RU (495) 989 48 46
Пленка на бампер

АНТИГРАВИЙНАЯ ЗАЩИТА БАМПЕРА

 

Принцип работы датчика давления


Преобразователь давления. Общая информация

Преобразователь давления — измерительный прибор, предназначенный для непрерывного измерения давления различных сред и последующего преобразования измеренного значения в унифицированный выходной сигнал по току или напряжению. Преобразователи давления часто называют датчиками давления. Давление определяется как единица силы создаваемая на единицу площади поверхности. В системе СИ единицей измерения давления является Паскаль (Па). Один Паскаль равен силе в один Ньютон, приложенной на площадь в один квадратный метр (Па = Н / м²).

В зависимости от вида измеряемого давления, преобразователи давления делятся на несколько видов.

Преобразователи избыточного давления

Рисунок 1 — Датчик давления общепромышленный PTE5000

Данные преобразователи измеряют давление, создаваемое какой-либо средой относительно атмосферного давления. Этот тип преобразователей давления является самым распространенным и применяется практически во всех отраслях промышленности: ЖКХ, энергетика, водоподготовка, водоочистка, системы отопления, кондиционирования и вентиляции, пищевая промышленность, химия и др.

Для измерения избыточного давления воды, пара, нейтральных жидкостей и газов ООО «КИП-Сервис» предлагает датчик давления общепромышленного назначения PTE5000. Данные датчики широко применяются российскими предприятиями для измерения давления воды в системах котельной автоматики, системах водоснабжения и водоотведения, ЖКХ и других системах, где на первом плане стоит невысокая стоимость оборудования.

Преобразователи абсолютного давления

Рисунок 2 — Датчик давления общепромышленный CER-1

Данные преобразователи измеряют давление, создаваемое какой—либо средой относительно абсолютного разряжения (вакуума). Эти датчики давления не так широко распространены, и используются в основном в химической промышленности. В ассортименте датчиков ООО «КИП-Сервис» преобразователи абсолютного давления представлены серией преобразователей давления CER-8000 и CER-2000 голландской фирмы KLAY-INSTRUMENTS BV, выполненные в корпусе из нержавеющей стали, что актуально именно для химической промышленности. Следует отметить, что данные серии датчиков давления, в зависимости от модификации, могут применяться для измерения и других видов давления.

Преобразователи вакууметрического давления (разряжения)

Рисунок 3 — Преобразователь абсолютного давления. Датчики Klay.

Эти датчики измеряют уровень разряжения (вакуума) относительно атмосферного давления. На сегодняшний день вакуумные процессы находят широкое применение в таких отраслях, как пищевая промышленность (вакуумная упаковка, вакуумный транспорт), металлургическая промышленность и производство РТИ (литье под вакуумом), автомобилестроение и др.

Преобразователи гидростатического давления (гидростатические уровнемеры)

Данные преобразователи представляют собой разновидность датчиков избыточного давления, в том случае, когда последние применяются для измерения гидростатического уровня жидкостей. Преобразователь фактически измеряет давление столба жидкости над ним. Для применения в водоканалах и системах водоочистки в номенклатуре ООО «КИП-Сервис» представлены погружные гидростатические датчики уровня Hydrobar производства фирмы KLAY-INSTRUMENTS BV.

Как было сказано выше, единицей измерения давления в системе СИ является «Паскаль» (Па). На практике в промышленности широко применяются и другие единицы измерения, кроме «Па» наиболее распространенными являются «bar» (бар), «м.в.с.» (метр водяного столба) и «кгс/см²» (килограмм-сила на сантиметр квадратный), а также производные этих единиц: «мбар» (миллибар), «кПа» (килопаскаль), «МПа» (мегапаскаль).

Таблица перевода популярных единиц измерения давления
Единицы Па кПа МПа кгс/см² мм рт.ст. мм вод.ст. бар
1 Па 1 10–3 10–6 10,197 16 
х 10–6
0,007 500 62 0,101 971 6 0,000 01
1 кПа 1 000 1 10–3 0,010 197 16 7,500 62 101,971 6 0,01
1 МПа 1 000 000 1 000 1 10,197 16 7 500,62 101 971,6 10
1 кгс/м2 9,806 65 9,806 65 
х 10–3
9,806 65 
х 10–6
0,000 1 0,073 555 9 1 98,066 5 
х 10–6
1 кгс/см2 98 066,5 98,066 5 0,098 066 5 1 735,559 10 000 0,980 665
1 мм рт.ст. (при 0 °C) 133,322 4 0,133 322 4 0,000 133 322 4 0,001 359 51 1 13,595 1 0,001 332 24
1 мм вод.ст. (при 0 °C) 9,806 65 9,807 750 
х 10–3
9,806 65 
х 10–6
0,000 1 0,073 555 9 1 98,066 5 
х 10–6
1 бар 100 000 100 0,1 1,019 716 750,062 10 197,16 1

Конструкция преобразователей давления

Рисунок 4 — Схема конструкции преобразователей давления

На рисунке снизу приведена общая схема конструкции преобразователей давления. В зависимости от типа датчика, производителя прибора и особенностей применения, конструкция может меняться. Данная схема предназначена для ознакомления с основными элементами типового измерительного преобразователя давления.

  1. Кабельный ввод: Эта часть преобразователя давления используется для герметичного ввода электрического кабеля в датчик. Как правило, используется сальниковый ввод типа PG9, но встречаются и другие варианты подсоединения (например PG16, M20x1,5).
  2. Клеммы: Клеммы необходимы для физического подключения электрических проводов к датчику. На сегодняшний день подавляющее большинство преобразователей давления используют 2-проводную схему подключения с выходным сигналом 4…20 мА.
  3. Плата питания / искорзащиты: Данная плата осуществляет распределение электрической энергии между электронными компонентами датчика. У преобразователей во взрывобезопасном исполнении на данной плате реализуется функция искрозащиты. У недорогих датчиков давления (например, PTE5000), как правило, плата питания и преобразовательная плата совмещены.
  4. Корпус электроники: Часть датчика давления, в которой расположены плата питания и преобразовательная плата. У преобразователей низкой ценовой категории (WIKA, BD Sensors) корпус электроники и корпус собственно датчика представляют одно целое. Наличие отдельного корпуса для электроники характерно только для высококачественных преобразователей давления (например KLAY-INSTRUMETNS, EMERSON, VALCOM, YOKOGAWA).
  5. Преобразовательная плата: Это одна из самых важных частей преобразователей давления. Данная плата осуществляет преобразование сигнала от первичного сенсора в унифицированный электрический сигнал по току или по напряжению.
  6. Корпус датчика: Основная механическая часть, представляющая собой собственно тело преобразователя.
  7. Провода и атмосферная трубка: Провода, как правило, представляют собой кабельный шлейф, соединяющий выводы сенсора и преобразовательную плату. Атмосферная трубка используется в датчиках избыточного и вакууметрического давления для осуществления связи чувствительного элемента (сенсора давления) с атмосферным давлением.
  8. Технологическое соединение: Эта часть преобразователей давления используется для физического подключения датчика к процессу (к трубопроводу, емкости, аппарату). Наиболее распространенным соединением является резьбовое манометрическое подсоединение G1/2" по стандарту DIN 16288 и резьба М20х1,5. Также широко встречаются соединения G1/4", G1", фланцевые соединения. В пищевой промышленности распространены специальные санитарные соединения, например молочная гайка DIN 11851, DRD-фланец, хомуты Tri-clamp. В ассортименте ООО «КИП-Сервис» есть специальные преобразователи давления для применения в пищевой (молочной, пивоваренной) промышленности. Это приборы производства KLAY-INSTRUMENTS BV — датчики давления серии 8000-SAN и интеллектуальные датчики давления серии 2000-SAN, которые полностью удовлетворяют всем требованиям пищевой промышленности по гигиене, точности измерений и температурным режимам. Рисунок 5 — Технологические соединения
  9. Сенсор давления (первичный преобразователь): Сенсор давления — один из ключевых элементов любого преобразователя давления. Данный элемент непосредственно осуществляет преобразование действующего на него давления в электрический сигнал, который потом унифицируется на преобразовательной плате. На сегодняшний день существует несколько способов преобразования давления в электрический сигнал. В промышленности применяются индуктивный, емкостной и тензорезистивный методы преобразования. Самым распространенным является тензорезистивный. Данный метод основан на явлении тензоэффекта в металлах и полупроводниках. Тензорезисторы соединенные в мостовую схему (мост Уитстона) под действием давления изменяют свое сопротивление, что приводит к разбалансу моста. Разбаланс прямо пропорционально зависит от степени деформации резисторов и, следовательно, от приложенного давления. Рисунок 6 — Мост Уитстона

На рынке существует 4 основных типа сенсоров, основанных на тензорезистивном методе преобразования, которые используют все существующие производители преобразователей давления. Рассмотрим каждый тип отдельно.

Типы сенсоров

1. Толстопленочные сенсоры на металлической/керамической мембране

Толстопленочный сенсор на металлической/керамической мембране

Данный тип тензорезистивных сенсоров является самых дешевым, и, как следствие, широко используется для производства недорогих преобразователей давления неагрессивных сред (вода, воздух, пар).

Толстопленочные сенсоры обладают следующими особенностями:

2. Тонкопленочные сенсоры на стальной мембране

Тонкопленочные сенсоры на стальной мембране

Тонкопленочные сенсоры на стальной мембране были разработаны специально для применения в составе преобразователей высокого (более 100 бар) давления. Они обеспечивают хорошую линейность и повторяемость при работе с высокими значениями давления.

