RU (495) 989 48 46
Пленка на бампер

АНТИГРАВИЙНАЯ ЗАЩИТА БАМПЕРА

 

Новые материалы в производстве автомобилей


Новые материалы в современном автомобилестроении

Принципиальная задачка современных автоконцернов – понижение массы автомобиля. Дюралевые кузова уже достигнули уровня массового производства, хотя пока лишь на дорогих моделях (Ауди, Ягуар). Освоены и многие детали шасси из алюминия заместо стали, также более легкие составляющие. Но борьба с весом автомобиля длится и даже выходит на новый уровень в связи с ужесточением требований по экономичности и экологичности.

Алюминий в этой борьбе, естественно, занимает пока ведущее место. Конкретно «пока», потому что имеются и поболее симпатичные материалы с высочайшими механическими свойствами, но еще больше легкие. Освоением их в массовом производстве как раз и занимаются ведущие автомобилестроительные компании и производители компонент.

Неувязка понижения веса осложняется к тому же тем, что авто в силу беспристрастных обстоятельств становятся все более сложными и, соответственно, более томными. Новые легкие конструкционные материалы призваны восполнить по весу, в том числе, и новые узлы, и системы активной и пассивной безопасности, понижение уровня токсичности, также неизменное увеличение уровня комфорта.

Folkswagen Golf 1,6 Diesel 1988 года весил 920 кг. Гольф, стоящий на производстве в текущее время – 1320 кг. Но в этом нет ничего необычного. За последние 20 с излишним лет авто вообщем стали существенно тяжелее, невзирая на все более обширное применение алюминия, легких сплавов и пластмасс. Все новые и новые упомянутые выше системы находят применение в следующих моделях (в сопоставлении с прошлыми). К примеру, тот же самый Гольф 1988 года не имел в серийном выполнении ряда принципиальных узлов и компонент, таких как усилитель руля, кондюк, подушки безопасности, фильтр для улавливания жестких частиц при сгораниигорючего. Это, естественно, предназначает повышение веса автомобиля.

Все же, эксплуатационные свойства автомобилей повсевременно улучшаются, потому что движки становятся более действенными, кузова более аэ- родимамичными, коробки совершенствуются, понижается сопротивление качению шин.
Если современный Гольф удалось бы сделать в весе старенького (менее одной тонны), его средний расход горючего сократился бы приблизительно на 1,2 л/100 км.

Понижение массы автомобиля – дело не только лишь сложное, да и драгоценное, потому что связано с необходимостью внедрения новых, более легких, но довольно крепких материалов, которые обычно стоят дороже.

Реальное понижение веса может дать только «тотальный» поиск более легких заменителей практически для всех конструкционных материалов.

Заместо использования стекловолокна для усиления синтетических материалов отделки интерьера можно прибегнуть к натуральному волокнистому материалу, к примеру, к конопле либо к древесным отходам. Это может дать сравнимо маленькую экономию в весе (порядка 7 %), зато такие материалы имеют преимущество в процессе утилизации автомобиля.

Анализ указывает, что новые модели нередко все-же удается сделать легче собственных предшественников. К примеру, масса последнего Форд Fiesta на 25 кг меньше модели предшествующего поколения. Peugeot 508 2,0 HDi весит на 70 кг меньше заменяемой им модели 407 2,0 HDi, хотя и превосходит последнюю по габаритам.

Для автомобилей более дорогих и соответственно более обремененных различным оборудованием, понижение веса за счет легких материалов еще важнее. На модели Ауди А8 уже в 1994 году была использована так именуемая пространственная дюралевая рама (Aluminium Space Frame – ASF).

Компания Ягуар пошла еще далее: модель XJ 1999 года (7-ое поколение) чуть не вся изготовлена из алюминия (в сотрудничестве с канадским производителем алюминия – компанией Alcan).

На данный момент, более 10 лет спустя, Ягуар выпускает уже третью «полностью алюминиевую» модель в «большой» серии (купе и автомобиль с откидным верхом ХК). Эта разработка будет отчасти употребляться и в последующем Range Rover.

Есть примеры использования алюминия не настолько конструктивно. К примеру, в автомобилях Бмв 7-ой серии и Ауди А6 из алюминия делаются только отдельные большие детали, в то время как все другие остаются железными.

Для электромобилей и гибридов неувязка понижения веса является еще больше животрепещущей, потому что это связано с может быть допустимым весом батареи, от которой зависит припас хода.

А именно, кузов нового электромобиля Бмв i3 в значимой степени выполнен из углепластика. Это отдало возможность прирастить вес батареи на 250-350 кг. Практически кузов делается из синтетического материала, усиленного углево- локном. По терминологии Бмв новый материал назван CFRP – Carbon Fibre Reinforced Plastic.

Кузов из такового материала на 50 % легче железного и на 30 % легче дюралевого. Структурные элементы из нового материала могут просто комбинироваться с дюралевыми кузовными панелями либо металлизироваться.

До сего времени углеволокно применялось для легких спортивных моделей и для очень дорогих автомобилей. Причина ординарна. Процесс производства кузовных и иных моделей из углепластика либо с содержанием углепластика занимает много времени, а поэтому и дорог.

Но годы работы с этим материалом позволяют улучшать технологию производства деталей из него в направлении сокращения производственного времени. Это дает возможность организовать уже серийный выпуск и соответственно понизить стоимость.

Все это касалось в главном кузовных панелей, и тут уже практически все способности понижения веса исчерпаны. Очередь за компонентами и некими деталями шасси.

Компания ZF разработала заднюю подвеску для автомобилей малого класса, где упругим элементом является поперечная однолистовая рессора из синтетического материала, но не усиленная углеволокном. Рессора именуется Transverse Composite Leaf Spring и делает также функцию направляющего аппарата подвески. Такая подвеска может быть использована и для электромобилей.
Как понятно, широчайшее распространение получила подвеска типа Мак Ферсон, состоящая из 1-го блока, куда заходит и пружинная рессора, и амортизатор, и довольно массивные связующие и фиксирующие элементы. Вот их-то и стремятся облегчить.

Поначалу заместо стали применяли алюминий (на сравнимо дорогих моделях). На данный момент делаются пробы использовать композитные материалы, в том числе углеволокно. При всем этом экономия веса выходит достаточно значимой.

Так, стойка Мак Ферсон в сборе из углеволокна (для деталей, где это может быть) весит в 2 раза меньше, чем подобная стойка с применением алюминия.

В качестве усиливающих материалов используются не только лишь углепластики, да и стекловолокно, также композиция из этих материалов.

carsliga.ru

Современные тенденциии металлургии в автомомбилестроении

Автор: по материалам Торгово-промышленной палаты РФ

Категории: Автомобилестроение

Автомобилестроение является одним из крупнейших потребителей конструкционных материалов в мире. При этом рост требований к ресурсам формирует конкуренцию между производителями различных материалов, стимулирует прогресс в разработке их новых видов и повышение качества.

Несмотря на увеличение использования в автомобилестроении новых конструкционных материалов, ведущую роль в производстве продолжает играть стальной прокат. Так, в среднем на российский легковой автомобиль приходится 75% готового проката, метизов и стальных труб, а 25% составляют литейный чугун, цветные металлы, пластмасса, резина, стекло и прочие материалы. Уступая пластмассам и легким металлам по удельному весу, стальные изделия обеспечивают более высокую прочность и, соответственно, надежность и безопасность.
Во времена СССР потребление стали в отрасли было гораздо выше при сравнимых объемах выпуска автомобилей из-за использования более ресурсоемких технологий. Так, в 1990 г. при объеме производства автомобилей на уровне 1,82 млн. ед. потребление всех видов проката черных металлов составляло 3,64 млн. т, а в 2008 г., при сравнимом объеме производства (1,8 млн. ед.), потребление достигло лишь 2,5 млн. т.
Требования автомобилестроителей к стали являются составным элементом общих требований к современному автомобилю. С течением времени они претерпевают определенные изменения. Прежде всего, это связано с ростом требований к весу автомобиля: чем он меньше, тем экономичнее расходуется горючее, снижается нагрузка на окружающую среду, и появляется возможность добавлять больше опций и оборудования. Второе направление – повышение норм безопасности, выполнение которых требует максимального упрочнения силового каркаса кузова для защиты людей и деформируемости внешних элементов для поглощения удара. Третьим направлением является стоимость производства, последующего обслуживания и утилизации. Именно этот фактор обеспечивает сохранение лидирующих позиций стали в сравнении с другими материалами, поскольку сталь подвержена многократному рециклингу: старые транспортные средства можно утилизировать, и уже бывшую в эксплуатации сталь использовать для производства нового автомобиля.

Таким образом, автомобильная промышленность предъявляет к стали очень высокие требования, поскольку в первую очередь она должна удовлетворять двум диаметрально противоположным критериям. С одной стороны, требование по снижению массы изделий предполагает использование высокопрочных материалов, с другой – рост требований по технологичности производства предполагает использование высокопластичных материалов.
В зависимости от соотношения показателей прочности и пластичности (штампуемости), в настоящее время выделяют три основных класса холоднокатаных сталей для автопрома.
Во-первых, это мягкие стали (Mild steels), практически не отличающиеся по маркам от тех, что были освоены и выпускались еще во времена СССР, лишь с более жесткими требованиями к химическому составу, и так называемые стали IF (чистые низкоуглеродистые) и IS (изотропные). Они легко штампуются и применяются для изготовления внешних панелей. Категория мягких сталей до сих пор является наиболее распространенной для российской автомобильной промышленности. Мягкие стали используются в дверях, капоте, крыше, где требуется металл очен

www.metaljournal.com.ua

Новые материалы и технологии в машиностроении

В последнее время новые технологии в машиностроении появляются всё более массово. Это обусловлено очередной ступенью прогресса, который, прежде всего, направлен на производственную деятельность. Машиностроение представляет собой огромную отрасль с множеством разветвлений, куда входят такие направления как: дизайн и производство транспорта, робототехника, изготовление промышленных станков, бытовые приборы, радиотехника, электротехническая промышленность и пр.

Основой современного машиностроения справедливо считаются наукоёмкие технологии и инновации, возникающие на пересечении нескольких наук. В данный момент технический прогресс совместил в себе развитие энергетики, физические и химические достижения, высокоэффективные компьютерные технологии, программные продукты и пр. Это сочетание позволяет разрабатывать и выпускать многокоординатные, гибкие, многофункциональные машины и находить новые методы их производства.

