RU (495) 989 48 46
Пленка на бампер

АНТИГРАВИЙНАЯ ЗАЩИТА БАМПЕРА

 

На что влияет датчик кислорода


Первые признаки неисправности лямбда-зонда или как проверить датчик кислорода

О том, что такое лямбда зонд и для чего он нужен, к сожалению, знают далеко не все автовладельцы. Лямбда зонд — это кислородный датчик, который позволяет электронной системе контролировать и балансировать правильное соотношение воздуха и бензина в камерах сгорания. Он способен своевременно исправить структуру топливной смеси и предупредить дестабилизацию рабочего процесса двигателя.

Этот достаточно хрупкий прибор находится в очень агрессивной среде, поэтому его работу необходимо постоянно контролировать, так как при его поломке дальнейшее использование автомобиля невозможно. Периодическая проверка лямбда зонда станет гарантом стабильной работы автотранспортного средства.

Принцип действия лямбда зонда

Основной задачей лямбда зонда является определение химсостава выхлопных газов и уровня содержания в них молекул кислорода. Этот показатель должен колебаться в пределах от 0,1 до 0,3 процентов. Бесконтрольное превышение этого нормативного значения может привести к неприятным последствиям.

При стандартной сборке автомобиля, лямбда зонд монтируется в выпускном коллекторе в области соединения патрубков, однако, иногда бывают и другие вариации его установки. В  принципе, иное расположение не влияет на рабочую производительность данного прибора.

Сегодня можно встретить несколько вариаций лямбда зонда: с двухканальной компоновкой и широкополосного типа. Первый вид чаще всего встречается на старых автомобилях, выпущенных в 80-е годы, а также на новых моделях эконом-класса. Датчик широкополосного типа присущ современным авто среднего и высшего класса. Такой датчик способен не только с точностью определить отклонение от нормы определенного элемента, но и своевременно сбалансировать правильное соотношение.

Благодаря усердной работе таких датчиков существенно повышается рабочий ресурс автомобиля, снижается топливный расход и повышается стабильность удержания оборотов холостого хода.

С точки зрения электротехнической стороны, стоит отметить тот момент, что датчик кислорода не способен создавать однородный сигнал, так как этому препятствует его расположение в коллекторной зоне, ведь в процессе достижения выхлопными газами прибора может пройти определенное количество рабочих циклов. Таким образом, можно сказать, что лямбда зонд реагирует скорее на дестабилизацию работы двигателя, о чем он собственно впоследствии и оповещает центральный блок и принимает соответствующие меры.

Основные признаки неисправности лямбда зонда

Основным признаком неисправности лямбда зонда служит изменение работы двигателя, так как после его поломки значительно ухудшается качество поступаемой топливной смеси в камеру сгорания. Топливная смесь, по сути, остается бесконтрольной, что недопустимо.

Причиной выхода из рабочего состояния лямбда зонда может быть следующее:

Во всех вышеперечисленных случаях, кроме последнего, выход из строя происходит постепенно. Поэтому те автовладельцы, которые не знают как проверить лямбда зонд и где он вообще расположен, скорее всего, не сразу заметят неисправность. Однако, для опытных водителей определить причину изменения работы двигателя не составит никакого труда.

Постепенный выход из строя лямбда зонда можно разбить на несколько этапов. На начальной стадии датчик перестает нормально функционировать, то есть, в определенных рабочих моментах мотора устройство перестает генерировать сигнал, впоследствии чего дестабилизируется налаженность оборотов холостого хода.

Иными словами, они начинают колебаться в достаточно расширеном диапазоне, что в конечном итоге приводит к потере качества топливной смеси. При этом авто начинает беспричинно дергаться, также можно услышать нехарактерные работе двигателя хлопки и обязательно на панели приборов загорается сигнальная лампочка. Все эти аномальные явления сигнализируют автовладельцу о неправильной работе лямбда зонда.

На втором этапе датчик и вовсе перестает работать на не прогретом двигателе, при этом автомобиль будет всевозможными способами сигнализировать водителю о проблеме. В частности, произойдет ощутимый упадок мощности, замедленное реагирование при воздействии на педаль акселератора и все те же хлопки из-под капота, а также неоправданное дергание автомобиля. Однако, самым существенным и крайне опасным сигналом поломки лямбда зонда служит перегрев двигателя.

В случае полного игнорирования всех предшествующих сигналов свидетельствующих об ухудшении состояния лямбда зонда, его поломка неизбежна, что станет причиной большого количества проблем. В первую очередь пострадает возможность естественного движения, также значительно увеличится расход топлива и появится неприятный резкий запах с ярко выраженным оттенком токсичности из выхлопной трубы. В современных автоматизированных автомобилях в случае поломки кислородного датчика может попросту активизироваться аварийная блокировка, в результате которой последующее движение автомобиля становится невозможным. В таких случаях сможет помочь только экстренный вызов эвакуатора.

Однако, самым худшим вариантом развития событий является разгерметизация датчика, так как в этом случае движение автомобиля становится невозможным по причине высокой вероятности поломки двигателя и последующего дорогостоящего ремонта. Во время разгерметизации отработанные газы вместо выхода через выхлопную трубу, попадают в заборный канал атмосферного эталонного воздуха. Во время торможения двигателем лямбда зонд начинает фиксировать переизбыток молекул кислорода и экстренно подает большое количество отрицательных сигналов, чем полностью выводит из строя систему управления впрыском.

Основным признаком разгерметизации датчика является потеря мощности, особенно это ощущается во время скоростного движения, характерное постукивание из-под капота во время движения, которое сопровождается неприятными рывками и неприятный запах, который выбрасывается из выхлопа. Также о разгерметизации свидетельствует видимый осадок сажных образований на корпусе выпускных клапанов и в области свечей.

Как определить неисправность лямбда зонда рассказывается на видео:

Электронная проверка лямбда зонда

Узнать о состоянии лямбда зонда можно путем его проверки на профессиональном оборудовании. Для этого используется электронный осциллограф. Некоторые специалисты определяют работоспособность кислородного датчика при помощи мультиметра, однако, он способен только констатировать или же опровергнуть факт его поломки.

Проверяется устройство во время полноценной работы двигателя, так как в состоянии покоя датчик не сможет полностью передать картину своей работоспособности. В случае даже незначительного отхождения от нормы, лямбда зонд рекомендуется заменить.

Замена лямбда зонда

В большинстве случаев такая деталь, как лямбда зонд не подлежит ремонту, о чем свидетельствуют утверждения о невозможности произведения ремонта от многих автомобильных производителей. Однако, завышенная стоимость такого узла у официальных дилеров отбивает всякую охоту его приобретения. Оптимальным выходом из сложившейся ситуации может стать универсальный датчик, который стоит гораздо дешевле родного аналога и подходит практически всем автомобильным маркам. Также в качестве альтернативы можно приобрети датчик бывший в использовании, но с продолжительностью гарантийного периода или же полностью выпускной коллектор с установленным в него лямбда зондом.

Однако, бывают случаи, когда лямбда зонд функционирует с определенной погрешностью из-за сильного загрязнения в результате оседания на нем продуктов сгорания. Для того чтобы убедиться, что это действительно так, датчик необходимо проверить у специалистов. После того как проверка лямбда зонда состоялась и подтвержден факт его полной работоспособности, его нужно снять, почистить и установить обратно.

Для того чтобы демонтировать датчик уровня кислорода, необходимо прогреть его поверхность до 50 градусов. После снятия, с него снимается защитный колпачок и только после этого можно приступать к очистке. В качестве высокоэффективного очищающего средства рекомендуется использовать ортофосфорную кислоту, которая с легкостью справляется даже с самыми стойкими горючими отложениями. По окончании процедуры отмачивания, лямбда зонд ополаскивается в чистой воде, тщательно просушивается и устанавливается на место. При этом не стоит забывать о смазке резьбы специальным герметиком, который обеспечить полную герметичность.

Устройство автомобиля очень сложное, поэтому он нуждается в постоянной поддержке работоспособности и проведении своевременных профилактических работ. Поэтому в случае возникновения подозрений о неисправности лямбда зонда, необходимо незамедлительно произвести диагностику его работоспособности и в случае подтверждения факта выхода из строя, заменить лямбда зонд. Таким образом, все важнейшие функции транспортного средства будут сохранены на прежнем уровне, что станет гарантом отсутствия дальнейших проблем с двигателем и прочими важными элементами автомобиля.

Неисправность датчика кислорода. Признаки и причины

Неисправность датчика кислорода приводит к повышенному расходу топлива, снижению динамических характеристик автомобиля, нестабильной работе мотора на холостых оборотах, увеличение токсичности выхлопных газов. Обычно причинами неисправности датчика концентрации кислорода является его механическое повреждение, разрыв электрической (сигнальной) цепи, загрязнение чувствительной части датчика продуктами сгорания топлива. В некоторых случаях, например, при возникновении ошибки p0130 или p0141 на приборной панели активируется сигнальная лампа Check Engine. Использовать автомобиль при неисправном датчике кислорода можно, однако это приведет к указанным выше проблемам.

Содержание:

Неисправность датчика кислорода

Назначение датчика кислорода

Датчик кислорода устанавливается в выпускном коллекторе (у различных машин конкретное место и ко-во может отличаться), и выполняет мониторинг наличия кислорода в выхлопных газах. В автопромышленности греческая буква «лямбда» обозначает коэффициент избытка кислорода в топливовоздушной смеси. Именно по этой причине зачастую датчик кислорода называют «лямбда-зонд».

