное устройство выдает постоянный ток, то рассматриваемая схема за счет трансформатора обеспечивает его пульсации, уменьшающие процесс сульфатации пластин.

Это вполне рабочий способ, но намного эффективнее работает второй метод.


Схема с асинхронной гармоникой тока

Принцип формирования сигнала

Убирать кристаллы серного свинца с пластин позволяет меняющийся по величине и направлению электрический ток. Форма его гармоники имеет несимметричный, но повторяющийся характер.

Зарядный ток каждой полуволны должен обеспечивать нормальное протекание набора емкости аккумулятором, а разрядный — стряхивать образующиеся примеси PbSO4 с пластин и, одновременно, не препятствовать заряду. Их оптимальное соотношение по амплитуде составляет 10:1.

Схема зарядного устройства с асимметричным током

Самодельное зарядное устройство не требует при изготовлении дефицитных, дорогих деталей. Для его сборки потребуются:

Конструкция трансформатора напряжения

Можно использовать любую заводскую модель или собрать его своими руками по технологии, описанной в статье об импульсном паяльнике Момент. Главное условие — трансформатор должен преобразовывать напряжение сети 220 в 25 вольт, иметь мощность от 250 ватт.

Эти нагрузки выбираются для возможности проведения ускоренного заряда токами в 10 ампер. Если отсутствует необходимость использования такого режима, то допустимо создавать зарядное устройство на 5А и обойтись трансформатором напряжения на 130 ватт.

Защитные устройства схемы
Предохранитель стороны 220

Выполняет задачи защиты от коротких замыканий в схеме и токов перегрузок трансформатора. Достаточно использовать плавкую вставку на 1 ампер или чуть больше.

Предохранитель выходной цепи

Защищает зарядное устройство от возникновения аварий внутренних цепей между пластин аккумулятора. Плавкая вставка подбирается с учетом выбранного рабочего режима на 5 или 10 ампер.

Реле К1

Задача: при поданном напряжении на схему обмотки электромагнит, срабатывая контакты, удерживает их в притянутом положении. Через их цепь протекает зарядный ток.

Если напряжение питания 220 пропадает, то электромагнит реле обесточивается, автоматически разрывает цепочку подключения аккумулятора. Предотвращается его саморазряд через резистор R4.

Допустимо выбрать любую модель реле под напряжение срабатывания вторичной цепи трансформатора. Можно использовать и меньший номинал, но для этого придется настроить его срабатывание за счет включения в схему питания обмотки дополнительного резистора, ограничивающего входной сигнал до безопасной величины.

Контакты реле должны коммутировать ток заряда до 10 ампер. Для этого разрешается из них собрать параллельно срабатывающую цепочку, как показано на схеме (К1-1 и К1-2).

Хорошо подходит реле напряжения серии РПУ-0.

Узел выпрямления тока

На схеме в качестве примера показаны диоды КД231А. Их можно заменить любыми подходящими по току. Например, Д242.

Измерительный прибор

Амперметр постоянного тока включается в схему с учетом полярности и возможности контроля величины заряда. Удобно использовать головку М42100.

При необходимости можно установить шунты с переключателем, предварительно откалибровав их на самодельной схеме.

Выставление режима заряда аккумулятора выполняют резистором R2. Необходимо учитывать, что:

Поэтому импульсам зарядного тока в 5 ампер будет соответствовать показание амперметра порядка 1,8 А. Желательно при первичной наладке настраивать прибор замерами на всех ответвлениях.

Цепи формирования тока заряда/разряда

Нижнюю полуволну синусоиды на аккумулятор пропускает транзисторный ключ VT1. В экспериментальной схеме надежно отработал прибор КТ827А.

Выходной транзистор при заряде греется. Ему необходимо охлаждение. Тепло хорошо рассеивает металлический радиатор с площадью поверхности от 200 см кв. Под него можно использовать металлический корпус прибора.

Настройку напряжения на базе транзистора осуществляет подстроечный резистор R2 с номиналом 3,3÷15 кОм.

Стабилитрон VD3 можно использовать любой модификации. Он должен стабилизировать напряжение на входе транзистора в пределах 7,5÷12 вольт.

Номиналы и мощности остальных резисторов обозначены на схеме прибора. Их следует выдерживать.

Такое зарядное устройство с трансформатором собирается навесным монтажом в отдельном корпусе. Оно хорошо себя зарекомендовало в работе.