Сверхпрочный материал

Специалисты автомобильной, авиационной и космической промышленности много десятков лет задаются единым вопросом о создании нового материала, имеющего минимальный вес, но при этом обладающим исключительной прочностью. Чем выше эти характеристики, тем экономичнее, экологически безопаснее и надёжнее выпускаемые в этих отраслях транспортные средства.

Группа исследователей из Северной Каролины и Канады смогли синтезировать сплав нового типа, которому предрекают произвести революцию в технологиях машиностроения. Сплав пока не получил официального названия, поэтому в научных работах обозначается по химической формуле — Al20Li20Mg10Sc20Ti30. Состав представляет собой смесь 5 известных металлов: магния, алюминия, лития, титана и скандия. Плотность материала не превышает плотность алюминия, а по прочности он превзошёл входящий в его состав титан.

Главный секрет заключается в методе производства сплава. Перед изготовлением в равных пропорциях тщательно перемешивают и усредняют порошкообразные ингредиенты с размером частиц не выше 12 нанометров. После этого идёт процесс сплавления при помощи диффузии под избыточным давлением в 5,9 ГПа.

Значения, которые демонстрирует этот новый материал, превосходят все существующие конструкторские аналоги на данный момент. Ближе всего по плотности к нему находятся отдельные сорта керамики, но они очень уступают в хрупкости. Прочность нового металлического сплава держится на уровне углеродного волокна, но такое волокно слишком пластично, что вызывает его деформации при больших нагрузках или механическом воздействии, поэтому его применение в машиностроении сильно ограничено.

Сейчас ведутся разработки по выпуску сплава в промышленных масштабах и по удешевлению его производства до минимальных значений. А пока специалисты и учёные называют его «материалом будущего», и поскольку у этой точки зрения в научных кругах нет противников, можно надеяться, что именно такая роль ему и уготована.

Двигатель с пластмассовыми узлами

Желание максимально повысить энергоэффективность и экономичность транспортных средств стала причиной того, что новые машины, небольшие и крупногабаритные плавсредства и самолёты становятся всё легче. Основным пунктом снижения веса в сфере транспорта всегда считалось облегчение конструкций за счёт снижения веса кузова и шасси. Достигнув в этом значительных результатов, машиностроение нашло новую технологию, которая даст возможность продолжить облегчение. Учёные из Фраунгофера (Германия) решили, что следующим этапом должно стать облегчение двигателя внутреннего сгорания. Стандартно он выполняется из тяжёлых сортов металлов, которые облагают повышенной термоустойчивостью, но исследователи предприняли смелую попытку заменить металлические детали более лёгкими пластиковыми композитами.

Был создан одноцилиндровый двигатель, в большинстве узлов которого отказались от металлических составляющих. Их заменили пластиком из армированного волокна, который соответствует инжекционной формовке. Тесты показали, что такое изменение позитивно отразилось не только на весе двигателя и транспортного средства в целом, но и стало причиной более тихой работы двигателя. В качестве ещё одного бонуса было выявлено, что такая новая технология позволяет снизить количество затрачиваемого топлива, поскольку детали из пластикового армированного волокна отдают меньшее количество тепла в окружающую среду.

Главной проблемой было создание надёжного метода крепления пластика к металлу, поскольку эти два материала совершенно по-разному расширяются под действием высокой температуры. Сложность представляла и устойчивость пластика к органическим веществам, таким как машинное масло, бензин, компоненты антифриза и т.д. Для этого в состав были добавлены термореактивные смолы. Детали выливали в заготовленные формы, после которых отпала необходимость доводки элементов, как это бывает с металлическими деталями, что значительно сокращает время на производство двигателей нового типа.

Преодоление трения

Национальная лаборатория Аргонна (США) представила новую технологию, разработанную для машиностроения, которая позволяет снизить трение двух разных материалов практически до нуля на макроскопическом уровне.

Трение – параметр, который требует энергии для движения любого механизма. Чем выше трение, тем больше необходимо топлива для его преодоления. Чтобы уменьшить этот параметр используют современные смазочные материалы, но снизить его таким образом получается незначительно. Поэтому американские учёные решили обратить своё внимание на трение на уровне наночастиц, потому что именно здесь атомное притяжение важнее неровностей, вызывающих трение в макромасштабе.

Исследователи в ходе тестов одну плоскость покрыли графеном, а на другую поверхность напылили алмазно-углеродный состав. После этого обе поверхности перемещали друг по другу. Когда крошечные алмазы отрывались от своей плоскости и катались между поверхностями, коэффициент трения становился практически нулевым. Для подтверждения своей догадки учёные провели ещё один опыт: они искусственно поместили наноподшипники из алмаза, и трение при движении становилось настолько мало, что измерить его при помощи даже самой чувствительной аппаратуры не удавалось.

Механизм действия этой технологии основан на том, что наношарики одного слоя выбивают из графена хлопья, которые выполняют роль модифицированной смазки. Эксперименты проводились в разных условиях, при разных скоростях трения и различных нагрузках, но коэффициент оставался нулевым. Единственным условием, который мог помешать феномену, стало попадание воды между взаимодействующими поверхностями.

Инновацию с энтузиазмом взяли в оборот машиностроители, занимающиеся космическими разработками, где новый подход намерены реализовать в ближайшие 15 лет.

Новый тип изготовления деталей

Машиностроение всё больше внедряет в производство разработки, в которых при выполнении работ человеческий фактор сводится к минимуму. Всё чаще изготовление сложных и сверхточных деталей становится делом лазерных установок.

При помощи лазерного луча направленной точности выполняется тонкая резка металла с любым интервалом и графическим узором. По сравнению с механическими инструментами у такого метода есть ряд неоспоримых преимуществ:

Лазер используется и для сварочных работ. Особенно важна эта технология в случае крупногабаритных деталей из металлов, имеющих большой вес и широкую сварную площадь. Всё чаще этот метод применяют на воздухе в аргонной среде, отмечая его надёжность, экономичность и скорость.

Но самая инновационная технология машиностроения, связанная с применением лазера, касается метода лазерного послойного синтеза. Благодаря ему выполняют выращивание деталей сложной формы. При помощи лазерного синтеза создают различные детали из жаропрочной стали, алюминия или титана.

Происходит этот процесс по 3D-технологии: лазер оплавляет порошок, из которого за несколько часов выполняется деталь. Такие изделия характеризуются идеальной плотностью, что позволяет широко применять их в авиационной и космической отрасли. Этот подход позволяет свести к нулю возможные деформации и поломки, которые возникали при применении старых методов.

Самоочищающаяся краска

Новые технологии машиностроения направлены не только на инновационные конструкторские особенности. Они также касаются дизайна и внешнего вида изделий. Один из крупнейших автопроизводителей компания Nissan поставила себе цель создать автомобильную краску, которая позволит свести повседневный уход за машиной к минимуму.

Краска нового типа работает благодаря ультратонкому слою, состоящему из наночастиц, которые отталкивают от себя пыль, грязь, машинное масло, органические растворители и другие типы загрязнителей, способные оседать на поверхности автомобилей. Для тестов полученного материала была выбрана модель Nissan Note. Для чистоты эксперимента машины покрывали краской, произведённой по новой технологии, лишь наполовину, чтобы иметь возможность сравнивать результат со стандартным покрытием.

Технология, которую опробовали в течение нескольких месяцев, называется Ultra-Ever Dry. Работает она за счёт того, что между окружающей средой и краской возникает тонкий воздушный нанослой, отталкивающий инородные агенты с поверхности. Кроме того, что Ultra-Ever Dry позволит в десятки раз увеличить время между мойками авто, она защитит корпус от деформации вследствие контакта с влагой, что продлит время эксплуатации и сохранит на длительное время безупречный вид модели после схождения с конвейера.

Материал — перо

Настоящей сенсацией в мире машиностроения стала инновационная технология, представленная компанией Boeing. Ею является сверхлёгкий материал Microlattice, который имеет в структуре 99,99% воздуха. Из-за чрезмерной лёгкости небольшой кусок нового материала способен парить в воздухе наподобие пера или одуванчика. Кроме того, он чрезвычайно эластичен, обладает удивительной способностью к поглощению ударов, может выдерживать повышенное давление и даже восстанавливает первичную структуру после 50% деформации.

Структура Microlattice состоит из ультратонких полимерных полых трубок, имеющих толщину 100 нанометров, что в тысячу раз тоньше по сравнению с волосом человека. Трубки располагаются упорядоченно в форме молекулярной решётки отдельных металлов. Между трубками всё свободное пространство занято воздухом.

Удивительно свойство поглощать энергию, присущее Microlattice. Были проведены эксперименты, в ходе которых установлено: чтобы сохранить целостность скорлупы сырого куриного яйца, сброшенного с крыши 25-этажного дома, необходим слой упаковочной плёнки толщиной в 1-2 метра. Чтобы сохранить яйцо невредимым при помощи Microlattice, достаточно всего пару десятков сантиметров этого материала.

Компания Boeing анонсировала, что на данный момент рассматривается возможность массового выпуска Microlattice для использования не только в авиастроении, но и в других сферах машиностроения. Специалисты не исключают, что уже через 10 лет практически во всех транспортных средствах в том или ином процентном соотношении будет присутствовать Microlattice. Не исключают возможность его применения и в изготовлении роботов, а также бытовой техники.

Инновационные принципы и материалы машиностроения продолжают разрабатываться по всему миру. Новые высоты, которые сейчас хотят покорить инженеры и конструкторы, касаются безызносных материалов. Не кажутся уже такой откровенной фантастикой идеи создания вечного двигателя. Обычным пользователям остаётся с интересом наблюдать за новыми разработками и с наслаждением использовать их в повседневной жизни.

 

qwizz.ru

Занимательное материаловедение: из чего можно сделать автомобиль

 Инженеры крупных автомобильных компаний активно внедряют и используют экологичные материалы, причем применение некоторых из них весьма неожиданно. Ну а мы решили вспомнить, что необычного применяли при выпуске автомобилей ранее.

Основным материалом для производства автомобиля является сталь. Действительно, ведь стали обладают достаточной конструкционной прочностью, небольшой ценой, а также могут использоваться в разных технологических процессах: они легко штампуются или свариваются. Но у сталей есть и недостатки. Главный из них – низкая стойкость к коррозии, что вынуждает конструкторов применять для защиты кузова специальные защитные покрытия. Кроме того, стальная деталь имеет большую массу. Поэтому в конструкции автомобилей нашли широкое применение алюминиевые сплавы, пластмассы и композитные материалы.