Предоставленная датчиком информация о количестве кислорода в составе выхлопных газов электронным блоком управления двигателем (ЭБУ) используется для корректировка впрыска топлива. Если кислорода в выхлопных газах много, значит, топливовоздушная смесь, подаваемая в цилиндры, бедная (напряжение на датчике 0,1…0,3 Вольта), а если кислорода много — значит, богатая (напряжение на датчике 0,6…0,9 Вольта). Соответственно, происходит коррекция количества подаваемого топлива при необходимости. Что сказывается не только на динамических характеристиках двигателя, но и работы каталитического нейтрализатора выхлопных газов.

В большинстве случаев диапазон эффективной работы катализатора составляет 14,6…14,8 долей воздуха на одну долю топлива. Это соответствует значению лямбда, равной единице. Таким образом, датчик кислорода является своеобразным контролером, расположенным в выпускном коллекторе.

На некоторых автомобилях конструктивно предусмотрено использование двух датчиков концентрации кислорода. Один расположен до катализатора, а второй — после. Задача первого состоит в коррекции состава топливовоздушной смеси, а второго — проверка эффективности работы катализатора. Сами же датчики по конструкции, как правило, идентичны.

Влияет ли лямбда зонд на запуск — что будет?

Если отключить лямбда зонд то будет возрастание расхода топлива, повышение токсичности газов, а иногда и нестабильная работа двигателя на холостых оборотах. Однако такой эффект происходит лишь после прогрева так как кислородный датчик начинает работать в условиях повышенной до +300°С температуры. Для этого его конструкция подразумевает использование специального подогрева, которая включается при запуске двигателя. Соответственно, непосредственно в момент запуска мотора лямбда зонд не работает, и никоим образом не влияет на сам запуск.

Лампочка “чек” при неисправности лямбда зонда горит когда в памяти ЭБУ сформированы конкретные ошибки связанные с повреждением проводки датчика либо самого датчика, однако код фиксируется лишь при определенных условиях работы двигателя.

Признаки неисправности датчика кислорода

Выход из строя лямбда зонда, как правило, сопровождается следующими внешними симптомами:

Стоит оговориться, что перечисленные выше признаки могут указывать и на другие поломки двигателя или прочих систем автомобиля. Поэтому, чтобы определить неисправности датчика кислорода, нужны несколько проверок используя в первую очередь диагностический сканер и мультиметр для проверки сигналов лямбды (управляющего и цепи подогрева).

Как правило, проблемы с проводкой датчика кислорода четко фиксируется электронным блоком управления. При этом в его памяти формируются ошибки, например, p0136, p0130, p0135, p0141 и прочие. В любом случае необходимо выполнить проверку цепи датчика (проверить наличие напряжения и целостность отдельных проводов), а также посмотреть на график работы (используя осциллограф либо программу диагностик).

Причины неисправности датчика кислорода

В большинстве случаев кислородная лямбда работает около 100 тыс. км без сбоев однако есть причины которые значительно сокращают его ресурс и приводят к неисправности.

Обратите внимание, что состояние датчика кислорода во многом зависит от состояния других элементов двигателя. Так, значительно снижают ресурс лямбда зонда следующие факторы: неудовлетворительное состояние маслосъемных колец, попадание антифриза в масло (цилиндры), обогащенная топливовоздушная смесь. И если при исправном датчике кислорода количество углекислого газа составляет порядка 0,1…0,3%, то при выходе лямбда зонда из строя соответствующее значение увеличивается до 3…7%.

Как определить неисправность датчика кислорода

Существует ряд методов для проверки состояния лямбда датчика и его питающих/сигнальных цепей.

Специалисты компании BOSCH советуют проверять соответствующий датчик каждые 30 тысяч километров пробега, либо при выявлении описанных выше неисправностей.

Что нужно сделать в первую очередь при диагностике?

  1. Необходимо оценить количество сажи на трубке зонда. Если ее слишком много — датчик будет работать некорректно.
  2. Определить цвет отложений. Если на чувствительном элементе датчика имеются белые или серые отложения — это означает, что используются присадки к топливу или к маслу. Они негативно сказываются на работе лямбда зонда. Если на трубке зонда имеются блестящие отложения — это говорит о том, что в используемом топливе очень много свинца, и от использования такого бензина лучше отказаться, соответственно, сменить марку бензозаправки.
  3. Можно попытаться очистить сажу, однако это не всегда возможно.
  4. Проверить мультиметром целостность проводки. В зависимости от модели конкретного датчика он может иметь от двух до пяти проводов. Один из них будет сигнальным, а остальные — питающими, в том числе, для питания элементов подогрева. Для выполнения процедуры проверки вам понадобится цифровой мультиметр, способный измерять постоянное электрическое напряжение и сопротивление.
  5. Имеет смысл проверить сопротивление нагревателя датчика. В разных моделях лямбда зонда оно будет находиться в пределах от 2 до 14 Ом. Значение питающего напряжения должно быть около 10,5…12 Вольт. В процессе проверки также нужно обязательно проверить целостность всех проводов, подходящих к датчику, а также значение сопротивления их изоляции (как попарно между собой, так и каждого на «массу»).

Как проверить лямбда-зонд видео

Обратите внимание, что нормальная работа датчика кислорода возможна лишь при его нормальной рабочей температуре, равной +300°С…+400°С. Это обусловлено тем, что лишь в таких условиях циркониевый электролит, нанесенный на чувствительный элемент датчика, становится проводником электрического тока. Также при такой температуре разница атмосферного кислорода и кислорода в выхлопной трубе приведет к тому, что на электродах датчика появится электрический ток, который и будет передаваться на электронный блок управления двигателем.

Так как проверка кислородного датчика во многих случаях подразумевает снятие/установку то стоит учесть такие нюансы:

Точная проверка лямбда зонда

Точнее всего определить неисправность датчика концентрации кислорода позволит осциллограф. Причем использовать профессиональный аппарат необязательно можно снять осциллограмму используя программу-симулятор на ноутбуке либо другом гаджете.

График правильной работы датчика кислорода

На первом рисунке в данном разделе представлен график правильной работы датчика кислорода. В этом случае на сигнальный провод поступает сигнал, похожий на ровную синусоиду. Синусоида в данном случае означает, что контролируемый датчиком параметр (количество кислорода в выхлопных газах) находится в предельно допустимых границах, и просто происходит его постоянная и периодическая проверка.

График работы сильно загрязненного датчика кислорода

График работы датчика кислорода на обедненной топливной смеси

График работы датчика кислорода на обогащенной топливной смеси

График работы датчика кислорода на бедной топливной смеси

Далее представлены графики, соответствующие сильно загрязненному датчику, использованию двигателем автомобиля обедненной топливной смеси, богатой смеси, а также бедной смеси. Ровные линии на графиках означают, что контролируемый параметр вышел за допустимые пределы в ту или другую сторону.

Как устранить неисправность датчика кислорода

Если впоследствии проверки показало что причина в проводке, то проблема решится заменой жгута проводов либо фишки подключения, а вот при отсутствии сигнала от самого датчика зачастую говорит о необходимости замены датчика концентрации кислорода на новый, но прежде чем покупать новую лямбду можно воспользоваться одним из представленных ниже способов.

Метод первый

Предполагает очистку элемента подогре от нагара (применяется когда возникает неисправность нагревателя датчика кислорода). Для реализации этого метода необходимо обеспечить доступ к чувствительной керамической части устройства, которая скрыта за защитным колпачком. Снять указанный колпачок можно с помощью тонкого напильника, с помощью которого нужно сделать надрезы в области основания датчика. Если демонтировать колпачок полностью не получится, то допускается сделать маленькие окошки размером около 5 мм. Для дальнейшей работы необходимо около 100 мл ортофосфорной кислоты либо преобразователя ржавчины.

Когда защитный колпачок был демонтирован полностью, то для его восстановления на его посадочном месте придется воспользоваться аргоновой сваркой.

Процедура по восстановлению выполняется по следующему алгоритму:

Порой на выполнение чистки датчика таким методом нужно потратить до восьми часов времени, ведь если с первого раза очистить сажу не получилось, то имеет смысл повторить процедуру два и более раза, причем можно воспользоваться кистью для выполнения механической обработки поверхности. Вместо кисти можно воспользоваться зубной щеткой.

Метод второй

Предполагает выпаливание нагара на датчике. Для выполнения чистки датчика кислорода вторым методом кроме той же ортофосфорной кислоты понадобится еще и газовая горелка (как вариант использовать домашнюю газовую плиту). Алгоритм чистки следующий:

Повторить описанную процедуру нужно несколько раз до тех пор, пока чувствительный элемент не станет чистым и блестящим.

Спрашивайте в комментариях. Ответим обязательно!

Кислородный датчик: устройство, назначение, диагностика

Сомнительная заправка, плохой бензин, «чек» на панели — стандартный и быстрый путь к замене кислородного датчика. Про лямбда-зонд слышали многие автомобилисты, но мало кто разбирался, за что именно он отвечает и почему так легко выходит из строя. Рассказываем про датчик кислорода — «обоняние» двигателя.

Лямбда и стехиометрия двигателя

Название датчика происходит от греческой буквы λ (лямбда), которая обозначает коэффициент избытка воздуха в топливно-воздушной смеси. Для полного сгорания смеси соотношение воздуха с топливом должно быть 14,7:1 (λ=1). Такой состав топливно-воздушной смеси называют стехиометрическим — идеальным с точки зрения химической реакции: топливо и кислород в воздухе будут полностью израсходованы в процессе горения. При этом двигатель произведёт минимум токсичных выбросов, а соотношение мощности и расхода топлива будет оптимальным.