Особенности тонкопленочных сенсоров:

3. Керамические тензорезистивные сенсоры

Керамические тензорезистивные сенсоры

Данный вид сенсоров используется для высокоточного измерения давления сред, не агрессивных к материалу керамики (как правило Al2O3), кроме пищевых продуктов (т. к. необходимо использование уплотнителя сенсора) и вязких сред. Данный тип сенсоров используют практически все ведущие производители преобразователей давления.

Особенности:

4. Кремниевые тензорезистивные сенсоры

Кремниевые тензорезистивные сенсоры

Кремниевые тензорезистивные сенсоры широко применяются всеми ведущими производителями преобразователей давления в сочетании с защитной разделительной мембраной из нержавеющей стали (или других химически стойких сплавов) для высокоточного измерения давления различных сред. Использование сварной разделительной мембраны из нерж. стали позволяет применять данный тип сенсоров в пищевой промышленности и для вязких сред.

Особенности:

Руководитель отдела маркетинга ООО «КИП-Сервис»
Стариков И.И.

Дополнительные материалы:

Читайте также:

totalkip.ru

Датчик — Википедия

Да́тчик — собирательный термин, который может означать: измерительный преобразователь; первичный измерительный преобразователь; чувствительный элемент,[1] сенсор, сканер . В российских рамках стандартизации датчик является средством измерений[2].

Датчики, выполненные на основе электронной техники, называются электронными датчиками. Отдельный датчик может измерять (контролировать) одну или одновременно несколько физических величин.

В состав датчика входят чувствительные и преобразовательные элементы. Основными характеристиками электронных датчиков являются чувствительность и погрешность.

Датчики широко используются в научных исследованиях, испытаниях, контроле качества, телеметрии, системах автоматизированного управления и в других областях деятельности и системах, где требуется получение измерительной информации.

Измерительный преобразователь — средство измерений, в котором измеряемый сигнал преобразуется в сигнал другой формы, удобной для дальнейшей передачи, преобразования, обработки и хранения.[3]

Первичный измерительный преобразователь — измерительный преобразователь, который взаимодействует непосредственно с исследуемым объектом.[4]

Чувствительный элемент — часть преобразовательного элемента средства измерений, первый элемент в измерительной цепи, находящийся под непосредственным воздействием измеряемой величины.[5] В преобразовательном элементе средства измерений происходит одно из ряда последовательных преобразований величины.[6]

Датчики являются элементом технических систем, предназначенных для измерения, сигнализации, регулирования, управления устройствами или процессами. Датчики преобразуют контролируемую величину (давление, температура, расход, концентрация, частота, скорость, перемещение, напряжение, электрический ток и т. п.) в сигнал (электрический, оптический, пневматический), удобный для измерения, передачи, преобразования, хранения и регистрации информации о состоянии объекта измерений.

Исторически и логически датчики связаны с техникой измерений и измерительными приборами, например термометры, расходомеры, барометры, прибор «авиагоризонт» и т. д. Обобщающий термин датчик укрепился в связи с развитием автоматических систем управления, как элемент обобщенной логической концепции датчик — устройство управления — исполнительное устройство — объект управления. В качестве отдельной категории использования датчиков в автоматических системах регистрации параметров можно выделить их применение в системах научных исследований и экспериментов.

Датчики используются во многих отраслях экономики — добыче и переработке полезных ископаемых, промышленном производстве, транспорте, коммуникациях, логистике, строительстве, сельском хозяйстве, здравоохранении, науке и других отраслях — являясь в настоящее время неотъемлемой частью технических устройств.

В последнее время в связи с удешевлением электронных систем всё чаще применяются датчики со сложной обработкой сигналов, возможностями настройки и регулирования параметров и стандартным интерфейсом системы управления. Имеется определённая тенденция расширительной трактовки и перенесения этого термина на измерительные приборы, появившиеся значительно ранее массового использования датчиков, а также по аналогии — на объекты иной природы, например, биологические.

Датчики по своему назначению и технической реализации близки к понятию «измерительный инструмент» («измерительный прибор»). Однако показания приборов воспринимаются человеком, как правило, напрямую (посредством дисплеев, табло, панелей, световых и звуковых сигналов и проч.), в то время как показания датчиков требуют преобразования в форму, в которой измерительная информация может быть воспринята человеком. Датчики могут входить в состав измерительных приборов, обеспечивая измерение физической величины, результаты которого затем преобразуются для восприятия оператором измерительного прибора.

В автоматизированных системах управления датчики могут выступать в роли инициирующих устройств, приводя в действие оборудование, арматуру и программное обеспечение. Показания датчиков в таких системах, как правило, записываются на запоминающее устройство для контроля, обработки, анализа и вывода на дисплей или печатающее устройство. Огромное значение датчики имеют в робототехнике, где они выступают в роли рецепторов, посредством которых роботы и другие автоматические устройства получают информацию из окружающего мира и своих внутренних органов.

В быту датчики используются в термостатах, выключателях, термометрах, барометрах, смартфонах, посудомоечных машинах, кухонных плитах, тостерах, утюгах и другой бытовой технике.

По методу измерения[править | править код]

По измеряемому параметру[править | править код]

По принципу действия[править | править код]

По характеру выходного сигнала[править | править код]

По среде передачи сигналов[править | править код]

По количеству входных величин[править | править код]

По технологии изготовления[править | править код]

  1. ↑ Датчик//Корнеева Т.В. Толковый словарь по метрологии, измерительной технике и управлению качеством. Основные термины: около 7000 терминов —М.:Рус.яз., 1990
  2. ↑ ГОСТ Р 51086-97. Датчики и преобразователи физических величин электронные
  3. ↑ Измерительный преобразователь//Корнеева Т.В. Толковый словарь по метрологии, измерительной технике и управлению качеством. Основные термины: около 7000 терминов —М.:Рус.яз., 1990
  4. ↑ Первичный измерительный преобразователь//Корнеева Т.В. Толковый словарь по метрологии, измерительной технике и управлению качеством. Основные термины: около 7000 терминов —М.:Рус.яз., 1990
  5. ↑ Чувствительный элемент средства измерений//Корнеева Т.В. Толковый словарь по метрологии, измерительной технике и управлению качеством. Основные термины: около 7000 терминов —М.:Рус.яз., 1990
  6. ↑ Преобразовательный элемент средства измерений//Корнеева Т.В. Толковый словарь по метрологии, измерительной технике и управлению качеством. Основные термины: около 7000 терминов —М.:Рус.яз., 1990

ru.wikipedia.org

Датчик давления — ТеплоВики - энциклопедия отопления

Материал из ТеплоВики - энциклопедия отоплении

Датчики давления ТМ Danfoss

Датчик давления (преобразователь давления) — устройство, физические параметры которого изменяются в зависимости от давления измеряемой среды (жидкости, газы, пар). В датчиках давление измеряемой среды преобразуется в унифицированный пневматический, электрический сигналы или цифровой код.

Датчик давления состоит из первичного преобразователя давления, в составе которого чувствительный элемент и приемник давления, схемы вторичной обработки сигнала, различных по конструкции корпусных деталей и устройства вывода. Основным отличием одних приборов от других является точность регистрации давления, которая зависит от принципа преобразования давления в электрический сигнал: тензометрический, пьезорезистивный, емкостной, индуктивный, резонансный, ионизационный.

Класификация

Класификация по типу измеряемого давления

Класификация по конструктивному исполнению

Класификация по принципу действия

Класификация по принципу преобразования давления в электрический сигнал

.

Тензорезистивный датчик давления

Упрощенный вид тезорезистивный датчика давления

В настоящее время основная масса датчиков давления выпускаются на основе чувствительных элементов, принципом которых является измерение деформации тензорезисторов, сформированных в эпитаксиальной пленке кремния на подложке из сапфира (КНС), припаянной твердым припоем к титановой мембране. Иногда вместо кремниевых тензорезисторов используют металлические: медные, никелевые, железные и др. Принцип действия тензопреобразователей основан на явлении тензоэффекта в материалах. Чувствительным элементом служит мембрана с тензорезисторами, соединенными в мостовую схему. Под действием давления измеряемой среды мембрана прогибается, тензорезисторы меняют свое сопротивление, что приводит к разбалансу моста Уитстона. Разбаланс линейно зависит от степени деформации резисторов и, следовательно, от приложенного давления. Следует отметить принципиальное ограничение КНС преобразователя – неустранимую временную нестабильность градуировочной характеристики и существенные гистерезисные эффекты от давления и температуры. Это обусловлено неоднородностью конструкции и жесткой связью мембраны с конструктивными элементами датчика. Поэтому, выбирая преобразователь на основе КНС, необходимо обратить внимание на величину основной погрешности с учетом гистерезиса и величину дополнительной погрешности.

К преимуществам можно отнести хорошую защищенность чувствительного элемента от воздействия любой агрессивной среды, налаженное серийное производство, низкую стоимость.

Пьезорезистивный датчик давления

Пьезорезистивный датчик давления

Практически все производители датчиков проявляют интерес к использованию интегральных чувствительных элементов на основе монокристаллического кремния. Это обусловлено тем, что кремниевые преобразователи имеют на порядок большую временную и температурную стабильности по сравнению с приборами на основе КНС структур. Кремниевый интегральный преобразователь давления (ИПД) представляет собой мембрану из монокристаллического кремния с диффузионными пьезорезисторами, подключенными в мост Уинстона. Чувствительным элементом служит кристалл ИПД, установленный на диэлектрическое основание с использованием легкоплавкого стекла или методом анодного сращивания. Принцип действия сенсора для пьезорезистивного датчика давления, как следует из названия, основан на пьезорезистивном эффекте – изменении сопротивления при наложении механического давления. Резисторы размещают на мембрае таким образом, чтобы продольные и поперечные коэффициенты тензочувствительности были разных знаков, тогда и изменения сопротивлений резисторов будут противоположными. Основным преимуществом пьезорезистивных дачткиков является более высокая стабильность характеристик, по сравнению с КНС преобразователями. ИПД на основе монокристаллического кремния устойчивы к воздействию ударных и знакопеременных нагрузок. Если не происходит механического разрушения чувствительного элемента, то после снятия нагрузки он возвращается к первоначальному состоянию, что объясняется использованием идеально-упругого материала.