Это обусловлено стремлением снизить уязвимость кузовов автомобилей к коррозии, а также уменьшить общую массу автомобиля, что благоприятно влияет на экономичность и управляемость. Тем не менее листовые стали не сдают свои позиции, так как стоимость алюминиевых, а уж тем более композитных материалов гораздо выше. На крупных автомобильных заводах за сутки может перерабатываться свыше 1 000 тонн листовых сталей, которые идут на изготовление широкого ассортимента автомобильных деталей. Но давайте взглянем на другие материалы, которые могли бы заменить сталь в производстве автомобилей.

Дерево


Начать наш обзор справедливо с дерева. Этот материал стоял у истоков автомобилестроения и до массового применения стали широко использовался в автомобилях. Деревянные доски или просто фанера часто шли на применение в кузовах легковых автомобилей, грузовиков, автобусов и прочих утилитарных конструкциях.



Отдельно стоит сказать о роскошных автомобилях – богатые владельцы обращались к кузовным ателье, в которых творили поистине произведения искусства. Панели кузовов выполнялись из лакированного дерева ценных пород, а салон обшивался дорогим сафьяном или шелком.

Особняком здесь стоит уникальная Hispano-Suiza Н6С, построенная в 1924 году гонщиком Андре Дюбоннэ. Ее двигатель с несколькими карбюраторами рабочим объемом почти в 8 литров развивал 200 л.с., но для настоящего гоночного автомобиля был нужен легкий кузов. Дефицитных в те годы легких сплавов магния или алюминия Дюбоннэ не достал, а потому обратился в авиастроительную компанию Nieport с просьбой постройки легкого кузова.



Машина, впоследствии ставшая известной под именем Tulipwood, имела набранный из 20-миллиметровых шпангоутов каркас, на который с помощью медных заклепок крепились планки разных длины и ширины, изготовленные, вопреки имени, из древесины красного дерева махагони, в то время как древесина тюльпанного дерева очень плохо гнется и склонна к раскалыванию, что не позволяет применять ее в строительстве кузовов.



После установки всех деталей машину покрыли несколькими слоями лака и отполировали. Вся нижняя часть рамы для улучшения обтекаемости и защиты от ударов была закрыта алюминиевым кожухом. Сзади для лучшей развесовки разместили 175-литровый бензобак.

Андре Дюбоннэ поучаствовал на своей «деревяшке» в одной гонке – Тарга Флорио, где финишировал в итоге седьмым. После гонки он оставил автомобиль для повседневных поездок, а позднее тот попал в Америку и сохранился до наших дней в одном из калифорнийских автомобильных музеев.



Во время Второй мировой войны вся сталь уходила на нужды фронта, и большинство автомобилей стало оснащаться простыми деревянными кузовами типа фаэтон или универсал. Серийное производство автомобилей с деревянными кузовами продолжалось и после войны, особенно массово это явление получило развитие в Америке. И если в Европе и СССР к 50-м годам парк автомобилей имел стальные кузова, то американские автомобилисты не могли избавиться от привычки ездить на деревянной машине. Панели кузовов кабриолетов выполняли из красного дерева и лакировали, но в 60-е годы от деревянного кузова, который имел свойство рассыхаться, был пожароопасен и попросту небезопасен, стали отказываться. А впоследствии вплоть до 80-х годов на многих американских универсалах и джипах имелась виниловая графика с отделкой «под дерево».

Такие машины особенно популярны благодаря американским фильмам 80-90-х годов, где граждане Штатов путешествовали по стране на универсалах. Сейчас ясеневые рамы используют для своих машин англичане из фирмы Morgan, да в одном из поколений Корвета использовали древесину бальсы в днище, но полноценного автомобиля, выполненного целиком из дерева, современная промышленность уже не выпускает.


Splinter


В 2007 году американский энтузиаст Джо Хармон представил на тюнинг-шоу в Эссене среднемоторный суперкар Splinter, к постройке которого он приступил еще будучи студентом. На постройку суперкара ушло пять лет, причем все строилось своими силами и средствами. Кузов среднемоторной «Щепки» создан из древесины вишни и бальсы, а за спиной водителя разместился семилитровый двигатель V8 от Chevrolet Corvette, развивающий свыше 700 л.с. Из металла также сделаны и коробка передач, усилители кузова, амортизаторы, рычаги задней подвески и тормоза. А вот передняя подвеска получила деревянные (!) рычаги, а металлического в колесах – только алюминиевые ступицы и обода. В результате масса двухместного автомобиля достигла 1 360 кг, а по заявлениям авторов максимальная скорость Splinter в теории может достигать 380 км/ч, однако испытания не проводились. Впрочем, для автора этого достаточно: машину он расценивает как воплощение своей детской мечты и даже не помышляет хотя бы о мелкосерийном производстве.

Бамбук

Отдельно расскажем о единственном концепт-каре, который применил в своей конструкции… бамбук. Автомобиль, получивший название Ford MA, был показан на выставке Индустриального дизайна в 2003 году. Имя было выбрано как заключение идей, заложенных в азиатской философии «пространство между» применительно к автомобилю, выражаемое в том, что Ford MA является средоточием между эмоциями, искусством и наукой. Разработанный на компьютере родстер, выдержанный в минималистичном стиле, использует в своей конструкции бамбук, алюминий и углепластик, а задние колеса приводит в движение электромотор, но создателями допускается и установка небольшого бензинового моторчика. Родстер ориентирован на молодых людей, которые хотят найти свежие интерпретации автомобилей. Кстати, в машине нет сварных швов: все элементы соединены между собой с помощью 364 титановых болтов, а это означает, что такие родстеры можно легко собирать дома как конструктор из почти 500 деталей.



Кожа

В разоренной послевоенной Европе начали возникать сложности c поиском замены дефицитной стали, которой с трудом хватало на грузовики и автобусы. Поэтому широкое распространение у автомобильных производителей получили простенькие и дешевые мотоколяски наподобие BMW Isetta и Messerschmitt Kabinroller, которые имели три колеса, двухтактный мотор и крошечные размеры. Впрочем, покупатели не жаловались – машина стоила совсем немного, а уж благодаря Изетте мы вообще сейчас знаем марку BMW.

В таких условиях чехи Франтишек и Моймир Странские реализовали свою собственную идею бюджетного трехколесного автомобиля для народа. Первый прототип был создан братьями в 1943 году, получил имя Oskar (акроним от чешского «osa kara» – буквально «тележка на оси») и имел трубчатую раму, обшитую алюминиевыми листами. Спереди у машины было два колеса, соединенных с помощью рулевой рейки, а на одно заднее приходился цепной привод от мотоциклетного мотора.



В серийное производство автомобиль был запущен в 1950 году и получил имя Velorex. Алюминиевые листы были в те годы стратегическим сырьем, и братьям пришлось срочно искать замену. Сталь не подходила: снабженный 250-кубовым двигателем от Явы Velorex 16/250 был очень ограничен в динамике, а стальной кузов сильно увеличивал массу машины, поэтому на раму натянули практичный и непромокаемый дерматин.

В разные годы 80 рабочих фабрики братьев Странских собирали до 400 автомобилей в год, а производство завершилось к 1973 году. Большинство Велорексов уходило в органы соцобеспечения, где полученные машины передавались людям с ограниченными возможностями. Переделанные в легкие грузовички, автомобили широко использовались как технологический транспорт на крупных промышленных предприятиях, а некоторое количество продавалось и в широком доступе. Благодаря своей простоте и неприхотливости машина пользовалась популярностью в сельской местности, ее охотно покупали агрономы и сельские врачи.



Velorex постоянно модернизировался, машина получала все более мощные двигатели. Например, выпускались модели с 175-, 250- и 350-кубовыми двигателями от Явы, а позднее появился динамостартер и гидропривод сцепления, облегчивший жизнь владельцев машины. Интересный факт: заднего хода как такового у Велорекса не существовало – чтобы поехать назад, нужно было остановить двигатель и запустить его так, чтобы коленчатый вал вращался в обратном направлении.



В современном автомире кожа, как видно, не слишком часто встречается на кузовах автомобилей: сейчас кузовные панели затягивают в нее только тюнинг-ателье по заказу своих клиентов.

Ткань

Но не кожей единой пользовались автомобильные конструкторы. Например, в середине 80-х годов в Белорусской академии художественных искусств была создана примитивная мотоколяска, в основу которой легла трубчатая рама, на которую натянули… ткань.

Вообще, ткань как таковая имеет место в конструкции кузовов и по сей день: стоит вспомнить любой автомобиль-кабриолет с мягким складным матерчатым верхом. Но то только верх, а другое – весь кузов. И из нее делали не только мотоколяски, а вполне себе крупные автомобили. Чего только стоит построенный безымянным механиком фирмы Chris-Craft Motor Boats из Сан-Франциско в 1937 году американский автомобиль-кемпер Himsl Zeppelin Roadliner. В качестве основы использовали лонжеронную раму от универсала Plymouth (история умалчивает, какого именно), куда прикрепили отдельный трубчатый каркас, обтянутый авиационной тканью – перкалью. Этот материал, хоть и достаточно прочный, все-таки потребовал металлических бамперов и рам-усилителей вокруг окон.



В салоне установили два дивана-кровати, столик и даже газовую плиту. После постройки автомобиль долгое время находился у местного врача, успешно пережил войну, и в 1968 году в окрестностях города Конкорд в штате Калифорния на машину наткнулись двое друзей-реставраторов – Арт Химсл и Эд Грин. Она была приведена в чувства и долгие годы служила друзьям передвижным офисом.



В 1999 году Химсл и Грин провели комплексную реставрацию машины. Древний карбюраторный двигатель Плимута отправили на свалку, а его место занял более мощный V8 от современного Chevrolet Camaro, тканевую обшивку заменили на поливолокно, которое применяют при строительстве легких самолетов, перешили салон и в довершение всего установили пневмоподвеску.



Говоря о тканевых автомобилях, нельзя не вспомнить о современном концепте родстера BMW, получившем имя GINA. По словам главного дизайнера проекта Криса Бэнгла – человека, создавшего современный стиль автомобилей баварской марки, – имя GINA – это аббревиатура от «Geometry and Functions In «N» Adaptions», то есть «возможность многочисленного изменения форм кузова».