Если лямбда будет <1 (недостаток воздуха), смесь станет обогащённой; при лямбде >1 (избыток воздуха) смесь называют обеднённой. Чересчур богатая смесь — это повышенный расход топлива и более токсичный выхлоп, а слишком бедная смесь грозит потерей мощности и нестабильной работой двигателя.

Лямбда-зонд: почему датчик кислорода так важен для автомобиля

Зависимость мощности и расхода топлива от состава смеси

Из графика видно, что при λ=1 мощность двигателя не пиковая, а расход топлива не минимален — это лишь оптимальный баланс между ними. Наибольшую мощность мотор развивает на слегка обогащённой смеси, но расход топлива при этом возрастает. А максимальная топливная эффективность достигается на слегка обеднённой смеси, но ценой падения мощности. Поэтому задача ЭБУ (электронного блока управления) двигателя — корректировать топливно-воздушную смесь исходя из ситуации: обогащать её при холодном пуске или резком ускорении, и обеднять при равномерном движении, добиваясь оптимальной работы мотора во всех режимах. Для этого блок управления ориентируется на показания датчика кислорода.

Зачем нужен кислородный датчик

Датчиков в современном двигателе великое множество. С помощью различных сенсоров ЭБУ замеряет температуру забортного воздуха и его поток, «видит» положение дроссельной заслонки, отслеживает детонацию и положение коленвала — словом, внимательно следит за воздухом «на входе» и показателями работы мотора, регулируя подачу топлива для создания оптимальной смеси в цилиндрах.

Лямбда-зонд: почему датчик кислорода так важен для автомобиля

Схема лямбда-коррекции двигателя

Лямбда-зонд показывает, что же получилось «на выходе», замеряя количество кислорода в выхлопных газах. Другими словами, кислородный датчик определяет, оптимально ли работает мотор, соответствуют ли расчёты ЭБУ реальной картине и нужно ли вносить в них поправки. Основываясь на данных с лямбда-зонда, ЭБУ вносит соответствующие коррекции в работу двигателя и подготовку топливно-воздушной смеси.

Где находится кислородный датчик

Датчик кислорода установлен в выпускном коллекторе или приёмной трубе глушителя двигателя, замеряя, сколько несгоревшего кислорода находится в выхлопных газах. На многих автомобилях есть ещё один лямбда-зонд, расположенный после каталитического нейтрализатора выхлопа — для контроля его работы.

Если у двигателя две головки блока (V-образники, «оппозитники»), то удваивается количество выпускных коллекторов и катализаторов, а значит и лямбда-зондов — у современной машины может быть и 4 кислородных датчика.

Лямбда-зонд: почему датчик кислорода так важен для автомобиля

Устройство кислородного датчика

Классический лямбда-зонд порогового типа — узкополосный — работает по принципу гальванического элемента. Внутри него находится твёрдый электролит — керамика из диоксида циркония, поэтому такие датчики часто называют циркониевыми. Поверх керамики напылены токопроводящие пористые электроды из платины. Будучи погружённым в выхлопные газы, датчик реагирует на разницу между уровнем кислорода в них и в атмосферном воздухе, вырабатывая на выходе напряжение, которое считывает ЭБУ.

Циркониевый элемент лямбда-зонда приобретает проводимость и начинает работать только после прогрева до температуры 300 °C. До этого ЭБУ двигателя действует «вслепую» согласно топливной карте, без обратной связи от кислородного датчика, что повышает расход топлива при прогреве двигателя и количество вредных выбросов. Чтобы быстрее задействовать лямбда-зонд, ему добавляют принудительный электрический подогрев. Кислородные датчики с подогревом внешне отличаются увеличенным количеством проводов: у них 3–4 жилы против 1–2 у обычных датчиков.

В названии узкополосного датчика кроется его недостаток — он способен замерять количество кислорода в выхлопе в достаточно узком диапазоне. ЭБУ может корректировать смесь по его показаниям только в некоторых режимах работы мотора (холостой ход, движение с постоянной скоростью), что не отвечает современным требованиям по экономичности и экологичности двигателей. Для более точных замеров в широком диапазоне используют широкополосный лямбда-зонд (A/F-сенсор), который также называют датчиком соотношения «воздух-топливо» (Air/Fuel Sensor). Обычно к нему подходят 5–6 проводов, хотя бывают и исключения.

Лямбда-зонд: почему датчик кислорода так важен для автомобиля

Внешне «широкополосник» похож на обычный датчик кислорода, но внутри есть отличия. Благодаря специальным накачивающим ячейкам эталонный лямбда-коэффициент газового содержимого датчика всегда равен 1, и генерируемое им напряжение постоянно. А вот ток меняется в зависимости от количества кислорода в выхлопных газах, и ЭБУ двигателя считывает его в реальном времени. Это позволяет электронике быстрее и точнее корректировать смесь, добиваясь её полного сгорания в цилиндрах.

Почему до сих пор производят узкополосные датчики? Во-первых, для старых автомобилей, где A/F-сенсоры не применялись. Во-вторых, из-за особенностей «широкополосника» его нельзя устанавливать после катализатора, где он быстро выходит из строя. А контролировать работу катализатора как-то надо. Поэтому в современных двигателях ставят два лямбда-зонда разного типа: широкополосный (управляющий) — в районе выпускного коллектора, а узкополосный (диагностический) — после катализатора.

Причины и признаки неисправности лямбда-зонда

Основная причина поломок кислородных датчиков — некачественный бензин: свинец и ферроценовые присадки оседают на чувствительном элементе датчика, выводя его из строя. На состояние лямбда-зонда влияет и нестабильная работа двигателя: при пропусках зажигания от старых свечей или пробитых катушек несгоревшая смесь попадает в выхлопную систему, где догорает, выжигая и катализатор, и датчики кислорода. Приговорить датчик также может попадание в цилиндры антифриза или масла.

Самый очевидный признак неисправности лямбда-зонда — индикатор Check Engine на приборной панели. Считав код ошибки с помощью сканера или самодиагностики, можно проверить, какой именно датчик вышел из строя, если их несколько. Иногда всё дело в повреждённой проводке датчика — с проверки цепи и стоит начать поиск поломки.

Лямбда-зонд: почему датчик кислорода так важен для автомобиля Лямбда-зонд: почему датчик кислорода так важен для автомобиля

Но далеко не всегда проблемный лямбда-зонд зажигает «Чек»: иногда он не ломается полностью, а медленно умирает, давая при этом ложные показания, из-за чего ЭБУ двигателя неверно корректирует состав смеси. В этом случае нужно ориентироваться на косвенные признаки — ухудшение работы двигателя.

Проблемы с датчиком кислорода нарушают всю систему обратной связи и лямбда-коррекции, вызывая целый букет неисправностей. Прежде всего, это увеличение расхода топлива и токсичности выхлопа, снижение мощности и нестабильный холостой ход. Если вовремя не заменить лямбда-зонд, следом выйдет из строя каталитический нейтрализатор, осыпавшись из-за перегрева от обогащённой смеси.

Лямбда-зонд: почему датчик кислорода так важен для автомобиля

Универсальные кислородные датчики

Цена на оригинальные датчики кислорода вряд ли обрадует автомобилистов, но все лямбда-зонды работают по единому принципу, что позволяет без труда подобрать замену. Главное, чтобы соответствовал типа датчика (широкополосный/узкополосный), количество проводов и резьбовая часть. В продаже есть универсальные кислородные датчики без разъёма, которые можно использовать на десятках моделей автомобилей — подобрать и купить лямбда-зонд не составляет проблемы.

Чтобы избежать проблем с кислородными датчиками, следите за состоянием двигателя, заправляйтесь качественным топливом и регулярно выполняйте компьютерную диагностику, которая позволит выявить неисправности на ранней стадии.

Датчик кислорода (Лямбда-зонд): как работает, проблемы, симптомы

На чтение 5 мин. Просмотров 2.8k. Опубликовано

Датчик кислорода (ДК) — он же лямбда-зонд — измеряет количество кислорода в выхлопных газах, отправляя сигнал на блок управления двигателя (ЭБУ).

Где находится датчик кислорода

Передний датчик кислорода ДК1 установлен в выпускном коллекторе или в передней выпускной трубе перед каталитическим нейтрализатором. Как вы знаете, каталитический нейтрализатор является основной частью системы контроля выбросов в автомобиле.

Задний кислородный датчик ДК2 установлен в выхлопе после каталитического нейтрализатора.

На 4-цилиндровых двигателях устанавливают как минимум два лямбда-зонда. Двигатели V6 и V8 имеют как минимум четыре датчика O2.

ЭБУ использует сигнал от переднего кислородного датчика для регулировки топливно-воздушной смеси путем добавления или уменьшения топлива.

Сигнал заднего датчика кислорода используется для контроля работы каталитического нейтрализатора. В современных автомобилях вместо переднего кислородного датчика используется датчик воздушно-топливного отношения. Он работает аналогично, но точнее.

Как работает датчик кислорода

Существует несколько типов лямбда-зондов, но для простоты в этой статье мы рассмотрим только обычные генерирующие напряжение датчики кислорода.

Как следует из названия, генерирующий напряжение датчик кислорода генерирует небольшое напряжение, пропорциональное разнице в количестве кислорода внутри и снаружи выхлопного газа.