Ёмкостной датчик давления

Емкостной преобразователь давления. В данном варианте роль подвижной обкладки конденсатора выполняет металлическая диафрагма

Емкостный датчик давления представляет собой конденсатор, составленный из двух пластин, разделенных диэлектриком. Емкостные преобразователи используют метод изменения емкости конденсатора при изменении расстояния между обкладками. Известны керамические или кремниевые емкостные первичные преобразователи давления и преобразователи, выполненные с использованием упругой металлической мембраны. При изменении давления мембрана с электродом деформируется и происходит изменение емкости. В элементе из керамики или кремния, пространство между обкладками обычно заполнено маслом или другой органической жидкостью.

Достоинством чувствительного емкостного элемента является простота конструкции, высокая точность и временная стабильность, возможность измерять низкие давления и слабый вакуум.

К недостатку можно отнести нелинейную зависимость емкости от приложенного давления.

Резонансный датчик давления

Упрощенный вид резонансного чувствительного элемента, выполненного на кварце

Резонансный принцип используется в датчиках давления на основе вибрирующего цилиндра, струнных датчиках, кварцевых датчиках, резонансных датчиках на кремнии. В основе метода лежат волновые процессы: акустические или электромагнитные. Это и объясняет высокую стабильность датчиков и высокие выходные характеристики прибора. Частным примером может служить кварцевый резонатор. При прогибе мембраны, происходит деформация кристалла кварца, подключенного в электрическую схему и его поляризация. В результате изменения давления частота колебаний кристалла меняется. Подобрав параметры резонансного контура, изменяя емкость конденсатора или индуктивность катушки, можно добиться того, что сопротивление кварца падает до нуля – частоты колебаний электрического сигнала и кристалла совпадают - наступает резонанс.

Преимуществом резонансных датчиков является высокая точность и стабильность характеристик, которая зависит от качества используемого материала.

К недостаткам можно отнести индивидуальную характеристику преобразования давления, значительное время отклика, не возможность проводить измерения в агрессивных средах без потери точности показаний прибора.

Индуктивный датчик давления

Принципиальная схема индукционного преобразователя давления

Индукционный способ основан на регистрации вихревых токов (токов Фуко). Чувствительный элемент состоит из двух катушек, изолированных между собой металлическим экраном. Преобразователь измеряет смещение мембраны при отсутствии механического контакта. В катушках генерируется электрический сигнал переменного тока таким образом, что заряд и разряд катушек происходит через одинаковые промежутки времени. При отклонении мембраны создается ток в фиксированной основной катушке, что приводит к изменению индуктивности системы. Смещение характеристик основной катушки дает возможность преобразовать давление в стандартизованный сигнал, по своим параметрам прямо пропорциональный приложенному давлению.

Преимуществом такой системы, является возможность измерения низких избыточных и дифференциальных давлений, достаточно высокая точность и незначительная температурная зависимость.

Однако датчик чувствителен к магнитным воздействиям, что объясняется наличием катушек, которые при прохождении переменного сигнала создают магнитное поле.

Ионизационный датчик давления

В основе работы датчика лежит принцип регистрации потока ионизированных частиц. Аналогом являются ламповые диоды. Лампа оснащена двумя электродами: катодом и анодом, - а также нагревателем. В некоторых лампах последний отсутствует, что связано с использованием более совершенных материалов для электродов. Корпус лампы выполнен из высококачественного стекла. Преимуществом таких лам является возможность регистрировать низкое давление – вплоть до глубокого вакуума с высокой точностью. Однако следует строго учитывать, что подобные приборы нельзя эксплуатировать, если давление в камере близко к атмосферному. Поэтому подобные преобразователи необходимо сочетать с другими датчиками давления, например, емкостными. Помимо прочего, ионизационные лампы должны оснащаться дополнительными приборами, поскольку зависимость сигнала от давления является логарифмической.

Достоинства и недостатки различных методов преобразования давления в электрический сигнал

Достоинства Недостатки
Тензометрический метод (КНС-преобразователи)
  1. Высокая степень защиты от агрессивной среды
  2. Высокий предел рабочей температуры
  3. Налажено серийное производство
  4. Низкая стоимость
  1. Неустранимая нестабильность градуировочной характеристики
  2. Высокие гистерезисные эффекты от давления и температуры
  3. Низкая устойчивость при воздействии ударных нагрузок и вибраций
Пьезорезистивный метод (на монокристаллическом кремнии)
  1. Высокая стабильность характеристик
  2. Устойчивость к ударным нагрузкам и вибрациям
  3. Низкие (практически отсутствуют) гистерезисные эффекты
  4. Высокая точность
  5. Низкая цена
  6. Возможность измерять давление различных агрессивных средств
  1. Ограничение по температуре (до 150ºC)
Емкостной метод
  1. Высокая точность
  2. Высокая стабильность характеристик
  3. Возможность измерять низкий вакуум
  4. Простота конструкции
  1. Зачастую, нелинейная зависимость емкости от приложенного давления
  2. Необходимо дополнительное оборудование или электричекая схема для преобразования емкостной зависимости в один из стандартных выходных сигналов
Резонансный метод
  1. Высокая стабильность характеристик
  2. Высокая точность измерения давления
  1. При измерении давления агрессивных сред необходимо защитить чувствительный элемент, что приводит к потери точности измерения
  2. Высокая цена
  3. Длительное время отклика
  4. Индивидуальная характеристика преобразования давления в электрический сигнал
Индукционный метод
  1. Возможность измерять дифференциальные давления с высокой точностью
  2. Незначительное влияние температуры на точность измерения
  1. Сильное влияние магнитного поля
  2. Чувствительность к вибрациям и ударам
Ионнизационный метод
  1. Возможность измерение высокого вакуума
  2. Высокая точность
  3. Стабильность выходных параметров
  1. Нельзя использовать подобные приборы при

высоком давлении (низкий вакуум является порогом)

  1. Нелинейная зависимость выходного сигнала от приложенного давления
  2. Высокая хрупкость
  3. Необходимо сочетать с другими датчиками давления

Выбор датчика давления

Различные сферы применений определяют свои требования к датчикам:

Еще одним важным параметром является цена датчиков, которые используют тот или иной принцип преобразования давления. Поэтому при выборе преобразователя необходимо определить наиболее выгодный вариант – соотношение цены к возможностям прибора. Очевидно там, где требуется только какой-либо определенный параметр датчика (например, точность или возможность измерять вакуум) соотношение цены к предъявляемым требованиям высокое. В основном это касается резонансных, индукционных, емкостных и ионизационных датчиков.

Отличие от манометра

В отличие от датчика давления, манометр — прибор, предназначенный для измерения (а не преобразования) давления. В манометре от давления зависят показания прибора, которые могут быть считаны с его шкалы, дисплея или аналогичного устройства.

Производители датчиков давления

Торговые марки производители датчиков давления

Литература

Источники

ru.teplowiki.org

Датчики давления с аналоговым выходом

Для непрерывного измерения давления и передачи его значения в системы учета и контроля применяются датчики давления со стандартными выходными сигналами тока или (существенно реже) напряжения. Датчики могут измерять избыточное или абсолютное давление, а также разряжение. Это зависит от конструкции датчика. Абсолютное давление это сумма избыточного и атмосферного давлений.

Датчик давления состоит из сенсора, модуля преобразования сигнала сенсора, дисплея и корпуса. В настоящее время наиболее распространены тензометрические сенсоры с металлической мембраной. Все более широкое применение находят емкостные сенсоры с мембраной из сверхчистой керамики (99,9% Al2O3), например, фирмы Endress+Hauser и пьезорезистивные сенсоры, например, фирмы Honeywell.

Принцип действия тензосенсоров с металлической мембраной основан на измерении деформации тензорезисторов, сформированных в тонкой пленке кремния на сапфировой подложке (КНС), припаянной твердым припоем к титановой мембране. Иногда вместо кремниевых тензорезисторов используют металлические: медные, никелевые и др. Принцип действия тензорезисторов основан на явлении тензоэффекта в материалах, который выражается в том, что при линейном удлинении проводника его электрическое сопротивление увеличивается. Тензорезисторы соединены в мост Уитсона. Под действием давления измеряемой среды мембрана прогибается, тензорезисторы деформируются. Их сопротивление меняется, что приводит к разбалансу моста. Разбаланс имеет линейную зависимость от степени деформации резисторов и, следовательно, от приложенного к мембране давления.  Разбаланс моста преобразуется электроникой датчика в выходной аналоговый сигнал и в цифровой код для вывода данных на  дисплей. Мембрана и корпус сенсора образуют герметичную конструкцию, заполненную внутри кремнийорганической жидкостью.