При создании автомобиля разработчики задали несколько вопросов. Почему кузова автомобилей делаются обязательно из пластика или металлов? Может ли владелец настроить все в своей машине так, как хочется именно ему? Ответом на эти вопросы стала… натянутая на каркас кузова эластичная ткань, разработанная в американском подразделении BMW. Сам каркас представляет собой множество металлических трубок, которые могут перемещаться с помощью гидравлических приводов. Так, владелец может одним нажатием клавиши открывать/закрывать фары и щель на капоте для обозрения мотора и менять форму ребер на боковинах, а в салоне – настраивать подголовники или менять комбинацию приборов.



Конечно, перспектив серийного выпуска похожих на Джину автомобилей в ближайшем будущем нет, но конструкторы считают, что у таких тканевых кузовов большое будущее. По словам все того же Бэнгла, ткань может дать разработчикам меньшее количество ограничений в дизайне, позволяет придать кузову аэродинамически правильную форму и защитить внутренние узлы кузова, а возможно, и перевернуть представления о конструкции автомобиля. Ведь легким движением руки будущий покупатель сможет изменить форму кузовных деталей на ту, что больше всего подходит его запросам.

Конопля

Вообще ткани всегда интересовали конструкторов с точки зрения выпуска композитных материалов – ведь они легче и не поддаются коррозии, а их производство дешевле. В качестве основы использовались натуральные тканевые волокна, несколько слоев которых пропитывались эпоксидной смолой.

Первым в мире автомобилем с кузовом из композитов стал Soybean Car («Соевый автомобиль»), сконструированный как эксперимент компанией Ford и представленный в августе 1941 года. Также он известен под именем «Hemp body car» («Автомобиль с кузовом из конопли»). В качестве основы для машины использовали рамное шасси и силовой агрегат от седана Ford V8, а внешние панели выполнили из пластика, в котором наполнителями стали конопляное волокно и соевые бобы. Всего панелей было 14, и все они крепились к раме с помощью болтов, это позволило удержать массу машины на уровне 850 кг, что примерно на 35 процентов меньше, чем у прототипа. V-образную карбюраторную «восьмерку» перевели на питание биоэтанолом, полученным из всё той же конопли. Работы по автомобилю закончились после вступления США во Вторую мировую, а впоследствии автомобиль был уничтожен.



Натуральные волокна в качестве наполнителя будоражили умы конструкторов машин еще долгое время. Например, известный немецкий автомобиль Trabant имел кузов из композитного материала «дуропласт». Здесь наполнителем являлись отходы советского хлопкового производства – очёсы, которые заливались все той же эпоксидной смолой. Шутники советовали владельцам «Траби» остерегаться коз, свиней и гусениц, в ожидании того, что их «хлопковый пластик» мог быть попросту съеден. Тем не менее такой материал не гнил и обеспечивал небольшую массу машинке, снабженной двухтактным моторчиком в 25 л.с.



Но и это не было концом. В 2000 году компания Toyota представила концептуальный автомобиль Toyota ES3 – компактный городской автомобиль с алюминиевым кузовом, внешние панели которого выполнены из специального полимера TSOP (Toyota Super Olefin Polymer). Этот материал использует в качестве сырья лен, бамбук и даже… картофель и легко поддается переработке. Широкого распространения он так и не получил – наверняка из-за нежелания владельцев иметь машины из переработанной картошки.



Пластиковые бутылки

Впрочем, многие концерны искали способы применения новых композитных материалов в конструкции автомобилей, и сейчас создаются композиты, которые вполне могут частично заменить сталь на конвейере. Но все эти материалы создаются химиками и технологами специально, и их разработка влетает в копеечку. А вот специалисты концерна Chrysler еще в середине 90-х годов прошлого века придумали использовать в автомобильном производстве композитный материал, в основе которого – полиэтилентерефталат, из которого делают пластиковые бутылки.

Панели из полиэтилена обеспечивали кузову подходящую жесткость, при этом само производство материала – недорогое дело: он легко поддается формованию, и его даже не надо красить – пигмент необходимого цвета добавляется при производстве. Кроме того, по окончании срока службы кузов можно легко переработать.

Отрабатывать технологию крайслеровцы решили на крошечном хэтчбеке CCV, который был представлен на конкурсе концептуальных «народных» автомобилей для Китая (отсюда и аббревиатура CCV – China Concept Vehicle). Машина, чем-то похожая на Citroen 2CV, имела лонжеронную стальную раму, на которую навешивались панели из полиэтилена. В итоге китайцы отдали первое место одному из своих многочисленных брендов, а в Крайслере продолжили исследования.



В результате в 1998 году родился концептуальный родстер Plymouth Pronto, который имел легкую пространственную раму с прикрепленными к ней панелями из «бутылочного» пластика, но посетители и журналисты, узнав о материале, почти сразу высказывались о подобной затее негативно, и в итоге совет директоров отказался продлевать финансирование проекта, сославшись на его бесперспективность. Впрочем, в наши дни при изготовлении обивки сидений и отделки потолка новых пикапов Ford F-150 применяется волокно REPREVE, для изготовления которого используются переработанные пластиковые бутылки.



Фарфор

Этот хрупкий и легко бьющийся материал чаще встречается у нас на кухне, чем на кузовах автомобилей. Впрочем, сказав «автомобилей», мы погорячились. Компания Bugatti при содействии Королевской мануфактуры фарфора в Берлине (Konigliche Porzellan-Manufaktur) в 2011 году представила уникальную версию родстера Veyron Grand Sport под названием "L'Or Blanc" ("Белое золото"). Построенный в единственном экземпляре автомобиль стоимостью 1 650 000 евро получил уникальную двухцветную окраску кузова с нанесенным фарфоровым орнаментом. Помимо него, фарфоровыми стали крышка бензобака и колпачки колесных дисков, а в салоне появились вставки на панели приборов и передней панели и небольшой фарфоровый ящик из того же материала. Каждую деталь, вплоть до колпачков, украшает слон, стоящий на задних лапах, – символ автомобилей Этторе Бугатти, который венчал решетку радиатора довоенных автомобилей. Кстати, еще одну статуэтку слона из фарфора высотой 30 сантиметров счастливый обладатель суперкара получил бесплатно, а вот коллекционерам редких вещей придется выложить почти 30 000 евро.



В наши дни производители всё больше задумываются о применении экологически чистых биоразлагаемых материалов в машинах. Не забыто и сырье, прошедшее переработку, что позволяет экономить, например, на алюминии и стали. Кроме того, стальные детали понемногу замещаются более дешевым пластиком, который легко заменить при повреждении, к тому же он легче и не ржавеет. Ну а большинство суперкаров, выпускающихся в наши дни, имеет кузова с применением высокопрочных композитных материалов, например, углепластика или кевлара.


Читайте также:


www.kolesa.ru

Из чего делают современные двигатели: новые материалы на службе автопроизводителей

На протяжении многих десятков лет моторы изготавливали из самых обычных материалов — стали, чугуна, меди, бронзы, алюминия. Совсем немного пластика, иногда какие-то мелкие элементы, вроде корпусов карбюраторов, — из магниевых сплавов. На волне тенденции к всемерному облегчению конструкций и увеличению мощности при улучшении экологической составляющей состав материалов с тех времен заметно изменился. Из чего же сегодня делают двигатели? Разбираемся.

Большая часть автовладельцев наверняка знает главный тренд современного автомобилестроения: увеличение мощности двигателя при постоянном уменьшении его объема и массы. Секрет такого сочетания кроется в том числе в новых материалах и конструктивах. Ну и, разумеется, тщательной проработке всех элементов силового агрегата, а также уже не скрываемом отсутствии избыточных (читай: невыгодных) запасов прочности.

Как ни странно, всевозможные нанотрубки и прочий хай-тек, о котором постоянно говорят в СМИ, в моторостроении на самом деле почти не применяются. В серийных моторах самыми дорогими и сложными материалами являются кремнийникелевые покрытия, металлокерамический композит (например, известный как FRM у Honda), различные полимерно-углеродные композиции и постепенно появляющиеся в серийных двигателях титановые сплавы, а также сплавы с высоким содержанием никеля, например Inconel. В целом же двигателестроение остается очень консервативной областью машиностроения, где смелые эксперименты в серийном производстве не приветствуются.

Прогресс обеспечивается в основном «тонкой настройкой» и применением давно известных технологий по мере их удешевления. Основная масса серийных агрегатов состоит в основном из чугуна, стали и алюминиевых сплавов — по сути, самых дешевых материалов в машиностроении. Однако тут все же есть место для новых технологий.

Самая крупная деталь любого мотора — блок цилиндров. Она же самая тяжелая. Долгие десятки лет основным материалом для блоков служил чугун. Он достаточно прочен, хорошо льется в любую форму, его обработанные поверхности обладают высокой износостойкостью. Список достоинств включает и невысокую цену. Современные моторы небольшого рабочего объема по-прежнему льются из чугуна, и вряд ли в ближайшее время индустрия полностью откажется от этого материала.

Основная задача в совершенствовании сплавов чугуна — это сохранение высокой твердости поверхности при улучшении его вспомогательных качеств, иначе это может привести к необходимости использования чугунных же гильз для блока цилиндров из более износостойкого сплава. Так изредка делают, но в основном на грузовых моторах, где эта технология финансово оправданна.

Алюминий в качестве материала блока применяется также очень давно и совершенствуется примерно в том же направлении. Усилия направлены в основном на улучшение возможностей его обработки, на снижение коэффициента расширения при сохранении необходимой пластичности материала, повышение необходимых аспектов прочности сплавов.

Также развиваются технологии использования вторичного алюминия низкой очистки. Для таких сплавов применяются технологии, отличные от литья, причем налицо тенденция к изготовлению из алюминия блоков цилиндров более компактных моторов. Например, двигатель Volkswagen серии EA211 сегодня имеет алюминиевый блок, который оказался на 40% легче чугунного.

Магниевые сплавы значительно менее популярны. Они легче алюминиевых, но имеют значительно более низкую коррозийную стойкость, не переносят контакта с горячей охлаждающей жидкостью, со стальными крепежными деталями повышенной температуры. На рядных шестицилиндровых блоках моторов BMW серий N52 и N53, например, из магниевого сплава выполнена только внешняя часть блока, «рубашка» системы охлаждения. Для сравнительно длинного блока шестицилиндрового мотора это дает выигрыш в массе порядка 10 кг по сравнению с цельноалюминиевой конструкцией. Также магниевые сплавы используют для блок-картеров моторов с отъемными цилиндрами. В основном это двигатели мотоциклов.