Для правильной работы лямбда-зонд необходимо нагреть до определенной температуры. Типичный современный датчик имеет внутренний электрический нагревательный элемент, который питается от ЭБУ двигателя.

Когда топливовоздушная смесь (ТВС), поступающая в двигатель, бедная (мало топлива и много воздуха), в выхлопе остается больше кислорода, и кислородный датчик создает очень небольшое напряжение (0,1 – 0,2 В).

Если ТВС обогащается (много топлива и мало воздуха), в выхлопе остается меньше кислорода, поэтому датчик будет генерировать бОльшее напряжение (около 0,9 В).

Регулировка соотношения топливовоздушной смеси

Передний датчик O2 отвечает за поддержание оптимального соотношения смеси воздух / топливо, поступающей в двигатель, которая составляет приблизительно 14,7:1 или 14,7 частей воздуха на 1 часть топлива.

Блок управления регулирует топливовоздушную смесь на основе обратной связи от переднего датчика кислорода. Когда передний лямбда-зонд обнаруживает высокий уровень кислорода, ЭБУ предполагает, что двигатель работает на бедной смеси (недостаточно топлива) и поэтому добавляет топлива.

Когда уровень кислорода в выхлопе становится низким, ЭБУ предполагает, что двигатель работает на богатой смеси (слишком много топлива) и уменьшает подачу топлива.

Этот процесс непрерывен. Компьютер двигателя постоянно переключается между обедненным и обогащенным состоянием, чтобы поддерживать оптимальное соотношение воздух / топливо. Этот процесс называется операцией замкнутого цикла.

Если вы посмотрите на сигнал напряжения переднего датчика кислорода, он будет циклически колебаться где-то между 0,2 вольт (бедная) и 0,9 вольт (богатая).

Когда автомобиль заводится холодным, передний кислородный датчик не прогрет полностью, и ЭБУ не использует сигнал ДК1 для регулировки топлива. Этот режим называется разомкнутым контуром. Только когда датчик полностью прогрелся, система впрыска топлива переходит в режим замкнутого контура.

В современных автомобилях вместо обычного датчика кислорода установлен широкополосный датчик топливовоздушного соотношения. Датчик соотношения воздух / топливо работает по-другому, но служит той же цели — для определения, является ли топливовоздушная смесь, поступающая в двигатель, обогащённой или обеднённой.

Датчик топливовоздушного соотношения является более точным и может измерять более широкий диапазон.

Задний датчик кислорода

Задний или нижний кислородный датчик установлен в выхлопе после каталитического нейтрализатора. Он измеряет количество кислорода в выхлопных газах, выходящих из катализатора. Сигнал от заднего лямбда-зонда используется для контроля эффективности нейтрализатора.


Контроллер постоянно сравнивает сигналы от передних и задних датчиков O2. Основываясь на двух сигналах, ЭБУ знает, насколько хорошо каталитический нейтрализатор работает. Если катализатор выходит из строя, ЭБУ включает индикатор «Check Engine», чтобы вы знали об этом.

Задний датчик кислорода можно проверить с помощью диагностического сканера, адаптера ELM327 с программой Torque или осциллографа.

Идентификация датчика кислорода

Передний лямбда-зонд перед каталитическим нейтрализатором обычно называют датчиком «выше по потоку» или датчиком 1.

Задний датчик, установленный после катализатора, называется датчик «ниже по потоку» или датчик 2.

Типичный рядный 4-цилиндровый двигатель имеет только один блок (ряд 1 / банк 1). Поэтому в рядном 4-цилиндровом двигателе термин «Банк 1, Датчик 1» просто относится к переднему датчику кислорода. «Банк 1, Датчик 2» — это задний кислородный датчик.

Читайте подробнее: Что такое Банк 1, Банк 2, Датчик 1, Датчик 2?

Двигатель V6 или V8 имеет два блока (или две части этого «V»). Обычно блок цилиндров, содержащий цилиндр № 1, называется «Банк 1».

Различные производители автомобилей определяют Банк 1 и Банк 2 по-разному. Чтобы узнать, где банк 1 и банк 2 в вашем автомобиле, вы можете посмотреть в руководстве по ремонту или в Google, указав год, марку, модель и объём двигателя.

Замена датчика кислорода

Проблемы с датчиком кислорода являются распространёнными. Неисправный лямбда-зонд может привести к увеличению расхода топлива, увеличению выбросов в атмосферу и различным проблемам во время вождения (провалы оборотов, плохое ускорение, плавающие обороты и т. д.). Если датчик кислорода неисправен, его необходимо заменить.

В большинстве автомобилей замена ДК является довольно простой процедурой. Если вы хотите заменить кислородный датчик самостоятельно, с некоторыми навыками и руководством по ремонту, это не так сложно, но вам может понадобиться специальная торцевая головка для датчика (на фото).

Иногда может быть трудно вытащить старый лямбда-зонд, так как они часто сильно ржавеют.

Еще одна вещь, о которой следует знать — некоторые автомобили, как известно, имеют проблемы с заменяемыми датчиками кислорода.

Например, есть сведения о неоригинальном датчике кислорода, вызывающем проблемы в некоторых двигателях Chrysler. Если вы не уверены, лучше всегда использовать оригинальный датчик.

Какие могут быть неисправности лямбда-зонда в автомобиле

Назначение прибора, признаки неисправности и типичные «болячки»

Какие могут быть неисправности лямбда-зонда в автомобиле

Лямбда-зонд – это датчик, расположенный в выхлопной системе, который отвечает за контроль уровня кислорода в потоке выхлопных газов. Результаты измерений в реальном времени влияют на управление двигателем.

Лямбда-зонд работает в крайне неблагоприятной среде. Он контактирует с выхлопными газами при температуре более 500 градусов по Цельсию. Зонд также подвержен воздействию влаги и вибрации, а кроме того, механическим повреждениям. Средний срок службы рассчитан на пробег в интервале 150-200 тысяч км. Однако реалии бывают разные. Водитель должен быть внимательным и следить за исправностью этого важного кислородного датчика, который позволяет электронной системе регулировать оптимальный состав воздушно-топливной смеси.


Правильно работающий лямбда-зонд влияет не только на производительность ДВС , но и на уровень токсичности выхлопа. Например, лямбда-зонд может распознать неисправность автогазового оборудования, установленного на транспортном средстве. Автовладельцам, использующим в качестве топлива сжиженный газ, не стоит проявлять беспечность, если загорается сигнал check engine. Это не «просто лямбда-зонд», а сообщение о том, что с топливной смесью что-то не так: необходима профессиональная диагностика.


Как распознать признаки «нездоровья» лямбда-зонда

Какие могут быть неисправности лямбда-зонда в автомобиле

фото: flickr.com

Как уже говорилось, проблемы с датчиком остаточного кислорода, как еще называют лямбда-зонд, начинаются после 200 тысяч км. Ниже список симптомов, которые с высокой степенью вероятности сигнализируют о том, что лямбда-зонд вышел из строя:


Особенно тревожным сигналом является перегрев двигателя. Также водитель может распознать неисправность по качественному падению мощности силовой установки – она с большой неохотой реагирует на педаль газа, что сопровождается чиханием двигателя. Еще один знак: в салоне неприятно пахнет отработанными газами. В современных моделях, оборудованных системами безопасной автоматики, выход из строя лямбда-зонда может привести к аварийной блокировке с последующим вызовом эвакуатора.

 

Как диагностировать неисправный зонд?

Какие могут быть неисправности лямбда-зонда в автомобиле

 фото: flickr.com

Для этого потребуется профессиональное оборудование – осциллограф или мультиметр. Проверка на работоспособность (при помощи мультимитра) производится при работающем двигателе , иначе невозможно определить реальную картину. Если не уверены в своих силах - обратитесь к профессиональным электрикам.

 

Типичными причинами неработающего зонда могут быть:

 

Смотрите также

 

Если диагностика обнаружила несоответствие нормативу, лямбда-зонд необходимо заменить.

обложка: flickr.com

Как проверить лямбда-зонд на работоспособность

Инжекторные двигатели экономичны и дружелюбны к экологии в отличии от карбюраторных моторов. Высоких показателей инженеры добились благодаря датчикам в системе питания. Один из датчиков, который непосредственно влияет на смесеобразование – это лямбда-зонд или кислородный датчик.

Содержание статьи:

Если он выходит из строя, можно наблюдать потерю мощности, большой расход топлива, нестабильную работу мотора.

Зачем в автомобиле нужен лямбда-зонда, место расположения

Лямбда-зонд необходим для измерения коэффициента содержания кислорода в горючей смеси. Он устанавливается всегда в районе приемной трубы до катализатора и измеряет объем несгоревшего кислорода в продуктах сгорания. Эта информация позволит ЭБУ готовить оптимальную смесь.

Наиболее эффективно сгорает смесь, в которой содержится 14,7 частей воздуха и одна часть топлива. Это оптимальные показатели, если кислород присутствует в больших количествах, то смесь бедная, если воздуха меньше, то богатая.

Читайте также: Почему горит ЧЕК в машине, что делать, можно ли ехать и как его потушить

Сгорание богатой смеси менее эффективно – можно наблюдать снижение мощности, повышенный расход топлива.

Так как моторы в автомобилях функционируют на совершенно разных режимах, то оптимальное соотношения воздуха и топлива может не соблюдаться. Для контроля качества смеси в системах питания применяют кислородные датчики.

На основе сигналов от лямбды ЭБУ может оценить качество смеси. Если обнаружены показатели, которые не соответствуют нормам, смесь корректируется.