Несмотря на множество достоинств, таких как: высокая степень защиты от воздействия агрессивных сред, высокая предельная  температуры измеряемой среды, низкая стоимость, отлаженное серийное производство датчики давления с тензосенсорами и металлической мембраной имеют ряд недостатков. В частности, неустранимую временную нестабильность передаточной характеристики (давление-ток) и существенные гистерезисные эффекты от воздействия давления и температуры. Это обусловлено неоднородностью конструкции и жесткой связью мембраны с корпусом сенсора. При эксплуатации датчиков с сенсорами данного типа практически всегда наблюдается эффект прямого и обратного хода. Например, если на датчик со шкалой 0-10 Bar и выходным сигналом 4-20 mA подать давление 5 Bar, плавно увеличивая его с 0 значения то установиться, допустим, выходной ток 11,5 mA. Если же, на тот же датчик подать давление 5 Bar, но теперь  плавно уменьшая с 10 Bar, то выходной сигнал будет уже 12,5 mA. Этот эффект связан с упругими свойствами металлической мембраны.

Работа емкостных сенсоров датчиков давления основана на зависимости емкости конденсатора от расстояния между его обкладками. Чем меньше расстояние, тем больше емкость. Роль одной обкладки (подвижной) выполняет металлизация внутренней стороны мембраны, роль второй обкладки (неподвижной) – металлизация основания сенсора. Подвижная мембрана изготавливается из сверхчистой керамики, кремния или упругого металла. При изменении давления процесса (рабочей среды) мембрана с обкладкой деформируется, расстояние между ней и основанием сенсора изменяется и происходит изменение емкости.

Достоинством емкостного сенсора из сверхчистой керамики является простота конструкции, высокая точность и временная стабильность показаний, возможность измерять низкие давления и слабый вакуум благодаря отсутствию заполняющего масла. Керамическая мембрана обладает коррозионной стойкостью к химически-агрессивным средам и стойкостью к истиранию. Кроме того у емкостных керамических сенсоров отсутствует эффект прямого и обратного хода. Они в меньшей степени подвержены воздействию гидравлических ударов, так как мембрана в этом случае просто прижимается к основанию сенсора.

К недостаткам емкостных сенсоров можно отнести нелинейную зависимость емкости от приложенного давления, но эта нелинейность компенсируется электроникой датчика. Так, например, к керамическим емкостным сенсорам датчиков давления Cerabar фирмы Endress+Hauser прилагается специальный паспорт, в котором производитель указывает настроечные коэффициенты. При замене сенсора эти коэффициенты должны быть занесены во внутреннюю энергонезависимую память датчика с помощью HART-коммуникатора. В противном случае погрешность измерения давления существенно возрастает, возрастает и нелинейность измерения.

Достаточно широко в настоящее время распространены датчики с чувствительными элементами на основе монокристаллического кремния. Несмотря на схожую конструкцию с приборами на основе КНС структур они имеют на порядок большую временную и температурную стабильности, более устойчивы к воздействию ударных и знакопеременных нагрузок. Эффект прямого – обратного хода также отсутствует, что объясняется использованием идеально-упругого материала.

Данный тип сенсора (интегральный преобразователь давления), представляет собой мембрану из монокристаллического кремния с размещенными на ней методом диффузии пьезорезисторами. Пьезорезисторы соединены в мост Уинстона. Кристалл ИПД прикрепляется к диэлектрическому основанию легкоплавким стеклом или методом анодного сращивания. Для измерения давления чистых неагрессивных сред применяются, так называемые, Low cost – решения. Чувствительные элементы в датчиках данного типа либо не имеют защиты вовсе, либо защищены лишь слоем силиконового геля. При измерении агрессивных сред чувствительный элемент размещается в герметичном металлическом корпусе, с разделительной диафрагмой из нержавеющей стали, передающей давление измеряемой среды на ИПД посредством кремнийорганической жидкости.

Недостатком датчиков с пьезорезистивными сенсорами является их сравнительно невысокая предельная рабочая температура измеряемой среды – не более 150 °С.

Не зависимо от типа, сенсор является самой уязвимой частью датчика давления. Для защиты сенсора от повреждений применяют различные защитные устройства. Для предотвращения коррозии или загрязнения мембраны сенсора при измерении давления вязких, агрессивных или сильно загрязненных сред применяют разделительные мембраны или колонки. Разделительная мембрана монтируется непосредственно перед датчиком и служит для передачи давления без контакта сенсора с измеряемой жидкостью. Давление измеряемой жидкости подается в одну полость разделительной мембраны и деформирует мембрану. Датчик давления подсоединен ко второй полости, заполненной инертной жидкостью, например, силиконовым маслом, и воспринимает деформацию мембраны. Разделительные колонки чаще всего применяют для измерения давления горячего мазута. Нижнюю часть колонки и датчик заполняют водой, после этого открывают вентиль на мазутопроводе. Мазут заполняет верхнюю часть колонки, и остается сверху, так как имеет плотность чуть меньше чем находящаяся снизу вода и не растворяется в ней.

Для защиты сенсора от чрезмерного давления среды применяют специальные пружинные вентили, которые автоматически закрываются, перекрывая подачу давления на датчик при скачках давления или гидроударе. Еще одним эффективным способом защиты сенсора датчика от гидроударов является глушитель ударов давления TTR производства компании "BD Sensors Rus", работающий на многокамерном принципе. Они обладают способностью эффективно демпфировать гидроудары длительностью от 20 миллисекунд и амплитудой до 70 МПа. При пульсации давления длительностью до 100 миллисекунд, глушитель ударов давления позволяет датчику давления выдерживать четырехкратную перегрузку.

Для измерения давлений рабочих сред с температурой до 300 °С применяют радиатор-охладитель. Как правило, он изготавливается из нержавеющей стали, например, 12Х18Н10Т. Радиатор-охладитель и разделительная мембрана могут быть изготовлены и смонтированы как самостоятельные изделия или быть частью конструкции датчика, например, как в датчике S-11 фирмы WIKA.

Датчики давления могут подключаться к вторичным приборам по двух-, трех- или четырехпроводной схеме. По двухпроводной схеме подключаются только датчики, имеющие выходной сигнал 4-20 мА. Это объясняется тем, что в цепи питания (являющейся одновременно и цепью передачи выходного сигнала) всегда должен протекать небольшой ток, обеспечивающий питание электронной «начинки» датчика. В данном случае этот минимальный ток равен 4 мА. Понятно, что датчики с выходным сигналом 0-5 мА или 0-20 мА при включении по двухпроводной схеме работать не будут, так как при нулевом давлении ток в цепи также должен равняться нулю. Соответственно, в этом случае электроника датчика останется без электропитания и перестанет работать.

Если выходной токовый сигнал датчика нестабилен при стабильном входном давлении, то, как правило, это связано с наличием сильных электромагнитных помех. Уменьшить влияние помех можно установкой конденсаторов между заземленным корпусом датчика и контактом питания (и/или контактом выходного сигнала) на контактной колодке датчика. Выводы конденсаторов должны иметь минимальную длину. Для подавления высокочастотных помех достаточно высокочастотного конденсатора емкостью 300…500 пф., для подавления низкочастотной помехи - конденсатора типа К73-17 емкостью 1…2 мкф.

Некоторые датчики давления, например DS200 производства BD Sensors помимо токового выхода имеют встроенные реле с настраиваемыми порогами срабатывания. С их помощью можно реализовывать различные системы автоматики, например, АВР насосной установки и одновременно контролировать текущее значение давления среды.

Во время эксплуатации датчиков давления часто возникает необходимость изменить значение шкалы измерения или выполнить подстройку нуля. Не все датчики (в том числе и самые современные) позволяют сделать это. Как правило, бюджетные приборы являются однопредельными, то есть не перенастраиваемыми.  В лучшем случае имеется возможность подстройки нуля и шкалы в небольшом диапазоне. Более дорогие модели позволяют осуществлять корректировку нулевых показаний и шкалы в больших пределах, устанавливать нестандартные значения «нуля» и шкалы и даже инвертировать выходной сигнал (в этом случае нулевому давлению будет соответствовать максимальный выходной ток датчика 20 мА, который будет уменьшаться с ростом давления).

Подстройку шкалы в многопредельных датчиках давления выполняют либо для увеличения точности представления измеренной величины, либо для расширения диапазона измерения, либо для согласования с вторичным прибором, имеющим определенные настройки. Подстройку шкалы для увеличения точности представления осуществляют в том случае, если максимальное значение шкалы датчика существенно превышает давление среды. В этом случае целесообразно уменьшить шкалу датчика, при этом увеличиться точность представления, так как на единицу измеряемого давления будет приходиться большее изменение выходного токового сигнала.

Корректировать ноль датчиков давления (особенно датчиков перепада давления) приходиться довольно часто. Это связано с тем, что у многих датчиков ноль «уходит» если пространственное положение датчика изменить относительно той ориентации, при которой была выполнена настройка нуля (например, наклонить).  Либо, если датчик давления соединяется с трубопроводом импульсной трассой и место подсоединения импульсной трассы к трубопроводу находиться выше места соединения датчика с импульсной трассой. В результате этого, если измеряемой средой является пар, вода или другая жидкость, столб этой жидкости создает дополнительное давление на мембрану датчика, вызывая отклонение его показаний от нулевых значений. Чем больше столб жидкости, тем больше отклонение, которое необходимо скорректировать иначе показания во всем диапазоне измерений будет завышены. Давление столба жидкости рассчитывается по формуле:

Pстолба жидкости = ρgh

Таким образом, измеренное датчиком значение давления будет равно сумме избыточного давления жидкости в трубопроводе плюс давление столба жидкости в импульсной трассе:

Ризмеренное = Ризбыточное + Рстолба жидкости

Отбор давления рекомендуется осуществлять в тех местах трубопровода, где скорость движения потока наименьшая и завихрения минимальны, то есть  на прямолинейных участках трубопроводов, на максимальном расстоянии от запорных устройств, колен, сужений, компенсаторов и других гидравлических соединений.