Компоненты двигателя

Если с самой большой деталью мотора новые технологии и материалы не очень «дружат» в целом, то в частностях возможны интересные сюрпризы. Гильзы цилиндров у любого блока являются точкой приложения всех новейших технологий и материалов. Высокопрочный чугун, методы поверхностного упрочнения алюминиевых высококремнистых сплавов, гальванические покрытия на основе сплава карбида кремния с никелем, металлокерамические матрицы и стальное напыление широко используются даже на серийных моторах. Про чугун и высококремнистый алюминий говорить не будем, все же сами технологии не только старые, но и массовые. А вот про остальные материалы лучше рассказать чуть подробнее.

Упрочненные чугунные гильзы по технологии CGI (Compacted Graphite Iron) появились для реализации экстремально высокой степени форсирования у дизельных моторов. Этот чугун сильно отличается от распространенного серого чугуна. У него на 75% выше прочность на разрыв, на 40% выше модуль упругости, и он в два раза устойчивее к знакопеременным нагрузкам. А его сравнительно невысокая стоимость и прочность позволяют создавать литые чугунные блоки с массой меньше, чем у алюминиевых. Но в основном его применение ограничено гильзами и коленчатыми валами. Гильзы получаются очень тонкими, теплопроводными и при этом столь же технологичными и надежными, как обычные гильзы из чугуна. А коленчатые валы по прочности соперничают с коваными стальными при заметно меньшей себестоимости.

Покрытие по технологии Nicasil, в общем-то, не редкость и далеко не новинка, но оно остается одним из самых высокотехнологичных и перспективных в своей сфере. Изобрели его еще в 1967 году для роторно-поршневых двигателей, и засветиться в массовом автомобилестроении оно успело. Porsche его применял для гильз цилиндров с 1970-х, а в 1990-е его попытались применить и на более массовых моторах, например в BMW и Jaguar, но недостатки технологии и высокая цена заставили отказаться от него в пользу более дешевых методов поверхностного упрочнения высококремниевых сплавов, например по технологии Alusil.

Причем более вероятной причиной отказа является как раз повышенная стоимость блоков цилиндров с этим покрытием, связанная с низкой технологичностью процесса гальванического нанесения и высоким процентом не выявляемого сразу брака, который потом успешно списали на высокосернистые бензины.

Тем не менее это покрытие все еще остается лучшим выбором для создания рабочей поверхности в любом мягком металле, потому под различными торговыми наименованиями применяется в массовом и особенно гоночном двигателестроении. Например, под маркой SCEM в моторах Suzuki. Его недостатки в основном связаны с очень высокой стоимостью обработки и слабой приспособленностью к массовому производству при использовании с крупными многоцилиндровыми блоками.

Металлокерамическая матрица (MMC), более известная как FRM в моторах Honda, — еще один оригинальный и интересный материал. Например, двигатель на суперкаре NSX имел гильзы, выполненные по такой технологии. Опять же технология далеко не новая, но, как и материал, очень перспективная. Покрытие типа Nicasil тоже относится к MMC, но его приходится наносить гальваническим методом, и в качестве матрицы выступает достаточно твердый никель.

В технологии FRM материалом матрицы служит алюминий, а MMC получается в процессе заливки гильзы из волокнистого материала на основе карбоновой нити в алюминиевый блок. Использование углеродного волокна более технологично. К тому же матрица получается намного более толстой, чуть более мягкой, намного более упругой и абсолютно интегрированной в материал блока. Отслоение, как это происходило с Nicasil, попросту невозможно. Задиры и локальные повреждения в силу структуры материала ему почти не страшны, а в случае износа цилиндр можно расточить благодаря большому запасу по толщине.

Минусы у такого покрытия тоже имеются. Во-первых, немалая цена, во-вторых, жесткое отношение к поршневым кольцам, поскольку его структура плохо «настраивается». Тут не создать полноценной сетки хона, правда, масло хорошо удерживается в волокнах и без того. Края волокон очень жесткие, и даже сверхтвердые кольца имеют ограниченный ресурс, а поршень в местах контакта интенсивно изнашивается при малейшем биении, что подразумевает использование поршней с минимальным зазором и очень короткой юбкой. К тому же покрытие очень маслоемкое. В итоге у моторов постоянно наблюдался повышенный расход масла, что на определенном этапе не позволило выполнять жесткие экологические требования.

Впрочем, сейчас эта проблема уже не актуальна, новые катализаторы и новые поколения малозольных масел позволяют об этом не беспокоиться. Ну и, разумеется, цена нанесения покрытия такого типа заметно выше, чем у алюсила или чугунных гильз, но все же меньше, чем у Nicasil-подобных материалов.

Покрытия MMC разных типов также используются в целом ряде деталей двигателей. Например, в седлах клапанов в ГБЦ, упрочнениях крайних постелей распредвалов, особо нагруженных местах креплений элементов конструкции. Это позволяет широко применять цельноалюминиевые детали и снижать массу конструкции за счет упрощения. Некоторые детали двигателей могут иметь крупные элементы из MMC, например клапаны. Но это и сейчас удел не серийных конструкций.

Титановые сплавы также давно пытаются использовать в конструкции машин. В двигателях этот прочный, легкий и очень эластичный материал с превосходной химической стойкостью применяется очень ограниченно в силу высокой стоимости. Но можно найти серийные конструкции с деталями из титана. Титановые шатуны, например, давно устанавливаются в моторах Ferrari и тюнинговом подразделении AMG. Еще титан — неплохой выбор для пружин, шайб, рокеров и прочих элементов ГРМ, деталей теплообменников EGR, а также разных крепежных элементов. Кроме того, он используется для производства рабочих элементов высокопроизводительных турбин, а иногда —— для производства клапанов и даже поршней.

Теоретически детали из высококремнистых титановых сплавов с высоким содержанием интерметаллидов и сицилидов могут применяться в двигателях, но у большинства титановых сплавов наблюдается серьезная потеря прочности уже при температурах свыше 300 градусов — изменение пластичности в больших пределах и большой коэффициент расширения, что не позволяет создавать из них долговечные детали с низкой массой. Ограниченное применение имеет в двигателестроении и 3D-печать из титановых сплавов, например для создания выпускных систем на спорткарах.

А вот покрытия из нитрида титана — одни из самых популярных средств упрочнения поршневых колец. Этот материал отлично работает по кремниевому упрочненному слою гильз цилиндров. Его же используют как напыление на фаски клапанов, в том числе титановых, на торцы толкателей клапанного механизма и другие узлы двигателя. Начиная с 1990-х годов использование этого метода упрочнения неуклонно возрастает, и он вытесняет хромирование, азотирование и ТВЧ-закалку. Также нитрид титана является перспективным типом покрытия для гильз цилиндров: он может наноситься методом PA-CVD (плазмохимическое осаждение из газовой фазы), а значит, такие технологии могут стать серийными в ближайшее время, если будет спрос на новые износостойкие покрытия цилиндров.

Уже упомянутая 3D-печать также активно применяется для создания высокопрочных и высокоточных жаростойких деталей сплав Inconel. Это семейство никельхромовых жаростойких сплавов давно служит материалом для создания выпускных клапанов, верхних компрессионных колец, пружин и даже выпускных коллекторов, корпусов турбин и крепежного материала для высокотемпературного применения.

В последние годы, в связи с развитием технологий 3D-печати и активным использованием в них Inconel-сплавов, мелкосерийные ДВС все чаще обзаводятся деталями из этого очень перспективного материала. Рабочий диапазон деталей из него минимум на 150–200 градусов выше, чем у самых жаростойких сталей, и доходит до 1200 градусов. Как материал упрочнения сплавы Inconel используются серийно уже достаточно давно, так, в моторах Mercedes-Benz покрытие из Inconel применяется на моторах серий M272/M273.

Пластмассы также продолжают внедрять в конструкции двигателей. Выполненные из пластика элементы системы впуска и охлаждения — дело уже привычное. Но дальнейшее расширение номенклатуры маслостойких и теплостойких пластмасс с низким короблением позволило создать пластмассовые картеры ДВС, клапанные крышки, направляющие, корпуса малых конструкций внутри двигателя. Концепты моторов с блоком цилиндров из пластмассы, а точнее, из полимерно-углеродных композиций, уже были представлены публике. При незначительно меньшей прочности, чем у легких сплавов, пластик в производстве обходится дешевле и значительно лучше перерабатывается.

Каков итог?

Изучение вопроса применяемости материалов в двигателестроении показывает четкую направленность: для снижения массы и улучшения других характеристик применение каких-то суперматериалов либо не особо требуется, либо невозможно в принципе в силу физических и химических свойств. Развитие технологий идет путем эволюционным — усовершенствования как самого производства, так и традиционных материалов, реорганизации рабочего процесса и конструкторской оптимизацией. Так что даже в среднесрочной перспективе мы вряд ли увидим революцию в производстве ДВС, скорее речь будет идти о постепенном отказе от этого типа двигателя в принципе в пользу электротехнологий, хотя и там пока не наблюдается бурного технологического прорыва.

dvizhok.su

Инновации в автомобилестроении: успешные проекты, супермашины, сложности

Автомобилестроительная промышленность – одна из ключевых сфер мировой экономики. Ежегодные ассигнования на исследовательские изыскания и инновации в автомобилестроении превышают сотни миллиардов долларов. Количество рабочих мест в отрасли – свыше 14 млн, а суммарные активы составляют более 2 трлн долларов.

Несмотря на столь впечатляющие показатели, отрасль непрерывно испытывает затруднения и вынуждена оптимизироваться. Постоянные изменения и дополнения, касающиеся охраны окружающей среды, требуют апгрейда существующих моделей еще на стадии проектирования. Современный автомобиль должен основываться на принципиально новых разработках, отвечающих всем требованиям технического прогресса. Непрерывное развитие технологий во всех сферах жизни и компьютеризация многих процессов ориентируют производителей на создание высокоинтеллектуальных машин.