Принцип работы кислородного датчика

Принцип действия кислородного датчика достаточно простой. Лямбда-зонд должен сравнивать показания с какими-то идеальными результатами, чтобы понимать, как меняется процент кислорода в смеси, поэтому замеры проводятся в двух местах – измеряется атмосферный воздух и продукты сгорания.

Такой подход позволяет датчику чувствовать разницу, если соотношения топливной смеси меняется.

ЭБУ должен получать от лямбда-зонда электрический импульс. Для этого датчик должен уметь преобразовывать замеры в электрические сигналы. Для измерения применяются специальные электроды, которые могут вступать с кислородом в реакцию.

В работе лямбды используется принцип гальванических элементов – смена условий химических реакций приводит к изменению напряжения между двумя электродами. Когда смесь богатая, а содержание кислорода за нижним порогом, тогда напряжение растет. Если смесь обедненная, напряжение будет падать.

Далее импульс, который возникает на этапе химических реакций, отправляется на ЭБУ, где параметры сравниваются с записанными в памяти топливными картами. В результате корректируется работа системы питания.

Статья по теме: Как сделать пеногенератор для автомойки из подручных вещей своими руками

Датчик кислорода работает на химических реакциях, но при этом конструкция его относительно простая. Главный элемент – специальный наконечник из керамических материалов. В качестве сырья используется диоксид циркония, а реже – диоксид титана.

Наконечник покрыт напылением из платины – именно этот слой и вступает в реакцию с кислородом. Одной стороной этот наконечник контактирует с выхлопными газами, другой стороной – с воздухом в атмосфере.

Электроды лямбда-зонда имеют одну особенность. Так, чтобы реакция проходила эффективнее и показатели были точными, замеры содержания кислорода в выхлопе производятся при условии определенных температур.

Для того, чтобы наконечник вышел на рабочие характеристики и нужную электропроводимость, температура среды должна составлять 300-400 градусов.

Для обеспечения нужного режима температур изначально лямбда-зонд устанавливался в непосредственной близости к выпускному коллектору. Это обеспечивало нужную температуру после прогрева ДВС. В работу датчик вступал не сразу. До того, как лямбда достаточно нагреется и начнет выдавать точные параметры, ЭБУ использовало сигналы других датчиков. Оптимальная смесь в процессе прогрева не приготавливалась.

Некоторые модели кислородных датчиков оснащены электрическими нагревателями. Благодаря им лямбда может быстрее выходить на рабочие температурные режимы. Подогрев использует энергию бортовой сети автомобиля.

Признаки и причины неисправности датчика

При неисправном лямбда-зонде выхлопные газы становятся более токсичными. Определить это можно при помощи специального диагностического оборудования. При этом никаких внешних признаков не будет, также, как и не будет никакого особенного запаха.

Вырастает расход топлива. Водители, как правило следят за тем, насколько наполнен топливный бак, стараются определить скорость, при которой расход минимален. Повышенный расход будет сразу же заметен. В зависимости от серьезности поломки датчика кислорода, расход вырастет в пределах от 1 л до 4 л.

Перегрев каталитического нейтрализатора. Если лямбда неисправна, то в ЭБУ подается неверный сигнал. Это может приводить к неправильной работе катализатора. Он перегревается вплоть до красного цвета и выходит из строя.

Автомобиль будет дергаться, и водитель сможет услышать хлопки. Лямбда перестает формировать правильные сигналы, в результате – нестабильный ХХ. Обороты могут колебаться в очень широких диапазонах.

Это интересно: Как восстановить кожу на руле автомобиля методом покраски

Снижаются динамические характеристики. Автомобиль теряет мощность. Эти признаки можно наблюдать в сильно запущенных случаях. Датчик не работает на холодном моторе, а автомобиль всячески сигнализирует о неисправности.

Среди причин поломок можно выделить:

Проверка лямбда-зонд с помощью диагностического устройства

В большинстве случае ДВС сам подсказывает есть ли неисправности в работе датчиков. Самым быстрым и эффективным способом диагностики в таком случае будет подключение ODBII сканера.

Из доступных на рынке вариантов рекомендуем обратить внимание на модель корейского производства Scan Tool Pro Black Edition.

Данное устройство относится к бюджетному сегменту, но в отличие от китайских аналогов на 8-битном чипе, имеет 32-битную базу, что позволяет осуществлять диагностику не только двигателя, но и других систем автомобиля (коробку передач, трансмиссию, ABS, ESP, систему кондиционирования и т.д.).

Сканер достаточно прост в использовании, имеет широкий функционал и совместим с большинством автомобилей начиная с 1993 года выпуска.

Если все плохо, то в ЭБУ будет выдавать следующие ошибки – это P0131, P0134, P0171. Более подробно о них в видео ниже.

Также будет загораться лампочка «проверьте двигатель», но здесь точно установить причину можно только при помощи диагностики. Чек загорается и в случае других проблем.

Как проверить лямбда-зонд мультиметром

Когда наблюдаются рывки при движении, повышенный расход горючего, и горящий “чек”, то стоит провести диагностику. Эти признаки могут говорить и о других неисправностях, но если есть мультиметр, то можно проверить кислородный датчик своими руками. Специалисты рекомендуют проверять лямбду через измерение напряжений.

К сведению: Стук в Двигателе все причины появления странных звуков при работе мотора

Но прежде любых измерений нужно прогреть ДВС. Если лямбда холодная, она не будет работать. Также рекомендуется по возможности снять датчик и осмотреть его и проводку на предмет грязи и повреждений. Если датчик деформирован, электрод поцарапан или покрыт сажей, нагаром, то лучше его заменить.

Измерения напряжения в цепи подогрева

Включают зажигание, щупами протыкают провода, которые идут к нагревателю. Можно также втыкать щупы мультиметра в разъем. Напряжение будет примерно равно напряжению в бортовой сети. Если двигатель не запущен, то напряжения может и не быть.

Обычно плюс приходит к нагревателю напрямую. Минус подает блок управления. Если отсутствует плюс, следует проверить цепи от аккумулятора до датчика. Если отсутствует минус, тогда нужно проверить цепь от ЭБУ до датчика.

Проверка нагревателя

Можно проверить работоспособность кислородного датчика при помощи омметра. Очень часто поломка связана со спиралью подогрева или проводкой к ней.

Для проверки омметр присоединяют между контактами нагревателя. Если нагреватель исправен, то омметр покажет сопротивление от 2 до 10 ОМ. В цепи подогрева сопротивление будет от 1 кОм до 10 мОм. Если сопротивления нет, то стоит поискать обрыв в проводке.

Опорное напряжение

Имея под рукой мультиметр, можно проверить опорное напряжения. Для этого включают зажигание, затем измеряют напряжение между проводом сигнала и массой.

В правильно работающей лямбде напряжение будет в пределах 0,45 В. Если имеются отличия хотя-бы на 0,2 В, то проблемы с сигнальной цепи или плохая масса.

Проверка сигнала с датчика осциллографом

Двигатель необходимо прогреть. Осциллограф подключают между сигналом и массой. Затем поднимают обороты до 3000 и наблюдают за изменениями показаний. Сигнал должен меняться в пределах от 0,1 В до 0,9 В. Если осциллограф точный и видно, что изменения в более узком диапазоне, то лямбда неисправна.

По теме: Как нумеруются цилиндры, виды их расположения в двигателе

Также стоит засечь время, в течении которого показания опускаются от большего уровня к меньшему. За 10 секунд показания должны меняться 10 раз. Если смены происходят реже, тогда может появиться ошибка под датчику.

Признаки неисправного или неисправного датчика кислорода

Датчик кислорода в вашем автомобиле измеряет уровень кислорода в выхлопных газах, выходящих из двигателя. Эта информация используется модулем управления трансмиссией (PCM) для определения правильного соотношения воздух-топливо для вашего двигателя в режиме реального времени. Датчик расположен в выхлопной системе и обеспечивает эффективную работу впрыска топлива и синхронизации двигателя, что помогает контролировать выбросы. Датчик кислорода передает данные в PCM автомобиля, чтобы поддерживать оптимальное соотношение воздух-топливо для вашего двигателя.Плохой или неисправный датчик кислорода отрицательно скажется на выбросах в окружающую среду и работе двигателя, поэтому есть 3 вещи, на которые следует обратить внимание, прежде чем ваш датчик кислорода полностью выйдет из строя.

1. Загорается индикатор двигателя.

Первая линия защиты - это индикатор Check Engine. Индикатор проверки двигателя загорится, если у вас неисправный или неисправный датчик кислорода. Как только этот индикатор загорится, обратитесь к профессиональному автомобильному технику для проверки индикатора Check Engine.Этот свет может загореться по разным причинам, поэтому важно, чтобы его осмотрел профессионал, который сможет правильно диагностировать точную причину. Если у вас автомобиль с большим пробегом, есть большая вероятность, что у него неисправный кислородный датчик, который необходимо заменить.

2. Плохой расход бензина и запах тухлого яйца

Если датчик кислорода выходит из строя, откажутся системы подачи топлива и сгорания топлива. Если неисправный кислородный датчик нарушает соотношение воздуха и топлива или в двигатель впрыскивается слишком много топлива, расход топлива вашего автомобиля будет уменьшен.Избыток топлива в двигателе может вызывать запах серы, тухлых яиц и даже черный дым из выхлопных газов. Если вы заправляете бензобак чаще, записывайте, сколько галлонов вы заправляете и как часто. Если это больше, чем обычно, попросите профессионального механика проверить ваш кислородный датчик.