Другой метод исправления пластин аккумулятора объясняет владелец видеоролика Avto-Blogger.ru «Десульфатация, восстановление емкости своими руками».

Если у вас остались вопросы по этой теме, то можете задать их в комментариях.

Полезные товары

housediz.ru

Автоматическое отключение аккумулятора или приставка к ЗУ

Схема представляет из себя систему автоматического отключения аккумулятора при полном заряде, то есть это не совсем зарядное устройство, конечно если дополнить её трансформатором и выпрямителем, то получим полноценное ЗУ.

Начальная схема подвергалась некоторым изменением плата дорабатывалась в ходе испытаний конечную версию платы можно скачать в конце статьи.

Рассмотрим схему.

Как видим она до боли простая и содержит всего один транзистор, электромагнитное реле и мелочевку. У меня на плате также имеется диодный мост по входу и примитивная защита от переполюсовки (на схеме эти узлы не нарисованы).

На вход схемы подается постоянное напряжение зарядного устройства или любого другого источника питания, тут важно заметить, что ток заряда не должен превышать допустимый ток через контакты реле и ток срабатывания предохранителя. В моем случае схема на 8 ампер.

Как это работает — при подаче питания на вход схемы заряжается аккумулятор, в схеме есть делитель напряжения (R2, R3, R4) с помощью которого отслеживается напряжение непосредственно на аккумуляторе.

По мере заряда напряжение на аккумуляторе будет расти, как только оно становится равным напряжению срабатывания схемы, которое можно выставить путем вращения подстроечного резистора, сработает стабилитрон, подавая сигнал на базу маломощного транзистора и тот сработает.

Так как в коллекторную цепь транзистора подключена катушка электромагнитного реле, последняя также сработает и указанные контакты разомкнутся, а дальнейшая подача питания на аккумулятор прекратится.

Заодно и сработает второй светодиод, уведомив о том, что зарядка окончена.

В схеме есть еще один светодиод, он светится постоянно, это по сути индикатор наличии напряжения на плате.

Как сказал ранее, делитель отслеживает напряжение непосредственно на аккумуляторе, следовательно, если аккумулятор будучи подключенным к зарядному устройству разрядиться до некоторого значения, схема автоматически сработает и процесс заряда возобновится.

Так как делитель подключен непосредственно к аккумулятору он будет его разряжать, но ток разряда такой мизерной, что его можно не принимать во внимание.

Для настройки схемы на ее выход подключается конденсатор большой емкости, он у нас в роли быстрого заряжаемого аккумулятора. Я взял последовательно соединенные ионисторы и подсоединил вместо конденсатора.

Если брать конденсатор, то его напряжение должно быть 25-35 вольт, сперва подключаем ионисторы (в моём случаи) или конденсатор к выходу схемы соблюдая полярность,

по окончанию заряда сперва отключаем зарядное устройство от сети, затем аккумулятор иначе реле будет ложно срабатывать. При этом ничего страшного не случится, но звук неприятной.

Далее берем любой регулируемый источник питания, например лабораторный блок и выставим на нём то напряжение, до которого будет заряжаться наш аккумулятор и подключаем блок ко входу схемы.

Медленно вращаем подстроечный резистор до тех пор,

пока не сработает красный индикатор, после чего делаем один полный оборот подстроечника в обратном направлении, так как схема имеет некоторый гистерезис.

А теперь проверяем работу

Напряжение на ионисторах или конденсаторе, будет показывать мультиметр при достижении на них порогового значения система отключит питание.

Если напряжение снизится на АКБ, схема опять сработает и будет снова заряжать аккумулятор до заданного значения.

Плату можно скачать здесь…

Автор; АКА Касьян

xn--100--j4dau4ec0ao.xn--p1ai

Схема для восстановления автомобильного аккумулятора

Всем привет, вы давно просите написать статью про устройство для восстановления автомобильных, свинцово-кислотных аккумуляторов. Наверное любой автолюбитель сталкивался с явлением, когда аккумулятор полежав некоторое время без дела, перестает отдавать номинальную ёмкость.

Крутит стартёр полсекунды затем задыхается, но напряжение на нём нормальное — 12 вольт, в этом случае в народе часто говорят «аккумулятор не держит ток», с этим может столкнулся каждый.

Но почему это происходит?

Автомобильный аккумулятор состоит из свинцовых пластин находящихся в растворе электролита, в данном случае электролитом является серная кислота. Процесс заряда и разряда аккумулятора не что иное, как окислительно-восстановительный процесс. Протекает химическая реакция в ходе которой, свинцовая пластина вступает в реакцию с оксидами на соседней пластине.