На измерении давления столба жидкости основан принцип косвенного измерения уровня жидкости в резервуарах, расширительных баках и т.п. Датчик давления крепят к днищу резервуара или на боковой стенке вблизи дна. Чаще всего для измерения уровня применяют датчики давления с открытой мембраной, так как они менее подвержены засорению и более чувствительны к малым изменениям уровня ввиду больших размеров мембраны. Датчики давления с открытой мембраной довольно часто имеют шкалу непосредственно в единицах измерения уровня - миллиметрах (метрах) водяного столба.

В любом случае, пересчитать шкалу датчика из одних единиц измерения в другие можно воспользовавшись таблицей перевода.

Как правило, импульсные трассы применяют для того чтобы персоналу было удобно обслуживать датчики давления или по конструктивным соображениям. При определенной конфигурации импульсные трассы выполняют также роль демпфирующих устройств, сглаживая скачки давления. Но импульсные трассы имеют и ряд существенных недостатков. При большой длине и множестве изгибов они легко засоряются. В холодное время года они часто замерзают, если проложены в не отапливаемом помещении и отсутствует теплоизоляция и обогрев. Наиболее часто применяется электрообогрев с помощью специального нагревательного шнура. Он обвивается вокруг импульсной трассы на всем ее протяжении, затем трасса обматывается теплоизоляционным материалом. Иногда для обогрева используют так называемый спутник – трубу с циркулирующей горячей водой или паром. Кроме того из-за большой протяженности импульсной трассы и ее малого поперечного сечения (как правило используются трубки диаметром 14…16 мм) возникают задержки передачи давления.

К трубе или импульсной трассе датчик давления чаще всего подключается через вентильный блок. Вентильные блоки перекрывают подачу рабочей среды к мембране датчика, что позволяет, при необходимости, демонтировать его не останавливая процесс. При этом утечки рабочей среды также сводятся к минимуму. Вентильные блоки имеют различную конструкцию: от самых простых игольчатых до сложных комбинированных вентилей, сочетающих в себе функции отключения и продувки датчика на свечу или в окружающую среду.

C вентильным блоком датчик соединяется посредством резьбы. Самыми распространенными резьбами датчиков давления являются метрическая М20х1,5 и дюймовая G ½’’резьбы. Для уплотнения резьбовых соединений достаточно редко используют льняную прядь или фум ленту. Чаще применяют торцевые кольцевые прокладки из паронита, фторопласта или обожженной меди. Прокладки из обожженной меди и фторопласта имеют высокую температурную и химическую стойкость, но обладают одним существенным недостатком – они являются одноразовыми.    Прокладки из паронита обладают худшей стойкостью, но допускают несколько циклов установки – демонтажа датчика, обеспечивая при этом герметичное уплотнение. В пищевой промышленности, где попадание в измеряемую среду частиц уплотнительных материалов недопустимо применяют датчики с фланцевым или «рюмочным» креплением.

Калибровку датчиков давления производят с помощью калибраторов давления или масляных колонок. Калибраторы давления, например, DPI фирмы Druck, позволяют генерировать и плавно регулировать давление сжатого воздуха в широких пределах. Проверять работоспособность датчиков давления нажатием твердым предметом или пальцем на мембрану сенсора для имитации давления не рекомендуется - это может привести к повреждению сенсора.

Дополнительную информацию вы можете найти в разделе "Вопрос-ответ".

knowkip.ucoz.ru

Измерение давления — Википедия

Измерение давления необходимо для управления технологическими процессами и обеспечения безопасности производства. Кроме того, этот параметр используется при косвенных измерениях других технологических параметров: уровня, расхода, температуры, плотности и так далее. В Международной системе единиц (СИ) за единицу давления принят Паскаль (Па).

В большинстве случаев первичные преобразователи давления имеют неэлектрический выходной сигнал в виде силы или перемещения и объединены в один блок с измерительным прибором. Если результаты измерений необходимо передавать на расстояние, то применяют промежуточное преобразование этого неэлектрического сигнала в унифицированный электрический или пневматический. При этом первичный и промежуточный преобразователи объединяют в один измерительный преобразователь.

В зависимости от измеряемой среды (ИС) — газ, пар или жидкость используются различные способы отбора давления. Имеются специфические особенности измерения агрессивных, вязких, высокотемпературных, низкотемпературных, «грязных» сред, в воздухопроводах, дымоходах, пылепроводах и т. д.

Для измерения давления используют манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры, тягонапоромеры, датчики давления, дифманометры.

Датчик давления

В большинстве приборов измеряемое давление преобразуется в деформацию упругих элементов, поэтому они называются деформационными.

Деформационные приборы широко применяют для измерения давления при ведении технологических процессов благодаря простоте устройства, удобству и безопасности в работе. Все деформационные приборы имеют в схеме какой-либо упругий элемент, который деформируется под действием измеряемого давления: трубчатую пружину (трубка Бурдона), мембрану или сильфон.

Также существуют грузопоршневые манометры, в которых ничего не деформруется.

Наибольшее применение получили приборы с трубчатой пружиной. Их выпускают в виде показывающих манометров и вакуумметров c максимальным пределом измерений. В таких приборах с изменением измеряемого давления р трубчатая пружина / изменяет свою кривизну. Её свободный конец через тягу поворачивает зубчатый сектор и находящуюся с ним в зацеплении шестерню. Вместе с шестерней поворачивается закрепленная на ней стрелка, перемещающаяся вдоль шкалы. Для дистанционной передачи показаний выпускают манометры с промежуточными преобразователями с токовым и пневматическим выходом (МП-Э, МП-П), а также с дифференциально-трансформаторными преобразователями (МЭД).

Промышленность выпускает также мембранные дифманометры с промежуточными преобразователями, имеющими унифицированные токовые или пневматические сигналы.

Для преобразования деформации мембраны в унифицированный токовый сигнал применяют также тензорезисторные промежуточные преобразователи, в которых сопротивление резистора изменяется при его растяжении или сжатии. В таких приборах тензорезистор укреплен на жесткой измерительной мембране. Деформация мембраны, пропорциональная приложенному давлению, приводит к деформации тензорезистора и изменению его сопротивления. Это сопротивление преобразуется измерительной схемой, включающей неуравновешенный мост, в выходной сигнал постоянного тока. Так как деформация жесткой мембраны мала, то применяют полупроводниковые кремниевые тензорезисторы, обладающие высокой чувствительностью.

В дифманометрах чувствительным элементом служит блок из двух неупругих мембран, соединенных между собой штоком. Смещение этого штока под действием перепада давлений приводит к изгибу рычага и деформации измерительной мембраны. Мембраны выполнены из коррозионно-стойкого материала, что позволяет использовать дифманометр для измерений в сильноагрессивных средах.

Для измерения давления агрессивных сред применяют датчики, снабженные защитной мембраной, изготовленной из коррозионно-стойкого материала. Измеряемое давление передается к измерительной мембране через силиконовое масло, которым заполнена внутренняя полость датчика.

Промышленные тензорезисторные преобразователи предназначены для преобразования давления, разрежения и разности давлений в пропорциональное значение выходного сигнала — постоянного тока.

Особенности эксплуатации приборов для измерения давления

При эксплуатации приборов, измеряющих давление, часто требуется защита их от агрессивного и теплового воздействия среды.

Если среда химически активна по отношению к материалу прибора, то его защиту производят с помощью разделительных сосудов или мембранных разделителей.

Разделительный сосуд заполняется жидкостью, инертной по отношению к материалу прибора, соединительных трубок и самого сосуда. Кроме того, разделительная жидкость не должна химически взаимодействовать с измеряемой средой или смешиваться с ней. В качестве разделительных жидкостей применяют водные растворы глицерина, этиленгликоль, технические масла и др.

В мембранном разделителе измеряемая среда отделяется от прибора мембраной с малой жесткостью из нержавеющей стали или фторопласта. Для передачи давления от мембраны к прибору полость между ними заполняют жидкостью.

Для предохранения прибора от действия высокой температуры среды применяют сифонные трубки.

Деформационные приборы требуют периодической поверки. В эксплуатационных условиях у них проверяют нулевую и рабочую точки шкалы. Для этого применяют трехходовые краны. При поверке нулевой точки прибор соединяют с атмосферой. Стрелка прибора должна вернуться к нулевой отметке. Поверку прибора в рабочей точке шкалы осуществляют по контрольному манометру, укрепляемому на боковом фланце. При пользовании краном необходимо строго соблюдать плавность включения и выключения прибора.

С помощью трехходового крана можно проводить также продувку соединительной линии.

ru.wikipedia.org

Датчики давления, температуры и их виды

Течение многих технологических процессов зависит от сопутствующих им давления и температуры. Для учета этих факторов используются чувствительные элементы – датчики.

Что такое датчик

Это устройство, которое преобразует физическое воздействие в электрический сигнал. Его конструкция состоит из чувствительного элемента, усилителя сигнала и корпуса. Обратите внимание, что в этом списке нет устройства для отображения информации об измеряемом параметре – шкалы, дисплея и прочих. Если оно к нему подключается, то в названии прибора обязательно появляется дополнительный корень «метр» – термометр, манометр... Датчики давления и температуры используются в качестве элементов схем автоматики или как часть измерительных приборов.


Типы датчиков давления

Датчики давления, в зависимости от вида чувствительного элемента, бывают нескольких типов.

Механические

Чувствительный элемент непосредственно взаимодействует с коммутирующим элементом. Они просты и надежны, однако реагируют на воздействие определенной силы, устанавливаемое во время настройки.