3. Неровная работа двигателя на холостом ходу и пропуски зажигания

Если ваш датчик кислорода выходит из строя, вы можете заметить, что ваш автомобиль работает неровно, работает с перебоями или нерегулярно на холостом ходу.Вы также можете наблюдать другие проблемы с производительностью двигателя, такие как потеря мощности, колебания или остановка. Поскольку выходной сигнал датчика кислорода помогает управлять синхронизацией двигателя, интервалами сгорания и соотношением воздуха и топлива, неисправный датчик может нарушить эти функции двигателя, вызывая грубый или нерегулярный холостой ход двигателя и другие проблемы, связанные с двигателем.

Когда заменять датчик

Если ваш автомобиль был произведен в течение последних 15 лет, датчик кислорода следует заменять каждые 60 000–90 000 миль.Этот датчик изнашивается и со временем потребует замены. Замена неисправного или вышедшего из строя датчика кислорода снизит уровень выбросов, которые ваш автомобиль выбрасывает в атмосферу, при этом двигатель будет работать плавно и правильно. Как только вы заметите индикатор проверки двигателя, плохой расход топлива или нестабильную работу двигателя на холостом ходу, запишитесь на прием для замены кислородного датчика. Это обеспечит бесперебойную и эффективную работу вашего автомобиля и поможет продлить срок службы вашего двигателя.

.

Что необходимо знать домашнему механику о датчиках O2

Скачать PDF

Современные компьютеризированные системы управления двигателем полагаются на входные данные от различных датчиков для регулирования характеристик двигателя, выбросов и других важных функций. Датчики должны предоставлять точную информацию, в противном случае могут возникнуть проблемы с управляемостью, повышенный расход топлива и сбои в выбросах.

Одним из ключевых датчиков в этой системе является датчик кислорода. Его часто называют датчиком «O2», потому что O2 - это химическая формула кислорода (атомы кислорода всегда перемещаются парами, а не в одиночку).

Первый датчик O2 был представлен в 1976 году на Volvo 240. Следующие за ним автомобили в Калифорнии получили в 1980 году, когда правила Калифорнии по выбросам требовали снижения выбросов. Федеральные законы о выбросах сделали датчики O2 практически обязательными для всех автомобилей и легких грузовиков, построенных с 1981 года. И теперь, когда действуют правила OBD-II (автомобили 1996 года и новее), многие автомобили теперь оснащены несколькими датчиками O2, некоторые из них целых четыре!

Датчик O2 установлен в выпускном коллекторе для контроля количества несгоревшего кислорода в выхлопных газах, когда выхлопные газы выходят из двигателя.Контроль уровня кислорода в выхлопных газах - это способ измерения топливной смеси. Он сообщает компьютеру, является ли топливная смесь богатой (меньше кислорода) или бедной (больше кислорода).

На относительную насыщенность или обедненную смесь топливной смеси может влиять множество факторов, включая температуру воздуха, температуру охлаждающей жидкости двигателя, атмосферное давление, положение дроссельной заслонки, расход воздуха и нагрузку на двигатель. Есть и другие датчики, которые отслеживают эти факторы, но датчик O2 является главным монитором того, что происходит с топливной смесью.Следовательно, любые проблемы с датчиком O2 могут вывести из строя всю систему.

Петли

Компьютер использует вход кислородного датчика для регулирования топливной смеси, что называется «контуром управления с обратной связью». Компьютер ориентируется на датчик O2 и реагирует изменением топливной смеси. Это приводит к соответствующему изменению показаний датчика O2. Это называется работой «замкнутого контура», потому что компьютер использует вход датчика O2 для регулирования топливной смеси.Результатом является постоянное переключение от богатой к обедненной смеси, что позволяет каталитическому нейтрализатору работать с максимальной эффективностью, сохраняя при этом средний общий баланс топливной смеси для минимизации выбросов. Это сложная установка, но она работает.

Когда сигнал от датчика O2 не поступает, как в случае, когда холодный двигатель запускается впервые (или выходит из строя датчик 02), компьютер заказывает фиксированную (неизменную) богатую топливную смесь. Это называется операцией «разомкнутого контура», потому что не используется входной сигнал от датчика O2 для регулирования топливной смеси.Если двигатель не переходит в замкнутый цикл, когда датчик O2 достигает рабочей температуры, или выходит из замкнутого цикла из-за потери сигнала датчика O2, двигатель будет работать на слишком богатой смеси, что приведет к увеличению расхода топлива и выбросов. Неисправный датчик охлаждающей жидкости также может предотвратить переход системы в замкнутый контур, потому что компьютер также учитывает температуру охлаждающей жидкости двигателя при принятии решения о переходе в замкнутый цикл.

Как это работает

Датчик O2 работает как миниатюрный генератор и вырабатывает собственное напряжение, когда нагревается.Внутри вентилируемой крышки на конце датчика, который ввинчивается в выпускной коллектор, находится циркониевая керамическая колба. Колба снаружи покрыта пористым слоем платины. Внутри колбы находятся две платиновые полоски, которые служат электродами или контактами.

Наружная часть колбы подвергается воздействию горячих газов в выхлопе, в то время как внутренняя часть колбы выходит изнутри через корпус датчика во внешнюю атмосферу. Кислородные датчики старого образца на самом деле имеют небольшое отверстие в корпусе, чтобы воздух мог попадать в датчик, но датчики O2 нового типа «дышат» через свои проводные разъемы и не имеют вентиляционного отверстия.В это трудно поверить, но небольшое пространство между изоляцией и проводом обеспечивает достаточно места для проникновения воздуха в датчик (по этой причине никогда не следует наносить смазку на разъемы датчика O2, поскольку она может блокировать поток воздуха). Проветривание датчика через провода, а не через отверстие в корпусе, снижает риск попадания грязи или воды, которые могут загрязнить датчик изнутри и вызвать его выход из строя. Разница в уровнях кислорода между выхлопным и наружным воздухом внутри датчика вызывает прохождение напряжения через керамическую грушу.Чем больше разница, тем выше значение напряжения.

Датчик кислорода обычно вырабатывает напряжение до 0,9 вольт, когда топливная смесь богатая и в выхлопных газах мало несгоревшего кислорода. Когда смесь бедная, выходное напряжение датчика упадет примерно до 0,1 вольт. Когда топливно-воздушная смесь сбалансирована или находится в точке равновесия около 14,7 к 1, датчик будет показывать около 0,45 вольт.

Когда компьютер получает сигнал обогащения (высокое напряжение) от датчика O2, он понижает топливную смесь, чтобы уменьшить показания датчика.Когда показания датчика O2 становятся бедными (низкое напряжение), компьютер снова меняет направление, заставляя топливную смесь обогащаться. Это постоянное движение топливной смеси вперед и назад происходит с разной скоростью в зависимости от топливной системы. Скорость перехода самая низкая на двигателях с карбюраторами с обратной связью, обычно один раз в секунду при 2500 об / мин. Двигатели с впрыском в корпус дроссельной заслонки несколько быстрее (2–3 раза в секунду при 2500 об / мин), тогда как двигатели с многоточечным впрыском являются самыми быстрыми (от 5 до 7 раз в секунду при 2500 об / мин).

Датчик кислорода должен быть горячим (около 600 градусов или выше), прежде чем он начнет генерировать сигнал напряжения, поэтому многие датчики кислорода имеют внутри небольшой нагревательный элемент, чтобы помочь им быстрее достичь рабочей температуры. Нагревательный элемент также может предотвратить слишком сильное охлаждение датчика во время длительного простоя, что может привести к возврату системы в режим разомкнутого контура.

Датчики O2 с подогревом используются в основном в новых автомобилях и обычно имеют 3 или 4 провода.Старые однопроводные датчики O2 не имеют нагревателей. При замене датчика O2 убедитесь, что он того же типа, что и оригинал (с подогревом или без него).

Новая роль датчиков O2 с OBDII

Начиная с нескольких автомобилей в 1994 и 1995 годах и всех автомобилей 1996 года и новее, количество кислородных датчиков на каждый двигатель увеличилось вдвое. Второй датчик кислорода теперь используется после каталитического нейтрализатора для контроля его эффективности. На двигателях V6 или V8 с двойным выхлопом это означает, что можно использовать до четырех датчиков O2 (по одному для каждого ряда цилиндров и по одному после каждого преобразователя).

Система OBDII предназначена для контроля выбросов двигателя. Это включает в себя наблюдение за всем, что может вызвать увеличение выбросов. Система OBDII сравнивает показания уровня кислорода датчиков O2 до и после преобразователя, чтобы увидеть, снижает ли преобразователь загрязняющие вещества в выхлопе. Если он не видит изменений в показаниях уровня кислорода, это означает, что преобразователь не работает должным образом. Это приведет к включению контрольной лампы неисправности (MIL).

Диагностика датчика
Датчики

O2 невероятно надежны, учитывая условия эксплуатации, в которых они живут. Но датчики O2 изнашиваются, и в конечном итоге их необходимо заменять. Характеристики датчика O2 имеют тенденцию к снижению с возрастом, поскольку загрязняющие вещества накапливаются на наконечнике датчика и постепенно снижают его способность вырабатывать напряжение. Такое ухудшение состояния может быть вызвано различными веществами, попадающими в выхлопные газы, такими как свинец, силикон, сера, масляная зола и даже некоторые топливные присадки.Датчик также может быть поврежден факторами окружающей среды, такими как вода, брызги дорожной соли, масла и грязи.