В ходе данной реакции образуются сульфаты, которыми со временем обрастают пластины, сульфаты препятствуют протеканию тока, так как являются плохим проводником и со временем аккумулятор теряет ёмкость и не способен отдавать большой ток для работы стартёра.

Если ваш аккумулятор заряжается и разряжается быстрее чем раньше, не имея при этом механических повреждений, скорее всего сульфатация убила его, но отчаиваться не стоит, читаем статью до конца…

Предлагаемое устройство, отныне — «десульфатор» создаёт короткие импульсы высокой амплитуды и чистоты, импульс длится определённое время, затем простой, затем снова импульс.

Такие ударные процессы могут разрушить сульфатную плёнку и в теории это возможно, на практике не все аккумуляторы удаётся восстановить, из-за конструктивных особенностей последних. Но судя по статистике, около 80-85 % старых аккумуляторов подлежат восстановлению. Естественно если причиной неработоспособности является сульфатация, а не обрыв свинцовых пластин или иное механическое повреждение.

Вот такое получится устройство…

Как пользоваться устройством?  Данный вариант является зарядно-десульфатирующим устройством, обычный десульфатор питается от аккумулятора, который он десульфатирует и постепенно разряжает его, в этом же случае устройство заряжает аккумулятор короткими всплесками высокого напряжения высокой частоты.

Схему можно использовать и для зарядки низковольтных, свинцовых аккумуляторов с номинальным напряжением в 4-6 вольт, такие ставят в китайские фонарики, в детские электрокары и так далее…

Схема изначально создана для зарядки аккумуляторов малой ёмкости, но её успешно используют и для десульфатации автомобильных аккумуляторов.

Перед тем, как начать процесс заряда с десульфатацией, нужно слегка подзарядить автомобильный аккумулятор. Для начала нужно найти любой источник питания или зарядное устройство с напряжением от 8 до 12 вольт и подключить его на вход десульфатора. Но не напрямую, а через лампу накаливания 12 вольт с мощностью в 21 ватт, чтобы не превысить ток заряда.

К выходу прибора подключается аккумулятор, который нужно восстановить, ну и в принципе всё.

Так, как прибор работает в звуковом диапазоне, вы скорее всего услышите слабый свист, силовые компоненты схемы слегка должны нагреваться.

Осциллографом можно убедиться, что аккумулятор заряжается импульсами тока высокой частоты.

Схема устройства довольно простая…

Простыми словами поясню как работает схема.

Напряжение зарядного устройства через предохранитель и диод поступает на схему десульфатора, для маломощной части схемы, питание подаётся через токоограничивающий резистор R1, затем сглаживается небольшим электролитическим конденсатором.

На микросхеме NE555 собран генератор прямоугольных импульсов, частота этих импульсов около 1 килогерц, коэффициент заполнения 90%, то есть сигнал высокого уровня длится большУю часть времени, именно этот импульс нам нужен для того, чтобы открыть полевой транзистор. Но проблема заключается в том, что при подаче такого импульса на полевой транзистор он большую часть времени будет находиться в открытом состоянии и лишь 10% в закрытом, это приведёт к тому, что транзистор будет прокачивать слишком большой ток и как следствие мы получим сильный нагрев всех силовых элементов и большое потребление тока всей схемы в целом.

Это неэффективно и может навредить аккумулятору. Один из вариантов — это снижение длительности сигнала высокого уровня, тогда транзистор будет открыт на короткое время и всё станет на свои места. Но к сожалению в таком включении конструктивные особенности таймера NE555 не позволяют сделать этого, так как же быть?

Микросхема CD4049 представляет из себя логику, которая содержит в своём составе 6 логических инверторов «не», каждый инвертор имеет один вход и один выход, их задача «отрицание». Если на вход поступает высокий уровень, на выходе получаем обратное, иначе говоря инвертированный или перевёрнутый сигнал.

Полевой транзистор 10 % времени у нас открыт, 90% закрыт, открываясь он замыкает дроссель на массу питания, в дросселе накапливается некоторая назовём это энергией, а когда транзистор закрыт цепь разрывается и за счёт явления самоиндукции, которая свойственна индуктивным нагрузкам, дроссель отдаёт накопленную энергию.

Это кратковременный всплеск напряжения с высокой амплитудой, притом напряжение самоиндукции в разы выше напряжения питания, этот всплеск напряжения выпрямляется и подается на аккумулятор.