Особенности инноваций в сфере автомобилестроения

Среди задач, стоящих перед автомобилестроением сегодня, – соблюдение нормативов по защите окружающей среды. Российские и зарубежные производители ставят перед собой цель сократить выбросы и расход топлива вдвое. Для этого необходимо улучшить технические характеристики автомобилей в несколько раз по сравнению с прошлыми показателями: полумерами здесь не обойтись. Постепенное улучшение уже существующих моделей оказывается более трудо- и времязатратно и гораздо менее эффективно, нежели создание новых моделей с нуля.

Один из инновационных подходов в машиностроении – использование композитных и алюминиевых материалов при создании кузова, позволяющее поставщикам сокращать массу автомобиля на 25 %.

Популярность в автомобилестроении набирает разработка умных автомобилей. С каждым годом машины все больше похожи на персональные компьютеры на колесах. Речь идет не только о беспилотных вариантах автомобилей. Автопроизводители уверены, что идеальная современная машина обязана уметь все и быть максимально простой в управлении. Большинство инноваций применяется преимущественно для концепт-каров, но анализируя технологии, внедренные на этих устройствах, можно понять направление будущих разработок автомобилестроения.

Большой инновационный прорыв наблюдается в развитии геолокационных систем и методов компьютерного анализа: заметны явные улучшения автомобильных систем навигации и безопасности. Ведущие автопроизводители мира вкладывают огромные финансовые ресурсы в создание пользовательского интерфейса, с помощью которого водитель сможет управлять потоками информации, не отвлекаясь от вождения.

Эра программирования ведет к полной автономии транспортных средств, которая требует создания сложнейших кодов. Большой интерес вызывают вопросы безопасности в автомобилестроении. Протестированы и внедрены системы, которые отслеживают уровень стресса, а также степень усталости водителя. Предполагается, что с течением времени машина приобретет еще большие функциональные возможности, например, автоуправление, которое включится, если система почувствует угрозу безопасности водителя или движения.

Резюмируем: основные глобальные тенденции инновационных преобразований автомобилей заключаются в изменении конструкции машины, создании беспилотного и электрического транспорта, разработке мобильного сервиса, высокотехнологичном производстве.

Перечислим некоторые примеры инновационных изменений в автомобилестроении:

Что требуется для создания инновационных автомобилей с нуля

Симбиоз системы CAD (автоматизированное проектирование) и расчетов инженерного отдела

Интегрированное использование 2D- и 3D-технологий на этапе моделирования опытных образцов уменьшает сроки разработки. Объединение моделей и виртуализации помогает выявить характеристики будущих прототипов на начальном этапе автомобилестроения, сократить стоимость и сроки работ.

Моделирование

Интеграция систем регулирования программных приложений позволяет:

  1. Снизить сложность,
  2. Уменьшить финансовые потери,
  3. Повысить эффективность установленного в автомобиле программного обеспечения.

Систематизация на всех этапах позволяет контролировать ход разработки от создания проекта до конца эксплуатационного процесса, осуществляет полный мониторинг недочетов.

Интеграция технологических процессов

Глобальные проекты требуют особого внимания, когда возникает необходимость внесения некоторых корректив и структурных изменений в инновационный проект. К примеру, на этапе конвейерной сборки при установке зеркал заднего вида предлагается множество вариантов деталей.

Они могут иметь разную комплектацию:

Пошаговое исполнение автосборки для каждого варианта будет разным. Совмещение процессов разработки и регулирования обеспечивает контроль над производством и доступ к функционалу из единого меню. Это уменьшает сроки готовности изделия и дает гарантию корректности разработанной технологии в автомобилестроении. Интегрированное использование данных процессов позволит дать оценку технологичности узлов и агрегатов, а также выявить ошибки или погрешности на ранней стадии (брак или несоответствие деталей кузова). Благодаря этой опции возможно внесение изменений на этапе сборки автомобилей, что существенно упрощает производство.

Российский и зарубежный опыт инноваций

Ведущим инновационным трендом как в Российской Федерации, так и за рубежом является производство беспилотных моделей автотранспортных средств. Такие модели уже осуществляли тестовые поездки, а также грузопассажирские перевозки.

У компании Uber в сотрудничестве с Otto давно существуют варианты воплощения подобных перевозок. Плодотворное сотрудничество двух фирм вылилось в появление беспилотной модели грузовика и осуществление самоуправляемой грузопассажирской перевозки.

В некоторых городах Европы и в Гонконге запущена линия беспилотных автобусов. У них относительно маленькая скорость передвижения – 20 км/ч (в целях безопасности), которая компенсируется абсолютной безопасностью для природной среды.

Отечественные разработки связаны с российским брендом КамАЗ и компанией Volgabus, которые представили проекты российских грузовых беспилотников и автобусов. Камазовский проект может войти в серию в 2022 году и будет осуществлять грузоперевозки без водителей. Модель нового беспилотного автобуса от Volgabus должна в режиме онлайн анализировать дорожную ситуацию, проводить интеллектуальный процесс управления посредством специального программного обеспечения. Еще одно изобретение от указанной фирмы – автомобильная платформа беспилотного типа управления MatrЁshka, которая будет выпускаться в нескольких модификациях: открытое шасси, микроавтобусы, грузовики. По некоторым данным, прототипы успешно тестируются в инновационном центре «Сколково» и скоро начнут курсировать в московских парках и Сочи.

Несмотря на успехи зарубежных и отечественных производителей в автомобилестроении, эпоха беспилотных транспортных средств еще не наступила. Проблемы с безопасностью и надежностью пока не решены на 100 %, а свежие примеры неудачных опытов (вплоть до летальных исходов) замедляют процесс внедрения новых технологий в РФ и в мире.

Последний случай с электромобилем Tesla (амбициозный проект Илона Маска) – яркое тому подтверждение. Model S, находящаяся под управлением системы автопилотирования, попала под фуру на трассе, в результате чего водитель погиб. По результатам расследования было установлено, что ни водитель, ни автопилот не заметили приближающуюся машину. Этот инцидент стал первым случаем ДТП со смертельным исходом, когда автомобиль управлялся компьютером. Компания признала недоработки в системе автопилота, хотя подчеркнула, что будущее – за этой инновационной системой управления транспортным средством.

Современное автомобилестроение достигло небывалого уровня. Новейшие разработки поражают смелостью фантазии и мастерством воплощения, кажутся фантастическими. В скором времени станет известно, какие инновации обогатят автомобилестроение будущего.

viafuture.ru

Новые материалы в автомобилестроение

«Легкость» автомобилей, достигаемая путем использования частей из магния может наряду с другими достоинствами увеличить скорость машины и улучшить сопротивление удару.
Понижение массы машины для увеличения эффективности использования топлива и понижения эмиссии, достигаемое путем изготовления соответствующих деталей из магниевых сплавов кажется гениальным.

Исследования организации Meridian Lightweight Technologies Inc., расположенной в городе Стретрой, недалеко от Онтарио в Канаде, показали, что магний – самый легкий структурный металл, он на 75 процентов легче стали и на 33 процента легче алюминия, что подтверждает возможность использования магниевых сплавов для изготовления деталей автомобилей.
По сравнению с алюминием, магний имеет более высокую удельную прочность, пластичность и ударную вязкость, заявили исследователи Содружества Автомобильных Материалов Соединенных Штатов на совещании консорциума по поводу автомобильных исследований в документе «Magnesium Vision 2020: североамериканская концепция внедрения магния в автомобилестроение».

В документе так же сообщается о том, что магний имеет лучшее демпфирование и сопротивление образованию вмятин, по сравнению со сталью и обладает большей прочностью, жесткостью, термостойкостью и теплопроводностью по сравнению с пластиком.
Инженеры Лотуса предложили свой дизайн кузова для проведения экспериментов в фонд энергетических исследований. Лотус предлагает технологии для осуществления старта исследований в 2017 году и для запуска в производство этих моделей к 2020 году. Данная конструкция кузовов, с использованием 16 процентов магния в составе материалов кузова, позволила уменьшить массу машины на 38 процентов.
В добавок к повышению экономии топлива и сокращению выбросов, свойства материала обеспечивают еще целый ряд других преимуществ. Согласно вышеупомянутому документу, они включают:
— уменьшение времени на разгон/торможение и улучшение рулевого управления на прямых участках и поворотах путем снижения веса передней части автомобиля и перемещения центра тяжести назад;

Литье цельных деталей из магния требует меньших затрат чем изготовление идентичной детали из стали, состоящей из большого количества мелких штампованных частей, что требует наличия отдельных штампов для различных частей. К примеру, стальная приборная панель, состоящая из 30 отдельных деталей, требует наличия тридцати различных приспособлений для их изготовления, в то время как магниевая изготавливается путем литья при помощи всего лишь шести различных приспособлений.
Тем не менее, всего около 12-ти килограмм магниевых сплавов используются в данное время при производстве автомобилей в Соединенных Штатах, что составляет около 0,3 процента всех используемых при производстве автомобиля материалов.
Объяснением тому, что магний не так распространен в автомобилестроении, как другие материалы, служит его дороговизна.

xenon-kiev.com.ua

виды материала для автомобилестроения, обработка

При производстве автомобилей могут использоваться разные виды металлов, полимеров. Они применяются при изготовлении кузова, отдельных запчастей. Каждый производитель использует разный материал. Это особенно заметно при сравнении автомобилей отечественных и зарубежных марок. Если знать, из какого металла изготовлена машина, можно самостоятельно провести ремонт кузова при появлении коррозии или после ДТП.

Автомобиль

Особенности автомобилестроения в России

Российская автомобильная промышленность считается важной отраслью экономики России. На 2017 год Россия занимала 15 место среди всех стран мира по количеству производимых транспортных средств. К 2019 году количество отечественных автомобилей достигло 15% от общего производства.

Общее количество автомобилей, которые идут на импорт, составляет 48%. Этот показатель зависит от выпускаемых моделей, занимаемого сегмента.

Легковые автомобили

По количеству произведенных легковых автомобилей среди Европейских стран Россия занимает второе место. На первом находится Германия. Если брать официальные данные из статистики OICA, Российские автомобильные производители за 2013 год выпустили 1 919 636 легковых автомобилей. При этом общее количество машин, которые произвели страны Евросоюза за этот же год, составило 11 341 479. В период с 2001 по 2008 год Россия задействовала заводы, которые могли обеспечить производство 422 920 легковых автомобилей в год.