По мере того, как датчик стареет и становится вялым, время, необходимое для реакции на изменения в топливно-воздушной смеси, замедляется, что приводит к увеличению выбросов. Это происходит потому, что колебания топливной смеси замедляются, что снижает эффективность преобразователя. Эффект более заметен на двигателях с многоточечным впрыском топлива (MFI), чем с электронной карбюрацией или впрыском в корпус дроссельной заслонки, потому что соотношение топлива изменяется намного быстрее в приложениях MFI.Если датчик полностью умирает, результатом может быть фиксированная богатая топливная смесь. По умолчанию для большинства применений с впрыском топлива средний диапазон составляет три минуты. Это вызывает большой скачок расхода топлива, а также выбросов. А если преобразователь перегреется из-за богатой смеси, он может выйти из строя. Одно исследование EPA показало, что 70% автомобилей, не прошедших испытание на выбросы I / M 240, нуждались в новом датчике O2.

Единственный способ узнать, выполняет ли датчик O2 свою работу, - это регулярно проверять его.Вот почему на некоторых автомобилях (в основном импортных) есть световой индикатор с напоминанием об обслуживании датчика. Хорошее время для проверки датчика - это замена свечей зажигания.

Вы можете считать выходные данные датчика O2 с помощью сканирующего прибора или цифрового вольтметра, но переходы трудно увидеть, потому что числа сильно меняются. Вот где действительно сияет инструмент сканирования на базе ПК, такой как AutoTap. Вы можете использовать графические функции, чтобы наблюдать за изменениями напряжения датчиков O2. Программное обеспечение отобразит выходное напряжение датчика в виде волнистой линии, которая показывает как его амплитуду (минимальное и максимальное напряжение), так и его частоту (скорость перехода от богатого к обедненному).

Хороший датчик O2 должен выдавать колеблющуюся форму волны на холостом ходу, при которой напряжение изменяется от почти минимального (0,1 В) до почти максимального (0,9 В). Искусственное обогащение топливной смеси путем подачи пропана во впускной коллектор должно привести к тому, что датчик среагирует почти немедленно (в течение 100 миллисекунд) и перейдет на максимальный (0,9 В) выходной сигнал. Создание обедненной смеси путем открытия вакуумной линии должно привести к падению выходного сигнала датчика до минимального (0,1 В) значения. Если датчик не переключается вперед и назад достаточно быстро, это может указывать на необходимость замены.

Если цепь датчика O2 разомкнута, закорочена или выходит за пределы допустимого диапазона, она может установить код неисправности и загореться контрольной лампой проверки двигателя или неисправности. Если дополнительная диагностика выявляет неисправность датчика, требуется его замена. Но многие датчики O2, которые сильно деградировали, продолжают работать достаточно хорошо, чтобы не установить код неисправности, но недостаточно хорошо, чтобы предотвратить увеличение выбросов и расхода топлива. Таким образом, отсутствие кода неисправности или контрольной лампы не означает, что датчик O2 работает правильно.

Замена датчика

Очевидно, что неисправный датчик O2 требует замены. Но также может быть полезно периодически заменять датчик O2 для профилактического обслуживания. Замена стареющего датчика O2, который стал медленно работать, может восстановить максимальную топливную эффективность, минимизировать выбросы выхлопных газов и продлить срок службы преобразователя.

Необогреваемые одно- или двухпроводные датчики O2 на автомобилях с 1976 по начало 1990-х годов можно заменять каждые 30 000–50 000 миль.3- и 4-проводные датчики O2 с подогревом в приложениях с середины 1980-х до середины 1990-х годов можно менять каждые 60 000 миль. На автомобилях, оборудованных OBDII (1996 и новее), рекомендуется интервал замены 100 000 миль.

.Датчик кислорода

(O2) - что еще может вызвать повышенное или обедненное содержание кодов

Кислородный датчик (O2) - что еще может вызвать богатые или обедненные коды

Замена хорошего кислородного датчика (O2) - распространенная ошибка, которую все время совершают механики (сделай сам).

Итак, перед заменой любого из этих датчиков вы должны сначала найти реальную проблему, которая подтолкнула вас в этом направлении.

Последствия отсутствия диагностики и проверки систем, обеспечивающих правильную работу двигателя, могут быть дорогостоящими.

Датчик кислорода, также известный как датчик (O2), изнашивается и со временем выходит из строя.

Итак, важно помнить, что современные автомобили управляются компьютерами и датчиками. Может быть до 20 датчиков, передающих информацию в «главный блок управления» (MCU) транспортного средства или мозговой блок. Существуют и другие датчики, не подключенные напрямую к (MCU), которые влияют на информацию, которую датчики подают на компьютеры. Следовательно, эти датчики являются частью других систем, которые работают вместе, чтобы двигатель работал эффективно.

Что мы должны проверять, когда у нас есть эти богатые или обедненные коды

Все системы должны быть в надлежащем рабочем состоянии, чтобы двигатель работал должным образом и имел нормальное сгорание.

Что мы должны проверить, когда у нас есть эти богатые или бережливые коды?

Коды базового датчика кислорода (O2)
Если топлива слишком много, а воздуха недостаточно, говорят, что двигатель «работает на богатой смеси» или «имеет богатую смесь» .Из выхлопной трубы будет пахнуть газом или тухлым яйцом, глаза будут гореть, а дым станет черным.
Если воздуха слишком много, а топлива недостаточно, говорят, что двигатель работает на обедненной смеси “. »или « бедная смесь ».

Наиболее частые проблемы для бережливого производства:

Утечки вакуума
Забитый фильтр или линии
Неисправные датчики
Пропуски зажигания двигателя
Сравнение бывшего в употреблении датчика (O2)

Существуют также некоторые другие возможности, такие как внутренняя утечка в системе рециркуляции отработавших газов.

Обычно устанавливается отдельный код. Утечка в выхлопной системе перед датчиком (O2) также приведет к неверным показаниям. Единственные другие возможности - это проблемы с проводкой и проблемы с компьютером.

Возможные причины богатых кодов:

Мониторы датчиков

Остальные коды, которые мы должны рассмотреть, относятся к датчикам, расположенным после каталитического нейтрализатора. Хотя они могут показаться идентичными предварительному преобразователю датчика (O2), они выполняют совершенно другую задачу и известны как мониторы. Единственная задача этих датчиков - «контролировать» эффективность каталитических нейтрализаторов.

Показания этих датчиков должны быть более стабильными и не колебаться, как передние датчики O2.

Компьютер сравнивает показания датчика (O2) (до кошек) и мониторов (после кошек), чтобы определить, выполняют ли каталитические преобразователи свою работу и «очищают» выхлоп. Вы никогда не захотите заменять монитор из-за проблем с богатым / экономичным, поскольку они не имеют отношения к этим кодам.

Когда преобразователи начнут выходить из строя, вы увидите, что показания напряжения на мониторах соответствуют показаниям датчика (O2).Технически все это «Датчик кислорода» , но важно различать разницу между датчиками до и после преобразователя, поэтому я считаю, что проще всего использовать обратные мониторы.

Почему может выйти из строя датчик кислорода

Неисправный датчик (O2)

Датчик (O2) может прослужить до 100 000 миль, но обычно проблемы возникают раньше. Со временем датчик (O2) может покрыться побочными продуктами сгорания, такими как сера, свинец, присадки к топливу, масляная зола и т. Д.Это загрязнение приводит к тому, что датчик теряет способность генерировать напряжение и отправлять правильный сигнал.

Это очень важно для поддержания низкого уровня выбросов и хорошей экономии топлива. Если датчик O2 становится «ленивым» из-за старости или загрязнения, компьютер может быть не в состоянии достаточно быстро регулировать топливную смесь при изменении условий работы двигателя. Датчики O2, которые не работают, имеют тенденцию считывать обедненную смесь, что приводит к тому, что топливная система работает слишком богатой для компенсации.

Признаки неисправного датчика кислорода

(O2) Сравнение Рисунок

В большинстве случаев неисправный датчик (O2) включает световой сигнал проверки двигателя.P0138 и P0135 - это некоторые из кодов, которые вы можете ожидать от считывателя OBD II. Кроме этого, трудно обнаружить неисправный датчик (O2). Это неизбежно приведет к сокращению расхода топлива, но обычно этого недостаточно, чтобы средний водитель заметил. Кроме того, неисправный или неисправный датчик O2 также может привести к тому, что вы не пройдете тест на выбросы.

Когда заменять датчик кислорода (O2)

Всегда следуйте инструкциям в руководстве пользователя по замене датчика кислорода (O2).Датчик кислорода (O2) изнашивается и со временем выходит из строя. Это снизит уровень выбросов, которые ваш автомобиль выбрасывает в атмосферу. И в то же время обеспечивайте бесперебойную работу двигателя.

Заключение

Что происходит с датчиками кислорода (O2), так это то, что они, как правило, загрязняются углеродными и сажистыми отложениями. Элемент просто разрушается и изнашивается, как электрод свечи зажигания.

Наконец, пренебрежение заменой неисправного датчика кислорода (O2) обычно приводит к повреждению каталитического нейтрализатора.

Пожалуйста, поделитесь новостями портала DannysEngine

.

Измерение растворенного кислорода - Системы измерения окружающей среды

Методы измерения растворенного кислорода

Содержание растворенного кислорода можно измерить колориметрическим методом, датчиком и измерителем или титрованием.

Существует три метода измерения концентрации растворенного кислорода. Современные методы включают электрохимический или оптический датчик. Датчик растворенного кислорода присоединяется к измерителю для точечного отбора проб и лабораторных приложений или к регистратору данных, монитору процесса или передатчику для развернутых измерений и управления процессом.