Процесс происходит больше тысячи раз в секунду, то есть на аккумулятор подаются кратковременные импульсы высокого напряжения с высокой частотой, именно это и разрушает сульфатную плёнку.

Я подключил на вход схемы накопительный конденсатор и стало ясно, что амплитудное значение выходного напряжения при питания от источника 12 вольт доходит до 70-75 вольт и зависит исключительно от индуктивности накопительного дросселя.

В схеме задействован предохранитель и ещё один выпрямительный диод.

Предохранитель защищает десульфатор при случайных коротких замыканиях на выходе, а диод выполняет несколько функций: во-первых защищает схему, если вы случайно её подключите к зарядному устройству неправильно… и во-вторых защищает зарядное устройство от всевозможных импульсных помех и всплесков напряжения, которые образуются на плате десульфатора.

Я думаю все поняли как это работает.

О компонентах…

Ну с таймером и логикой думаю всё понятно, в моём случае они установлены на панельке для безпаечного монтажа, но вам советую после проверки схемы запаять их напрямую.

Полевой транзистор IRF3205 или любые другие n-канальные с напряжением от 60 до 200 вольт и с током от 30 ампер.

Транзистор советую установить на небольшой радиатор.

Дроссель имеет индуктивность около 200 микрогенри, намотан на кольце из порошкового железа, такие кольца можно найти в компьютерных БП, размеры кольца внешний диаметр-20.5мм, внутренний 12мм и ширина кольца 6.6мм.

Обмотка намотана проводом 1мм, количество витков 60, в моём случае прОвода чуть-чуть не хватило и индуктивность получилась слегка меньше, но работает устройство хорошо. Размеры кольца особо не критичны, главное соблюдать индуктивность и мотать обмотку проводом 1 -1.2 миллиметра.

Конденсатор С1 на 100- 220 микрофарад, очень желательно взять с низким внутренним сопротивлением, так как схема генератора фактически питается от данного конденсатора, а значит он постоянно будет накапливать и отдавать энергию, даже слегка греется во время работы.

Оба диода нужно взять с током в 5-10 ампер, можно обычные, но желательно взять импульсные диоды.

Вот печатная плата, скачать её можно в конце статье. 

На самом зарядном, нужно выставить ток не более 2 ампер, иначе сгорит предохранитель на плате десульфатора. Кто-то скажет 2 ампера зарядного тока это мало?

-Да согласен, но не забываем, что у нас в большей степени не зарядка, а десульфатация.

В холостую прибор потребляет от источника питания ток всего в 100 миллиампер, его можно подключить к любому зарядному устройству с напряжением 12-15 вольт, ограничить ток на уровне 2 ампер и всё.

Ограничение можно сделать мощным резистором или лампочкой накаливания соответствующей мощности, подключённой в разрыв плюса питания.

Введите электронную почту и получайте письма с новыми поделками.

Можно использовать и более низковольтные блоки питания с напряжением 8-10 вольт, так как наша схема всё равно повышает начальное питание до нескольких десятков вольт.

Сколько должен длиться процесс десульфатации?

Автор данной схемы говорит, что в течение двух недель регулярной зарядки полностью можно восстановить старый аккумулятор и конечно же без проверки я бы не стал писать эту статью.

В наличии у меня несколько 6 вольтовых аккумуляторов на 10 ампер\часов, которые не были в эксплуатации несколько лет, в течение пяти дней я регулярно заряжал один из этих аккумуляторов десульфатором, затем разряжал.

В самом начале подопытный аккумулятор отдавал ёмкость всего 700-800 миллиампер\часов, не помогла и заливка дистилированной воды, но десульфатор помог..

Спустя 5 дней аккумулятор отдаёт аж 4 ампера из 10, это я думаю очень хороший показатель.

Архив к статье; плата в формате .lay скачать.

Автор; АКА КАСЬЯН

xn--100--j4dau4ec0ao.xn--p1ai

Зарядное устройство с защитой от короткого замыкания в нагрузке

Зарядное устройство для автомобильных аккумуляторных батарей

Предлагаемое вниманию читателей зарядное устройство не имеет каких-либо специфических особенностей и построено по давно зарекомендовавшей себя схеме. Ввиду того, что большинство автолюбителей любит "высекать искру" из зарядного устройства, а это ведет к выходу из строя некоторых его элементов, и было предложено установить защиту от короткого замыкания.