Старинный легковой автомобиль (Фото: Instagram / givievechy)

Грузовые авто и спецтехника

Россия удерживает второе место по производству грузовых автомобилей, спецтехники. Первое место занимает Германия. Узнать точную статистику невозможно, поскольку с 2010 данные OICA относительно грузовиков были закрыты.

Основные заводы по производству спецтехники, грузовых авто вводились в несколько этапов:

  1. с 1991 по 1999 год;
  2. с 2001 по 2008 годы;
  3. с 2005 по 2007 (задействовались самые мощные производства).

Если сравнивать статистику выпускаемых грузовиков в 2016 и 2017 году, в 2017 производство увеличилось на 50,4%.

Автобусы

Россия — абсолютный лидер в производстве автобусов. По статистике OICA, за 2013 год было произведено и запущено в эксплуатацию 23 107 тяжелых автобусов. При этом все страны Евросоюза за тот же промежуток времени смогли выпустить только 12 460 машин подобного типа.

Основные заводы были введены с 2001 по 2008 год.

Автобусы (Фото: Instagram / cifratv23)

Популярные предприятия автомобилестроения в России и СССР

Компании, которые внесли наибольший вклад в развитие автомобилестроения:

  1. АвтоВАЗ — Волжский автомобильный завод. Был основан в 1966 году. Сейчас около 20% всех автомобилей России изготовлено именно этой компанией.
  2. КамАз — Камский автомобильный завод. Считается лучшим производителем грузовых машин в России.
  3. УАЗ — Ульяновский автомобильный завод. Основан в 1941 году. Последние годы компания модернизировала оборудование для производства автомобилей, повысила продажи.
  4. ГАЗ — Горьковский автозавод. Самый старый автомобильный производитель в России. Компания основана в 1932 году. Родословная начинается от легендарных представителей компании Ford.

Менее известные производители — ЛиАЗ, ПАЗ, ГолАЗ, БАЗ.

Какой материал используют при изготовлении авто?

Для изготовления корпусов, основных деталей для авто могут применяться разные материалы (титан, углеволокно, золото и т. д.), но наиболее популярным считается алюминий, сталь и пластик.

Слитки золота (Фото: Instagram / gold_officiel)

Сталь

Среди всех видов автомобильного металла самым популярным считается низкоуглеродистая листовая сталь. Подходящая толщина листов — от 0,65 до 2 мм.

Преимущества стали для сборки кузовов авто:

  1. Высокая прочность, жесткость.
  2. Низкая цена.
  3. Простота ремонта.

Поскольку технология давно отработана, большинство технологических операций может выполняться роботами.

Недостатки:

  1. Большая масса готовых изделий.
  2. Маленький срок службы.
  3. Необходимость делать большое количество штампов.

Чтобы стальные поверхности не покрывались ржавчиной, их нужно покрыть специальным антикоррозийным составом.

Кузов автомобиля изготавливается в несколько этапов. Изначально из стальных листов разной толщины производятся отдельные детали. Затем они свариваются для получения крупных узлов. Последний этап сборки — соединение отдельных частей в единую конструкцию.

Листы стали (Фото: Instagram / absolut_metall35)

Алюминий

Сплавы алюминия начали применять в автомобилестроении совсем недавно. Материал подходит для изготовления всего корпуса или его отдельных частей.

Чаще детали из алюминия и стали комбинируются между собой для достижения оптимальной массы авто. Сборка корпуса из алюминиевых деталей практически не отличается от работы со сталью. Исключением является сварка отдельных частей. Она проводится в аргоновой среде. Отдельные детали фиксируются заклепками.

Преимущества алюминия:

  1. Алюминиевые сплавы легче и прочнее стали.
  2. Поврежденные детали можно легко переработать.
  3. Готовые изделия невосприимчивы к образованию ржавчины.
  4. Деталям можно придать любую форму.

Недостатки:

  1. Для работы с деталями из алюминиевых сплавов нужно использовать специальное оборудование.
  2. Чтобы сделать качественное соединение деталей, нужно задействовать дорогое оборудование.
  3. Детали плохо поддаются ремонту.
Алюминий (Фото: Instagram / tipichnyiizolirovshchik)

Полимеры

Поскольку металл утяжеляет конструкцию большинство производителей при изготовлении кузова используют полимеры. На автомобилях из пластика легко выжать максимальную мощность, достичь наибольшей скорости

При изготовлении применяются разные виды полимеров:

  1. АБС-пластик.
  2. Полипропилен.
  3. Стеклопластик.
  4. Полиуретан.
  5. Поливинилхлорид.
  6. Полиамид.
  7. Полиэтилен.
  8. Поликарбонат.
  9. Полиакрилат.

Чаще применяется стеклопластик. Его преимущества:

Недостатки:

  1. Продолжительное время производства деталей.
  2. Сложность ремонта при повреждениях.
  3. Высокая цена на наполнители.

Пластик дешевле других материалов.

Автомобиль из стеклопластика (Фото: Instagram / la_design_workshop)

Характеристики материала

При выборе материала для сборки корпуса авто производители учитывают несколько параметров:

Характеристики должны указываться в техническом паспорте.

Как происходит сборка автомобиля?

Процесс сборки автомобилей полностью автоматизирован и состоит из нескольких этапов:

  1. Подготовка проекта нового авто.
  2. Придумывание дизайна.
  3. Разработка основных частей машины, их испытание.
  4. Производство основных деталей.
  5. Сборка корпуса, начинки авто.
Сборка автомобиля (Фото: Instagram / akopov_m)

В автомобилестроении используются разные технологии обработки металлов:

Менее популярные технологические операции — долбление, строгание.

Как провести кузовной ремонт?

Если кузов у автомобиля изготовлен из стали, его можно ремонтировать самостоятельно. Для этого не нужно учиться автомобилестроению. Достаточно уметь обращаться с инструментом, знать технологии производства машин в теории.

Ремонт кузова (Фото: Instagram / skr53b)

Выбор материала

Для ремонта кузова нужно купить лист низкоуглеродистой стали. Для этого можно посетить строительный рынок или авторазборку. При втором варианте можно найти целую деталь для замены по низкой цене.

Оборудование

Для проведения работ понадобится болгарка, аргоновый резак, сварочный аппарат, ножницы по металлу, оснастка для электроинструмента. Чтобы скрыть повреждение полностью, нужна грунтовка, шпатлевка, краска, кисти, пульверизатор, антикоррозийный состав. Если до места повреждения сложно добраться понадобится домкрат или яма.

Для производства машин используется металл, который соответствуют определенным требованиям. Последнее время пластик постепенно вытесняет сталь, сплавы на основе алюминия, но производство автомобилей из металла продолжается.

Как самому выгнуть ремонтные детали кузова ...Осторожно. ГРОМКИЙ ЗВУК при клепке.


Watch this video on YouTube

metalloy.ru

Новые технологии в производстве автомобилей

Есть мнение, что каждые несколько минут трём людям на планете приходит в голову одна и та же идея. Одни даже не задумываются над ней, другие решают, что она слишком сложна и недостижима, а третьи берут и доводят её до реализации. Именно благодаря таким «третьим», на свете и появляются новые технологи, и совершаются грандиозные открытия.

В сфере автомобильной промышленности без нововведений не обойтись. Мировые производители стараются сделать свою продукцию более качественной, эксклюзивной. Автомобили становятся всё быстрее, мощнее, легче, безопаснее и «умнее». На смену механике и человеку приходят компютеры-автоматы. Последние годы большинство нововведений, так или иначе, нацелены на наибольшую экономичность и экологическую безопасность.

Постепенно всё большую популярность приобретают автомобили гибриды. В этих машинах для работы используются два вида источников энергии. Чаще всего это обычный двигатель внутреннего сгорания и электродвигатель или двигатель, работающий за счёт сжатого воздуха. Изобретение такого вида автомобилей позволило обеспечить значительную экономичность. Последняя была достигнута путём установки топливного двигателя с меньшей мощностью, полной его остановкой в режиме холостого хода, а так же меньшим количеством необходимых дозаправок топливом и, как следствие, потерей времени на автозаправочных станциях. Эти же особенности гибридных автомобилей обуславливают и их большую, в сравнении с обычными автомобилями, экологичность – меньше вредных выбросов, реже, чем в электромобилях необходимость в новом аккумуляторе и утилизации старого.

Но помимо новшеств в энергетических источниках, активно разрабатываются новые материалы для изготовления деталей автомобилей. Так, американская компания Ford разрабатывает новейший биопластик, на 100% состоящий из растительных компонентов, а именно – из волокон кожуры томатов, остающейся при производстве томатного кетчупа. Для этих целей производители автомобилей планируют оформить договорённость с компанией по производству кетчупов Heinz. Последние, в свою очередь, перерабатывают порядка двух миллионов тонн томатов в год для своей продукции. Представители компании Ford сообщили, что намереваются делать из нового пластика детали отделки и крепежи для проводов. Стоит заметить, что на сегодняшний день автомобильная компания уже использует растительные материалы в своём производстве, например, такие как шелуха риса или кокосовая скорлупа.

Японские производители автомобилей Маzda так же работают над производством нового вида пластика на основе растительного сырья. Основная идея заключается в том, что детали кузова, сделанные из данного пластика, не будут нуждаться в дополнительном нанесении эмали. Детали из изначально покрашенного пластического материала обладают глубоким и устойчивым цветом и совершенно зеркальной поверхностью. Помимо этого, царапины на таком материале будут практически не видны. Новинку планируется начать использовать в 2015 году для последней модели Mazda MX-5.

Немецкие специалисты компании BMW так же не отстают и предлагают использовать для производства кузовных деталей бумажные отходы. В качестве примера они продемонстрировали экспериментальную деталь капота, выполненную из трёхслойного материала, в котором внешние слои – это композитный материал, а внутренний слой выполнен из прессованного картона. Производство автомобильных деталей из предложенного материала не только явится решением вопроса лёгкости и экономичности конструкции, но и окажет благотворительное влияние на проблему утилизации отходов и безопасности пешеходов – значительно более легкая конструкция при столкновении нанесет меньшие травмы, нежели использующаяся сейчас.

05.07.2015

cartechnic.ru

Новейшие технологии в автомобилестроении

Современная автомобильная промышленность не стоит на месте и постоянно предлагает потребителям новейшие технологии в машинах. Это не только более комфортный дизайн и лучшие запчасти, но и всевозможные системы, позволяющие спланировать маршрут и облегчающие процесс вождения.