Электромеханические

В них используются особые свойства некоторых материалов, которые при приложении к ним механического воздействия изменяют свои электрические параметры. Это пьезоэлектрики – вид кристаллов, в узлах решетки которых при малейшей деформации возникает электрический заряд. И тензорезисторы – вещества, у которых деформация сопровождается изменением внутреннего электрического сопротивления. Их достоинство в простоте конструкции, а недостатком является сильная зависимость свойств от температуры среды, в которой производится измерение.

Электрические

Используется емкостной или индуктивный метод измерения. В первом случае чувствительный элемент – мембрана – играет роль второй обкладки конденсатора, емкость которого изменяется при увеличении или уменьшении расстояния между ними. Во втором датчик состоит из Е-образного сердечника с соленоидом на центральном зубе и мембраны. Управляющий сигнал генерируется в результате изменения силы магнитного потока. Эти устройства довольно сложны, но обеспечивают высокую точность измерения. Они независимы от внешних воздействий.

Оптические

Ряд веществ при приложении к ним механических усилий изменяют свои оптические свойства – коэффициент преломления или прозрачность. Датчики давления, работающие на этом принципе, очень чувствительны, поскольку это свойство напрямую зависит от длины волны светового пучка. Например, для красной части светового спектра она находится в пределах от 625 до 740 нанометров. По этой же причине такие устройства можно сделать очень маленькими, большинство из них свободно проходит через ушко иголки.

Частотные

Упругий элемент, в зависимости от своих размеров, имеет частоту, на которой наступает эффект резонанса. При его деформации пик частоты смещается, это и является измеряемым параметром. Такие датчики очень точны, но их настройка сложна, а время отклика велико.

Типы датчиков температур

Датчики температуры используют свойства материала изменять форму или размеры при нагреве (остывании), а также электрическую проводимость.

Механические

Это или штырь (обычно латунный) с известным коэффициентом линейного расширения, или биметаллическая пластина (например, медь-алюминий), имеющая свойство памяти формы. При изменении температурного фона она деформируется и нажимает на кнопку механического коммутатора. Просты, но имеют только один порог срабатывания, который задается при настройке.

Терморезистивные

Используются материалы, у которых зависимость внутреннего сопротивления от температуры максимально близка к линейной. Это такие металлы, как платина, никель и медь. А также полупроводники – смесь окислов кобальта или меди с марганцем.

Платиновые терморезисторы используются для измерений в диапазоне от –200 до +850 0С. Они отличаются высокой стабильностью характеристик и точностью. Применяются в качестве эталонов. Диапазон работы никелевых датчиков находится в пределах от –60 до +180 0С, они самые чувствительные. Медные имеют наилучшую характеристику, они самые дешевые и применяются при температурах от –180 до +200 0С. Конструктивно выполняются в виде тонкой пленки, нанесенной на диэлектрическую подложку, или безиндуктивной намотки двойным тонким проводом.

Полупроводниковые термисторы имеют обозначение КМТ, если используются окислы кобальта, или ММТ при применении окислов меди. Они работают в диапазоне от –100 до 200 0С и используются в качестве элементов слаботочных схем управления. Корпус – жаропрочное кварцевое стекло.

Термопары

Наиболее широко применяющийся тип датчиков температуры. Используется так называемый эффект Зеебека – если концы проводника, составленного из разнородных металлов (например, железа и константана) имеют разную температуру, то между ними начинает течь электрический ток. Тот конец термопары, который находится в измеряемой среде, принято называть «горячим», хотя в действительности температура может быть и –200 С, то есть, почти абсолютный термодинамический ноль. К холодному концу подключаются регистрирующие приборы. В промышленных установках для обеспечения точности измерения его температура регистрируется металлическим терморезистором.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

epusk.ru

Датчики давления компании Smartec

Датчики давления компании Smartec

Принцип работы

 

Датчики давления основаны на принципе изгиба мембраны, вызванном давлением жидкости или газа. На мембрану нанесен очень тонкий проводящий экранированный слой, который повторяет изгибы мембраны. Этот прогиб можно измерить двумя разными способами:

На практике широко используются оба способа измерения давления. Линейка датчиков давления Smartec основана на резистивной структуре, экранированной на мембране.

 

Принцип действия датчика давления

Емкостное измерение на основе тензометрического резистора на изгибающейся мембране

 

Изгиб мембраны (а также слоя) очень мал (

В общем случае экранированные резисторы также чувствительны к температуре, что приводит к необходимости компенсации температурных эффектов.

 

Типы датчиков давления

 

Мембрана изогнется, если есть разница давления с обеих её сторон. Существует три типа датчиков: относительного давления, абсолютного давления и дифференциального давления. У каждого типа есть конкретная областью применения.

Вкратце:

 

 

Датчик относительного давления

 

На рисунке показана схема датчика относительного давления. С одной стороны  мембраны находятся жидкость или газ под давлением, которое должно быть измерено, а с другой давление на мембрану равно атмосферному. Это означает, что измеренное давление соотносится с атмосферным. Такое отверстие, соединяющее подмембранный объем с атмосферой, обычно называют вентиляционным.

 

Принцип работы датчика относительного давления

 

Единственным интерфейсом между «внешним миром» и находящейся под давлением средой является мембрана. Если эта мембрана повреждена (например, из-за ударного давления), сторона под давлением непосредственно соединяется с вентиляционным отверстием, начинается выброс газа или жидкости, что может привести к опасной ситуации. Для измерения давления опасных газов этот тип датчика не используется, вместо этого применяют датчики абсолютного типа.

Все датчики относительного давления имеют вентиляционное отверстие, которое соединяет одну сторону мембраны с атмосферой. Если это отверстие закрыто или забито из-за загрязнения, могут возникнуть ошибки считывания. Если этот тип датчиков установлен в прочный корпус, вентиляционное отверстие должно всегда оставаться открытым.

Типичное применение датчиков такого типа – измерение давления в шинах.

 

Датчики абсолютного давления

 

Данный тип не имеет вентиляционного отверстия, а в подмембранном объеме создан вакуум. На рисунке показан принцип датчика абсолютного давления.

 

Принцип работы датчика абсолютного давления

 

Очень сложно создать такую «камеру» с абсолютным вакуумом (фактически она и не существует). Однако давление в вакуумной контрольной камере датчиков Smartec очень низкое (25.10-3 торр или 5.10-4 PSI).

Для предотвращения возмущающих эффектов от различий в температурах в «почти» вакуумной камере, вакуум должен быть высоким. При нагревании давление в вакуумной камере будет увеличиваться.

Такие датчики подходят для использования во взрывоопасных зонах. Корпус может быть полностью закрыт и установлен, например, в резервуар под давлением. На случай образования трещин в мембране (например, из-за ударного давления), к среде подключена только вакуумная камера. При повреждении датчика не возникнет опасной ситуации. Особым типом датчика абсолютного давления является барометрический датчик. Этот датчик можно рассматривать как абсолютный с ограниченным диапазоном. В принципе, этот диапазон составляет от примерно 1 до 0 Бар. Но для большего разрешения барометрические датчики рассчитаны на диапазон 1 - 0.8 Бар и обычно используются для измерения атмосферного давления.

Данный тип датчиков используется, например, для измерения давления в газобаллонном оборудовании топливных систем автомобилей.

 

Датчики дифференциального давления

 

Дифференциальный датчик имеет входы на каждую сторону мембраны, один для положительного давления, а другой для отрицательного. Изгиб мембраны связан с разницей давлений на каждой стороне. На рисунке показан принцип работы датчика дифференциального давления.

 

Принцип работы датчика дифференциального давления.

 

 

Типы выходного сигнала

 

Только датчики Smartec с мостовым выходом необходимо компенсировать пользователю. В другие версии с аналоговым и цифровым выходом компенсация встраивается на производстве. Температурная компенсация управляется с помощью встроенного сигнального процессора, поэтому нет необходимости встраивать в решение внешнюю компенсацию.

 

Мостовой выходной сигнал

 

Выход моста Уитстона имеет определенное значение в случае отсутствия давления или в случае отсутствия разницы в давлении по обеим сторонам мембраны. Это значение называется смещением (offset). Диапазон давлений (от минимального до максимального), который может использоваться датчиком, называется рабочим.

Мост Уитстона не только чувствителен к изгибу мембраны, но и к изменениям температуры. Это означает, что для точного измерения необходимо компенсировать температурные эффекты для смещения и сдвига рабочего диапазона (при наличии давления). Поэтому указывается изменение смещения на изменение температуры, а также температурные коэффициенты рабочего диапазона. Если требуется более низкая точность, выходное напряжение моста может использоваться без компенсации.

 

Аналоговый выходной сигнал

 

Датчики давления Smartec с аналоговым выходом имеют встроенную термокомпенсацию. Это означает, что датчики с аналоговым выходом очень точны и  имеют стабильное смещение. Из-за обработки сигнала внутри устройства происходит некоторая задержка между физическим изменением давления и изменением выходного сигнала. Обычно эта задержка находится в диапазоне от 1 до 2 мс.

В аналоговой версии датчика дифференциального давления требуется дополнительное определение в месте, где давление на оба порта одинаковое. Разность давлений равна нулю. В этом конкретном случае выходное напряжение (смещение) может находиться в «среднем» (halfway Gnd и Vcc), или выходное напряжение смещения может быть равно нулю (уровень GND). Первая вариант называется дифференциальным, а второй называется единичным. Это означает, что дифференциальное давление может быть измерено только в одном направлении.