Принцип работы зарядного устройства

При включении аппарата тумблером SA1 на фазоимпульсный генератор VT1, VT2 подается напряжение, ограниченное стабилитроном VD5. С выхода генератора импульсы управления поступают на управляющий электрод тиристора VS2. Переменный резистор R6 служит для плавной установки уровня зарядного тока. Если произошло короткое замыкание или неправильно подключены полюса аккумулятора, происходит увеличение напряжения на резисторе R12. Затем открывается стабилитрон VD8 и тиристор VS1. Тиристор шунтирует конденсатор С1, определяющий частоту импульсов генератора. Прекращается подача импульсов управления на тиристор VS2. Зарядный ток прекращается. Для контроля зарядного тока используется микроамперметр Р1 в режиме вольтметра. Он измеряет падение напряжения на резисторе R12, который служит в качестве датчика тока для схемы защиты от КЗ. Падение напряжения на этом резисторе прямопропорционально значению протекающего через него тока. Микроамперметр в этой схеме измерения тока надежно защищен резистором R13 и даже при зашкаливании не выйдет из строя.

Схему управления с защитой монтируют на плате любым видом монтажа (кто что предпочитает). При правильном монтаже и исправных деталях устройство работоспособно сразу после включения.

Принципиальная схема зарядного устройства


Конструкция
Зарядное устройство собирается в любом удобном по размеру корпусе. Корпус должен иметь достаточное количество вентиляционных отверстий для охлаждения устройства во время длительной работы. На лицевой панели размещаются прибор Р1, резистор R6, тумблер SA1, предохранители FU1 и FU2, сигнальная лампа HL1. Выходные гнезда-зажимы (клеммы) устанавливаются по желанию конструктора. На концы проводов припаивают зажимы типа "крокодил" соответствующих размеров для подключения к полюсам аккумулятора. Зажимы должны быть разного цвета во избежание возможных ошибок при подключении. На лицевую панель возле каждого элемента наносится соответствующая надпись.

Используемые детали особого дефицита не представляют. В качестве силового трансформатора используется ТС-180 от старого черно-белого телевизора. Трансформатор аккуратно разбирают и сматывают все вторичные обмотки. Затем наматывают на каждую половину проводом диаметром 1,4...1,5 мм в любой изоляции по 34 витка. Трансформатор собирают. Обмотки включают последовательно и проверяют вольтметром переменного тока. Напряжение должно быть в пределах 20...22 В.

Детали
Конденсаторы: С1 - МБМ, К73П-3, К73-17; С2, СЗ - К50-12, К50-35 и др.
Резисторы (кроме R12) типа МЛТ-0,25. R1 - МЛТ-2,0, R2 - МЛТ-1,0, R6 - СП1, СП2, СП2-1 и др. Резистор R12 представляет собой отрезок нихромового провода диаметром 0,8...1,5 мм.

Сигнальная лампа HL1 -МН6,ЗхО,26. Прибор Р1 - микроамперметр на ток не более 300 мА.

Диоды моста VD1 ...VD4 - Д242, Д243, КД213 и др. диоды закрепляются на радиаторах из алюминия или дюралевого сплава. Площадь одной стороны не менее 49 см2 (размер 7x7 см) для одного диода при токе 10 А. Диоды VD6, VD7 - Д220, Д223 и другие кремниевые с 11обр не менее 50 В. Стабилитроны VD5 - типов Д814Б, В, Г, Д (не критично), VD8 - КС133, 139, 147, 151,156 (не критично).Тиристор VS1 - типа КУ201 с любой буквой. Тиристор VS2 типа КУ202 от буквы Б и дальше, Т25 и др. Тиристор установлен на радиаторе площадью одной стороны 100 см2 (размер 10x10 см). Транзисторы VT1 - КТ361, КТ209 и т.п., VT2 - КТ315, КТ201 и т.п.

Резистор R13 в цепях микроамперметра подбирают в зависимости от типа использованной головки. Вместо него временно впаивают переменный резистор сопротивлением 33 кОм и устанавливают стрелку прибора на конечную отметку шкалы при токе 10 А. Затем измеряют (предварительно отпаяв один провод)сопротивление и вместо него впаивают постоянный резистор. В случае применения прибора магнитоэлектрической системы шкала будет линейной.

В. И. Журавлев, г. Ефремов

Литература
Газизов М. Автоматическое устройство для зарядки и восстановления аккумуляторных батарей. - Радиолюбитель, 1994.