«Умные» фары

 Вождение в плохую погоду или темное время суток всегда проблематично. Именно поэтому исследователи решили придумать так называемые «умные» фары. Их уже устанавливают на дорогие модели автомобилей, а скоро этот процесс приобретет более массовое явление.

Компания Форд планирует использовать на новых машинах адаптивные фары. Они учитывают скорость движения и углы поворотов, способны к изменению интенсивности и направления светового потока, отслеживанию попутных и встречных транспортных средств.

Их использование способно существенно снизить число аварий на дорогах, так как подобные фары препятствуют ослеплению других участников дорожного движения.

Электромотор из дешевого сырья

 В Тойоте решили сократить объемы используемых редкоземельных металлов и изготовить электрические моторы по новым технологиям. При их производстве не используются диспрозий и тербий, а количество неодима уменьшено в два раза. В качестве замены разработчики предложили другие варианты ─ церий и лантан. Цена таких металлов гораздо ниже, что значительно экономит финансовые затраты.

Дополненная реальность

В ближайшем будущем появятся очки Google Glass. Они будут отображать всевозможную информацию об автомобиле, и выполнять следующие функции:

Volkswagen уже разработали интерфейс Marta.  Он поможет пользователям ремонтировать автомобили самостоятельно. Электроника отслеживает взгляд мастера и дает подсказки относительно расположения нужных инструментов или запчастей.

Энергонакапливающие кузовные панели

К новейшим технологиям в автомобилестроении относятся кузовные панели, способные накапливать энергию намного быстрее, нежели стандартные батареи. Они позволяют поменять тяжелые и громоздкие аккумуляторы на тонкие и легкие. Для их изготовления понадобится использовать полимерное углеводное волокно и смолы. Пополнение запасов энергии производится включением в розетку, альтернативный способ ─ использование системы рекуперации энергии тормозов. Причем времени для зарядки такой батареи требуется намного меньше, чем для стандартного аккумулятора. Новый материал имеет очевидные преимущества: прочность и легко изменяемую форму. Также, одно из достоинств подобных панелей ─ существенное снижение веса машины. Разработки данной технологии активно идут в компании Volvo.

Системы контроля усталости водителя

У компании Mercedes-Benz уже с 2011 года выпускаются автомобили со специальным устройством Attention Assist. Оно разработано для того, чтобы отследить физические возможности водителя управлять машиной.  Если возникает необходимость, то системы подают сигналы о прекращении движения. Здесь не требуется непосредственное участие шофера, либо достаточно его минимального вмешательства.

Проверка осуществляется на основании трех факторов. Вот их перечень:

Автопилот

Многие автокомпании занимаются производством и тестированием систем автономного управления автомобилем. Еще недавно это казалось фантастикой, но теперь машины с системой автоматического вождения уже реальность. Их работа обеспечивается разнообразными датчиками, которые посылают сообщения о препятствиях на дорогах.

К примеру, новейший Мерседес S-класса способен управлять автомобилем, а при необходимости сбрасывать скорость и останавливаться.

Но не только автомобильные концерны разрабатывают «беспилотники». Компания Google тоже создала систему, которая позволяет транспортному средству передвигаться самостоятельно. При этом используются камеры наблюдения, навигационные карты и данные радаров.

Система оповещения о ДТП

В ближайший год в странах Евросоюза планируется оснащения автомобилей системами e-Call. Они разработаны специально для того, чтобы оповещать о дорожно-транспортных происшествиях. При аварии устройство срабатывает и посылает в кризисный центр информацию о месте ДТП, виде используемого топлива и количестве пассажиров.

Безвоздушные шины

Согласно статистическим данным, водители регулярно проверяют давление в шинах своих автомобилей. Оно должно соответствовать определенным нормам. Если колеса не накачаны должным образом, то это является прямой угрозой безопасности. Кроме того, расход топлива автоматически увеличивается.

Компания Bridgestone легко решила эту проблему созданием концептуальных безвоздушных шин. Пока их массовое производство еще не налажено, но это в планах на ближайшие пять лет. Такие шины содержат микросетку из жесткой резины вместо воздуха. Последняя обладает способностью сохранять изначальную форму даже при экстремальной нагрузке. Именно поэтому, машина сможет продолжать движение даже при проколе колеса без угрозы для жизни.

Безвоздушные шины будут более экологичными, нежели их предшественники из традиционной резины. 

Автоматическая парковка

Одна из новых технологий в автомобильной промышленности – это автоматическая парковка автомобиля. Она способна на порядок упростить жизнь водителей в крупных городах. Пока такие новинки устанавливают лишь на дорогие автомобили в топовых комплектациях. Электронные системы способны определить вписывается ли машина по габаритам, рассчитать скорость передвижения и оптимальный угол поворота колес.

У водителя всегда есть возможность остановить автоматическую парковку, если ему что-то не нравится, и поставить машину самому.

От автомобилей будущего можно ждать еще больше различных функций, способных оказать водителям помощь в дороге и на парковке. Инновации однозначно будут развивать в сторону мощности и сверхэкономичности.

 

qwizz.ru

Композиционные материалы в автомобилестроении | Автокомпоненты. Бизнес. Технологии. Сервис

Нанотехнологический центр композитов (ООО «НЦК») оказывает полный комплекс инжиниринговых услуг, включающих разработку технологий, проведение проектных работ, расчет и моделирование, разработку прототипов, испытания, выпуск малых серий, работы по подбору поставщиков оборудования и дальнейшему внедрению технологии на промышленных производствах. Центр также занимается производством оснасток и изделий из полимерных композиционных материалов для различных отраслей промышленности: энергетики, строительства, автомобилестроения, судостроения, телекоммуникаций и т.д. А также занимается запуском новых проектов в области производства изделий из полимерных композиционных материалов. Наноцентр проводит научно-исследовательские разработки по внедрению полимерных композитов для таких компаний, как «Росатом», ОАО «РЖД», ПАО «Газпром», ПАО «РусГидро».

ООО «НЦК» решает широкий круг задач в сфере производства изделий из композиционных материалов.

Производственный комплекс ООО «НЦК» расположен в одном из цехов бывшего завода АЗЛК и занимает площадь 15 000 кв. м. Это современное, хорошо оснащенное предприятие, здесь установлено более 40 единиц высокотехнологичного оборудования. В Наноцентре работают 200 специалистов из различных стран мира. Предприятие выполнило свыше 100 проектов, 20 уникальных разработок защищено патентами. ООО «НЦК» успешно реализует программу импортозамещения, 30% производимой продукции поставляется на экспорт.

У Наноцентра есть собственная лаборатория с 60 единицами современной измерительной техники, которая проводит широкий спектр климатических, механических, температурных, функциональных, специальных и других испытаний различных видов продукции.

Одним из основных видов деятельности НЦК являются разработка и производство автокомпонентов из полимерных композиционных материалов. В частности, центр производит детали интерьера для специализированной техники, накладки решетки радиатора для автобусов ПАЗ, элементы для тюнинга автомобилей Renault Duster, боксы для багажников на крышу.

Одним из самых успешных проектов НЦК стало участие в разработке и производстве электробуса MODULO C68E, созданного совместно с холдингом Evopro Group (Венгрия).   

В 2016 году НЦК был удостоен премии Innovation awards в категории «Городской транспорт» на международной выставке в Париже JEC World 2016 за уникальное решение в создании несущего композитного кузова модульного исполнения для электробуса.

MODULO C68E – одна из версий электробуса из производственной линейки совместного предприятия НЦК и Evopro Group, которая включает модели вместимостью от 40 до 90 пассажиров с длиной кузова от 6,5 до 9,5 м. Их уникальность – в использовании несущего модульного композитного стеклопластикового кузова, серийное производство которого ведет НЦК. Модульная конструкция позволяет собирать из унифицированных секций автобусы различной длины, что позволяет снизить себестоимость производства.

«Ноу-хау автобусов СП НЦК-Evоpro – модульный кузов из полимерных композитов. Благодаря технологическим и конструкторским решениям вес MODULO на 30% меньше конкурентов. Малый вес – это не только значительные выгоды в ежедневной эксплуатации, но и снижение нагрузки на подвеску и дорожное полотно. Очевидно, что для российских реалий актуальны высочайшая стойкость композитов к коррозии и адаптация к климатическим условиям. В свою очередь, существенное снижение веса и количества используемых батарей делает автобус более конкурентоспособным по цене», – сказал генеральный директор ООО «НЦК» Михаил Столяров.

Применение композитов позволяет одновременно снизить вес автобуса на несколько тонн и уменьшить его габариты на 2–3 метра. Это делает электробус более маневренным, позволяя ему ездить по маршрутам, которые недоступны автобусам с большим радиусом поворота. За счет максимально эффективной компоновки электробусы MODULO вмещают больше пассажиров по сравнению с автобусами такой же длины. К концу 2017 года ожидаются успешное одобрение типа транспортного средства и организация натурных зимних испытаний другой модификации – MODULO C88, который при длине 9,5 м вмещает столько же пассажиров, что и 12-метровые модели электробусов производителей-конкурентов.

Спектр решений НЦК-Evopro охватывает основные варианты интеграции электрического общественного транспорта в инфраструктуру: это электробусы с ночной зарядкой длительностью 4 часа и запасом хода свыше 200 км; машины с зарядкой от троллейбусной контактной сети; с зарядкой с помощью пантографа. Использование этих решений снижает стоимость разработки и развития инфраструктуры городской транспортной сети. Все модели MODULO могут быть оснащены различными вариантами силовой установки.


«С 2016 года десятки электробусов MODULO интегрированы в транспортную сеть Будапешта. Фактические расходные данные эксплуатации модели С68Е по протоколу TÜV (SORT2): 0,62 кВт⋅ч/км, а по протоколу Будапештской транспортной компании: 0,65–0,75 кВт⋅ч/км. Это один из самых низких в мире показателей расхода энергии при эксплуатации электробусов», – отметил представитель Evopro Holding Пал Сираки.

В MODULO устанавливаются электродвигатели и система управления SIEMENS мощностью 160 кВт. Электробусы оснащены оборудованием от ведущих мировых и российских производителей. Использование производственной площадки НЦК в России в перспективе позволит достичь уровня локализации в 75–80%. Гарантийное и сервисное обслуживание электробусов осуществляется СП НЦК и Evopro Group. В сентябре 2017 года началось испытание электробуса MODULO на московских улицах.

a-kt.ru


Смотрите также