 

Цифровой выходной сигнал

 

Разрешение датчиков данного типа – 14 бит. В терминах передачи данных это означает, что есть два слова по 8 бит каждое. Верхние два бита наивысшего байта данных не используются и всегда равны нулю. Необходимо помнить, что точность датчиков ограничена физической структурой элемента и оцифровка (14 бит), никогда не сможет улучшить аналоговую точность датчика.

 

Важные понятия

 

Абсолютное давление - это давление относительно вакуума.

Атмосферное давление – это внешнее давление относительно абсолютного вакуума. Такое давление зависит от географического положения, высоты и погодных условий. Также называется барометрическим давлением.

Относительное давление – это давление относительно атмосферного давления.

Дифференциальное давление – разность давлений между двумя точками.

Смещение – разница между выходным сигналом при текущем и нулевом значении давления.

Линия наилучшего соответствия – математически полученная прямая линия лучше всего подходящая для мультиизмерения определенных уровней давления. Из каждой точки давления выходное значение усредняется. Прямая берется по минимальной квадратичной ошибке.

Нулевое смещение (рабочая точка) – это выходное значение при давлении 0 psi (вакуум) для датчика абсолютного давления, для относительных нулевое смещение – это выходное значение, когда измеряемое давление равно атмосферному, а для дифференциальных датчиков, когда давления с обоих портов равны между собой.

Рабочий диапазон – это разность между максимальным и минимальным значением давления.

Точность - отклонение между лучшей прямой линией и кривой полученной на основе реальных тестов. В точность также включены все погрешности. Выражается в процентах от полной шкалы (FSO).

Ратиометрический сигнал -  означает, что выход датчика (аналог) связан с напряжением питания. Это означает, что если Vcc падает на 10% выходное напряжение также падает на 10%.

Время отклика – время необходимое для установления величины равной 95% от реальной.

 

efo-sensor.ru

Датчики давления

Определение 1

Датчик давления — устройство, физические параметры которого изменяются в зависимости от давления измеряемой среды (жидкости, газа, пара).

Из-за большого разнообразия условий, диапазонов и материалов, для которых давление должно быть измерено, существует много различных типов конструкций датчиков давления.

Датчик давления, как правило, выступает в качестве преобразователя; он генерирует сигнал как функцию от давления.

Замечание 1

Датчики используются для контроля и мониторинга тысяч повседневных задач. Датчики давления также могут быть использованы для косвенного измерения других переменных, таких как жидкость или поток газа, скорость, уровень воды, и высоты.

Существует также категория датчиков давления, которые предназначены для измерения в динамическом режиме для захвата очень высоких скоростей изменения давления. Можно привести примеры области применений для этого типа датчика: измерение давления сгорания в цилиндре двигателя или в газовой турбине. Эти датчики обычно изготавливаются из пьезоэлектрических материалов, таких как кварц.

Виды датчиков для измерения давления

Датчики давления могут быть классифицированы с точки зрения диапазонов давления, который они измеряют, температурных диапазонов работы, а самое главное типом давления, который они измеряют. Датчики давления по-разному названы в соответствии с их назначением, но та же самая технология может быть использована под разными названиями.

Приборы, сочетающие, в себе датчик давления и средство отображения значения давления и предназначенные для измерения избыточного давления называются манометрами, для измерения вакуумметрического давления (ниже атмосферного) - вакуумметрами или тягомерами, для одновременного измерения избыточного и вакуумметрического давления - мановакуумметрами или тягонапорометрами.

  1. Датчик абсолютного давления

    Этот датчик измеряет относительное давление вакуума.

  2. Датчик избыточного давления

    Этот датчик измеряет относительное атмосферное давления. Манометр является примером измерения манометрического давления; когда он показывает ноль, то давление его измерения является таким же, как давление окружающей среды.

    Манометры выполняют функцию локального контроля и во многих случаях из-за отсутствия удаленного доступа к их значениям не могут использоваться в современных средствах автоматизации. Эта функция возлагается на измерительные преобразователи давления.

  3. Датчик перепада давления

    Этот датчик измеряет разность между двумя показаниями давлений. Датчики перепада давления используются для измерения многих свойств, таких, как, уровни жидкостей (путем сравнения давления выше и ниже уровня жидкости) или скорости потока (путем измерения изменения давления).

  4. Герметичный датчик давления

    Этот датчик аналогичен датчику давления манометру за исключением того, что он измеряет давление относительно некоторого фиксированного значения давления, а не окружающего атмосферного давления (которое изменяется в зависимости от местоположения и погодных условий).

Классификация датчиков давления по принципу действия

spravochnick.ru

Назначение и область применения датчиков давления. Виды датчиков давления, принцип действия и особенности конструкции

Датчик давления — это устройство, в котором выходные параметры зависят от давления исследуемой среды, будь то жидкость, газ или пар. Датчик давления состоит из первичного преобразователя давления, в составе которого чувствительный элемент - приемник давления, схемы вторичной обработки сигнала, различных по конструкции корпусных деталей, в том числе для герметичного соединения датчика с объектом и защиты от внешних воздействий и устройства вывода информационного сигнала.

Первичные преобразователи имеют чувствительный элемент преобразующий как правило давление в перемещение. В основе принципа действия лежит упругая деформациячувствительного элемента, который выполняется в виде гофрированных мембран, мембранных коробок, сильфонов, манометрических пружин и т.п.

Вторичные преобразователи строятся на основе различных физических явлений.

Резистивные(реостатные и тензорезистивные) Тензорезистор — это элемент, изменяющий свое сопротивление в зависимости от деформирования. Эти тензоризисторы устанавливают на мембрану чувствительную к изменению давления. В итоге, при давлении на мембрану она изгибается и изгибает тензоризисторы, закрепленные на ней. Вследствие чего, сопротивление на них меняется и меняется величина тока в цепи. Реостатный представляет собой переменный резистор со скользящим контактом.

Ёмкостные преобразователи используют метод изменения ёмкости конденсатора при изменении расстояния между обкладками. При изменении давления мембрана с электродом деформируется и происходит изменение емкости.

Пьезоэлектрические. Главной особенностью пьезорезистивных датчиков является сам пьезорезистор. Он представляет собой полупроводник, сопротивление которого меняется при деформации или растяжении. В данном случае давление передаётся через заполняющую жидкость от диафрагмы к пьезорезистору. Далее это значение сопротивления поступает в электронный блок, который преобразует сигнал в электрический.

Индукционные датчики основаны на передаче магнитных полей от тела к другому телу, не контактирующим с первым. Иными словами – конструктивно индукционный датчик имеет железный сердечник, в проволочной обмотке, по которой проходит ток. Сердечник соединен с диафрагмой и при изменении давления меняется положение сердечника относительно самой обмотки, соответственно меняется индуктивность обмотки. Далее сигнал преобразовывается в электронном блоке.



Назовите назначение и область применения металлических и полупроводниковых термометров сопротивления. Объясните их принцип действия и особенности конструкции. Назовите достоинства, недостатки и основные характеристики.

Термо́метр сопротивле́ния — электронный прибор, предназначенный для измерения температуры и основанный на зависимости электрического сопротивления металлов, сплавов и полупроводниковых материалов от температуры. Термометр сопротивления применяют, например, для измерения температуры внутри газовых котлов на теплоэлектростанциях.

Металлический термометр сопротивленияпредставляет собой резистор, выполненный из металлической проволоки или плёнки и имеющий известную зависимость электрического сопротивления от температуры.

Широкое распространение получили Т. с. из чистых металлов, особенно платины и меди, которые конструктивно представляют собой металлическую проволоку или ленту, намотанную на жёсткий каркас (из кварца, фарфора, слюды), заключённый в защитную оболочку (из металла, кварца, фарфора, стекла) с головкой, через которую проходят 2, 3 или вывода, соединяющие Т. с. с измерительным прибором.

Полупроводниковые термометры сопротивления под названием термисторов широко применяют в технике. Термистор — полупроводниковый резистор, электрическое сопротивление которого зависит от температуры. С их помощью контролируют температуру в большом числе точек, причем показания ее могут быть получены на приборах, установленных в одном пункте. Т. с. из полупроводников широко применяются для измерения низких температур благодаря их высокой чувствительности. Т. с. этого вида представляют собой полупроводниковые пластинки (плёнки) различных габаритов и формы с приваренными металлическими выводами, помещаемые часто в защитную оболочку.

Преимущества термометров сопротивления

· Высокая точность измерений (обычно лучше ±1 °C), может доходить до 0,13м °C(0,00013).

· Возможноcть исключения влияния изменения сопротивления линий связи на результат измерения при использовании 3-х или 4-х проводной схемы измерений

· Практически линейная характеристика

Недостатки термометров сопротивления

· Малый диапазон измерений (по сравнению с термопарами)

· Более дорогой (по сравнению с термопарами), если это платиновый термометр сопротивления типа ТСП

· Требуется дополнительный источник питания для определения температуры

megaobuchalka.ru

Система контроля давления в шинах — Википедия

Материал из Википедии — свободной энциклопедии

TPMS (англ. tire pressure monitoring system) — система контроля давления и температуры в шинах автомобиля (СКДШ). Система предназначена для информирования водителя о падении давления в шинах.

Существуют системы контроля косвенные и непосредственные.

Система косвенного контроля давления в шинах является программным расширением блока ABS с системой "ESP/ESC". Используя штатные датчики вращения отдельно для каждого колеса, система постоянно следит за изменениями внешнего радиуса шины, и в случае, если давление в шине будет снижено более, чем на 0,5 бара (примерно 0,5 кгс/см2), то система выдаст предупреждение на дисплей панели приборов, а также будет включена жёлтая пиктограмма индикации предупреждения о падении давления в шинах на панели приборов.

Система "TMPS версии II" — имеет ряд преимуществ по сравнению с предыдущей версией "TMPS версии I". Основная разница в том, что "версия I" — выводит на экран сообщение "Проверьте давление в шинах", без указания в каком именно конкретном колесе было снижено давление шины. Это не всегда удобно, кроме того, "версия I" значительно больше подвержена ложным срабатываниям системы косвенного контроля давления в шинах. В отличие от "версии I", "TMPS версии II" — выводит сообщение "Проверьте давление в [конкретном] колесе", что более наглядно и понятно, на какое именно колесо стоит обратить внимание. Для осуществления калибровки давления в этом случае существует кнопка сброса.

При непосредственном контроле специальный датчик измеряет температуру и давление в колесе и с помощью встроенного радиопередатчика малого радиуса действия передаёт информацию на основной блок, установленный возле водителя. Основной блок обрабатывает полученную информацию по заранее заданным правилам, выводит её на дисплей или подаёт сигнал тревоги.

Разработаны системы, которые охраняют колеса от воровства во время стоянки "Страж колес". В зависимости от подключения, оповещение происходит, через автомобильный сигнал или на телефон владельца.

Виды датчиков непосредственного контроля давления в шинах[править | править код]

Существуют системы двух видов:

Как следует из названия, одни датчики монтируются внутри колеса, что требует шиномонтажа, другие накручиваются на ниппель вместо защитных колпачков.

Дополнительные возможности[править | править код]

При использовании системы в промышленных целях, например при дорожно-строительных работах или в карьерах, актуально использование системы удаленного мониторинга. Некоторые СКДШ интегрируются в системы управления транспортом (АСУ ГТК на карьере). Удаленный мониторинг позволяет централизовано принимать решение об остановке машины на подкачку, что позволяет поддерживать использование рабочего времени на оптимальном уровне.

ru.wikipedia.org

Как правильно выбрать преобразователь давления

Давление, эта важнейшая после температуры физическая величина, является определяющей во многих технологических процессах.

Преобразователи давления предназначены для измерений и непрерывного преобразования давления в унифицированный выходной сигнал постоянного тока, напряжения или в цифровой сигнал.

Используются датчики в регуляторах и других устройствах автоматики в системах автоматического контроля, регулирования и управления технологическими процессами в системах водообработки, отопления, вентиляции и кондиционирования; гидравлических системах, холодильной технике, расходомерах и счетчиках; дизельных двигателях; тормозных системах; уровнемерах, в испытательных стендах и т.д.

Индустриальные измерения и контрольно-измерительная аппаратура применяются во всех областях промышленности — от атомной до пищевой и фармакологической; соответственно, везде нужны и преобразователи давления и преобразователи уровня.

Принцип действия датчиков основан на упругой деформации чувствительного элемента (сенсора), на который нанесены полупроводниковые тензорезисторы, включенные по схеме моста Уинстона. Измеряемое давление подводится через штуцер в рабочую полость датчика и вызывает деформацию диафрагмы. Это приводит к изменению геометрии резисторов, находящихся с ней в тесной механической связи и изменению их сопротивления. Происходит преобразование приложенного давления (механический вход) в изменение сопротивления (электрический выход).

Мы предлагаем следующий алгоритм, чтобы правильно подобрать датчик для Вашего применения:

1. Тип измеряемого давления

Преобразователи давления измеряют разность двух давлений, воздействующих на измерительную мембрану (чувствительный элемент) датчика. Одно из этих давлений — измеряемое, второе — опорное, то есть то давление, относительно которого происходит отсчет измеряемого. В зависимости от вида опорного давления все датчики разделяются на следующие виды:

Практически все наши преобразователи давления имеют модификации для измерения как абсолютного так и избыточного (в том числе разряжения) давлений. Подробнее Вы можете ознакомиться в разделе продукция/преобразователи давления.

Преобразователи абсолютного давления
Предназначены для измерения величины абсолютного давления жидких и газообразных сред. Опорное давление — вакуум. Воздух из внутренней полости чувствительного элемента датчика откачан. Например, барометр –частный случай датчика абсолютного давления.

Минимальный доступный у нас для заказа диапазон абсолютного давления с погрешностью 0,1%ВПИ - это 0…50мбар (0…5кПа). Описание на датчик 41X Вы можете увидеть здесь.

Преобразователи избыточного (относительного) давления
Предназначены для измерения величины избыточного давления жидких и газообразных сред. Опорное давление — атмосферное; таким образом, одна сторона мембраны соединена с атмосферой.

Преобразователи дифференциального (разности, перепада) давления
Предназначены для измерения разности давления среды и используются для измерения расхода жидкостей, газа, пара, уровня жидкости. Давление подается на обе стороны мембраны, а выходной сигнал зависит от разности давлений.

В нашей линейке предствалены датчики

Преобразователи гидростатического давления (преобразователи уровня)
Предназначены для преобразования гидростатического давления контролируемой среды в сигнал постоянного тока. Измеряют давление столба жидкости, зависящее только от его высоты и от плотности самой жидкости. Изменение атмосферного давления компенсируется при помощи капиллярной (дыхательной трубки)

Преобразователи вакууметрического давления (разряжения)
Предназначены для измерения величины вакуумметрического давления жидких и газообразных сред. Опорное давление в этих датчиках также атмосферное. Однако, в отличие от датчиков избыточного давления, измеряемое давление меньше атмосферного, т.е. существует разрежение относительно атмосферы.

Преобразователи избыточного давления-разряжения
Представляют собой сочетание датчиков избыточного и вакуумметрического давлений, т.е. измеряют как давление, так и разрежение, например -1…6 бар. У нас Вы можете заказать абсолютно любой такой диапазон в пределах максимального диапазона измерений конкретного датчика.

2. Среда использования датчика

Для надежной работы датчиков необходимо выбирать материалы элементов, контактирующих с измеряемой средой (мембран, фланцев, кабеля и уплотнительных колец) химически стойкими к этим средам. Например, для различных сред эксплуатации материалом мембран сенсоров может быть нержавеющая сталь, титан, титановый сплав, хастеллой, керамика, Kynar и др. Материал кабеля особенно актуален для погружных гидростатических датчиков давления. Для питьевой воды идеально подойдет полиэтиленовый PE кабель, для не агрессивных промышленных сред полиуретановый PUR. Если же Вы собираетесь использовать датчик в топливе или агрессивной жидкости, то оптимальным решением будет термопластичный эластомер (Hytrel) или тефлон (PTFE). Все эти материалы мы используем и предлагаем в своих модификациях датчиков Келлер.

3. Климатическое исполнение

Преобразователи давления также отличаются по климатическому исполнению. Следует обращать внимание на климатические условия (температура окружающей среды, влажность, прямое попадание воды и солнечных лучей) в месте установки датчика. Они должны соответствовать тем, на которые он рассчитан. Причем очень важно различать две температуры, которые могут оказывать влияние на наш датчик: температура окружающей среды и температура измеряемой среды. Наши преобразователи давления могут работать в условиях окружающей и измеряемой среды от -55 до 150С. Специальные исполнения преобразователей давления способны работать при температурах среды до +300С.

4. Выходной сигнал

Рассмотрим основные типы:

Тип выходного сигнала прежде всего зависит от уже имеющегося оборудования и стоящей перед Вами задачи. Для этого необходимо изучить входы, которые имеют используемые контроллеры, приборы, машины или регуляторы. Все перечисленные сигналы мы используем в наших датчиках давления, а также и многие другие.

Для автономных приборов мы бы посоветовали использовать датчики с цифровым интерфейсом I2C с данными датчиками Вы можете ознакомиться здесь. Если же Вам не удобно работать с цифровым выходом, то лучше использовать датчики с минимальным напряжением питания например 3,5V — это датчики 33X или 5V — это датчики 21Y.

5. Точность измерений

Преобразователи давления имеют различные метрологические характеристики (классы точности) – обычно от 0,05% до 0,5%. Особо точные датчики используются на важных объектах в различных отраслях промышленности. Опционально датчики серии 33x могут иметь основную погрешность до 0,01% ВПИ (доступно только для диапазонов >10 бар).

На рисунке представлен датчик без температурной компенсации и с температурной компенсацией осуществляемой по специальным алгоритмам микропроцессором в преобразователях давления Келлер.

Особое внимание следует уделять стабильности датчиков давления. Ведь даже очень точный датчик спустя нескольких часов работы при температурных циклах в широком диапазоне начинает давать дополнительную погрешность более 0,5%ВПИ. Что говорить, если эти циклы будут продолжаться месяцами и даже годами!

Некоторые виды датчиков давления имеют взрывозащищенное исполнение. Эти модели могут успешно использоваться для определения давления на взрывоопасных объектах с присутствием взрывчатых и легко воспламеняющихся газов и жидкостей. В линейке Келлер представлены как преобразователи с искробезопасной цепью, так и преобразователи со взрывонепроницаемой оболочкой.

Преобразователи давления относятся к измерительной технике и должны проходить обязательные сертификационные испытания. После этого они утверждаются и вносятся в Госреестр средств измерений.

Надеемся, что данный материал поможет Вам лучше ориентироваться при выборе преобразователей давления.

Вы также можете подобрать решение, которое будет актуально именно для Вашей задачи с помощью наших специалистов. Заявку на подбор можно отправить любым удобным Вам способом: через форму обратной связи, по электронной почте [email protected] или же по телефону 8 (800) 777 18 50. 

izmerkon.ru


Смотрите также