Колориметрический метод предлагает базовое приближение концентрации растворенного кислорода в образце. Существует два метода, предназначенных для измерения концентрации растворенного кислорода в высоком и низком диапазоне. Эти методы являются быстрыми и недорогими для основных проектов, но ограничены по объему и подвержены ошибкам из-за других окислительно-восстановительных агентов, которые могут присутствовать в воде 27 .

Традиционным методом является титрование Винклера. Хотя этот метод долгие годы считался наиболее точным и точным, он также подвержен человеческим ошибкам и его труднее выполнить, чем другие методы, особенно в области 27 .Сейчас метод Винклера существует в семи модифицированных версиях, которые все еще используются сегодня 27 .

Измерение растворенного кислорода сенсорным методом

Измерение растворенного кислорода сенсором и измерителем (фото предоставлено: Fondriest Environmental; Flickr).

Самый популярный метод измерения растворенного кислорода - это измеритель растворенного кислорода и датчик. В то время как основные категории датчиков растворенного кислорода - это оптические и электрохимические датчики, электрохимические датчики можно разделить на полярографические, импульсные полярографические и гальванические.В дополнение к стандартному аналоговому выходу, некоторые из этих технологий датчиков растворенного кислорода доступны в платформах интеллектуальных датчиков с цифровым выходом.

Датчик растворенного кислорода можно использовать в лаборатории или в полевых условиях. Датчики DO могут быть разработаны для тестов биохимической потребности в кислороде (БПК), точечного отбора проб или долгосрочного мониторинга. Измеритель растворенного кислорода, зонд качества воды или система регистрации данных могут использоваться для записи данных измерений, полученных с помощью датчика DO.

Поскольку на концентрацию растворенного кислорода влияют температура, давление и соленость, эти параметры необходимо учитывать для 7 .Эти компенсации могут выполняться вручную или автоматически с помощью измерителя растворенного кислорода или программного обеспечения для регистрации данных. Температура обычно измеряется термистором внутри датчика и регистрируется измерителем или регистратором данных без запроса. Многие измерители DO включают в себя внутренний барометр, а системы регистрации данных можно настроить с помощью внешнего барометра или датчика уровня воды для измерения давления. Барометрическое давление также можно ввести вручную как высоту, истинное барометрическое давление или скорректированное барометрическое давление.Соленость может быть измерена с помощью датчика проводимости / солености и автоматически компенсирована или приблизительно и введена вручную как 7 :

Пресная вода

<0,5 ‰ (PPT или частей на тысячу )

Солоноватая вода

0,5-30 ‰

Морская вода

33-37 ‰

Соленая вода

30-50 ‰

Рассол

> 50 ‰

Калибровка и рабочие процедуры могут различаться в зависимости от модели и производителя.Во время измерений и калибровки следует обращаться к руководству по эксплуатации.

Оптические датчики растворенного кислорода

Поперечное сечение оптического датчика растворенного кислорода.

Оптические датчики растворенного кислорода измеряют взаимодействие между кислородом и некоторыми люминесцентными красителями. Под воздействием синего света эти красители возбуждаются (электроны приобретают энергию) и излучают свет, когда электроны возвращаются в свое нормальное энергетическое состояние 12 . Когда присутствует растворенный кислород, возвращаемые длины волн ограничиваются или изменяются из-за взаимодействия молекул кислорода с красителем.Измеренный эффект обратно пропорционален парциальному давлению кислорода 5 . Хотя некоторые из этих оптических датчиков DO называют флуоресцентными датчиками 10 , эта терминология технически неверна. Эти датчики излучают синий, а не ультрафиолетовый свет и известны как оптические или люминесцентные датчики DO 11 . Оптические датчики растворенного кислорода могут измерять либо интенсивность, либо время жизни люминесценции, поскольку кислород влияет и на 23 .

Оптический датчик DO состоит из полупроницаемой мембраны, чувствительного элемента, светодиода (LED) и фотоприемника 3 . Чувствительный элемент содержит люминесцентный краситель, иммобилизованный в золь-геле, ксерогеле или другой матрице 23 . Краситель реагирует на синий свет, излучаемый светодиодом 3 . Некоторые датчики также будут излучать красный свет в качестве эталона для обеспечения точности 5 . Этот красный свет не вызывает люминесценции, а просто отражается назад красителем 7 .Интенсивность и продолжительность люминесценции красителя при воздействии синего света зависят от количества растворенного кислорода в пробе воды 23 . Когда кислород проходит через мембрану, он взаимодействует с красителем, ограничивая интенсивность и время жизни люминесценции 3 . Интенсивность или время жизни возвращенной люминесценции измеряется фотодетектором и может использоваться для расчета концентрации растворенного кислорода.

Концентрация растворенного кислорода (измеренная по его парциальному давлению) обратно пропорциональна времени жизни люминесценции, как показано уравнением Штерна-Фольмера 5 :

Уравнение Штерна-Фольмера для растворенного кислорода.

I o / I = 1 + k q * t 0 * O 2
I o = интенсивность или время жизни люминесценции красителя без кислорода
I = интенсивность или время жизни люминесценции с кислородом
k q = коэффициент скорости тушения
t 0 = время жизни люминесценции красителя
O 2 = концентрация кислорода как парциальное давление
Это уравнение точно применяется при низких концентрациях растворенного кислорода 7 .При высоких концентрациях это измерение является нелинейным 23 . Эта нелинейность возникает из-за того, как кислород взаимодействует в полимерной матрице красителя 25 . В полимерах растворенные газы имеют отрицательное отклонение от закона Генри (который определяет парциальное давление) 25 . Это означает, что более высокие концентрации, растворимость кислорода в матрице красителя будут соответствовать модифицированному уравнению Штерна-Фольмера 24 :

Модифицированному уравнению Штерна-Фольмера для растворенного кислорода.

I o / I = 1 + AO 2 + BO 2 / (1 + bO 2 )
I o = интенсивность или время жизни люминесценции красителя без кислорода
I = интенсивность или время жизни люминесценции при наличии кислорода
A, B, b = константы гашения модели Штерна-Фольмера и нелинейной растворимости
O 2 = концентрация кислорода как парциальное давление
Использование этого уравнения требует ввода предварительно определенных констант датчика (I или , A, B, b), которые относятся к каждой новой или заменяемой крышке датчика 5 .

Оптические сенсоры растворенного кислорода имеют тенденцию быть более точными, чем их электрохимические аналоги, и не подвержены влиянию сероводорода или других газов, которые могут проникать через электрохимическую мембрану DO 7 . Они также способны точно измерять растворенный кислород при очень низких концентрациях 3 .

Датчики могут быть развернуты с наземным буем данных или подповерхностным буем данных для долгосрочного мониторинга. Оптические датчики растворенного кислорода

идеально подходят для долгосрочных программ мониторинга из-за минимальных требований к техническому обслуживанию.Они могут проводить калибровку в течение нескольких месяцев и показывать небольшой (если есть) отклонение калибровки 5 . Эти датчики растворенного кислорода также не требуют разогрева или перемешивания при измерении 7 . В течение длительного периода времени краситель разрушается, и чувствительный элемент и мембрану необходимо будет заменить, но эта замена очень редка по сравнению с заменой мембраны электрохимического датчика. Датчики, измеряющие время жизни люминесценции, в меньшей степени подвержены деградации красителя, чем датчики измерения интенсивности, что означает, что они сохранят свою точность даже при некоторой фотодеградации 24 .

Однако оптические датчики растворенного кислорода обычно требуют большей мощности и требуют в 2-4 раза больше времени для получения показаний, чем электрохимический датчик растворенного кислорода 7, 14 . Эти датчики также сильно зависят от температуры 7 . На интенсивность люминесценции и срок службы влияет температура окружающей среды 23 , хотя большинство датчиков будут включать термистор для автоматической корректировки данных 12 .

Электрохимические датчики растворенного кислорода

Использование электрохимического датчика растворенного кислорода и измерителя для измерения растворенного кислорода (фото предоставлено YSI).

Электрохимические датчики растворенного кислорода могут также называться амперометрическими датчиками или датчиками типа Кларка. Электрохимические датчики DO бывают двух типов: гальванические и полярографические. Полярографические датчики растворенного кислорода можно разделить на датчики с постоянным и быстрым импульсом. Как гальванические, так и полярографические датчики DO используют два поляризованных электрода, анод и катод, в растворе электролита 7 . Электроды и раствор электролита изолированы от образца тонкой полупроницаемой мембраной.

Во время измерений растворенный кислород диффундирует через мембрану со скоростью, пропорциональной давлению кислорода в воде 7 . Затем растворенный кислород восстанавливается и расходуется на катоде. Эта реакция производит электрический ток, который напрямую зависит от концентрации кислорода 7 . Этот ток переносится ионами электролита и проходит от катода к аноду 19 . Поскольку этот ток пропорционален парциальному давлению кислорода в образце 15 , его можно рассчитать по следующему уравнению:

Расчет концентрации растворенного кислорода (как парциального давления) в электрохимической реакции.4 Кл / моль
P м (t) = проницаемость мембраны как функция температуры
A = площадь поверхности катода
p O2 = парциальное давление кислорода
d = толщина мембраны
Типичные токи, создаваемые кислородом снижение составляет около 2 мкА 16 .

Если измерения проводятся в лаборатории или в неподвижной воде, необходимо перемешать гальванические и полярографические датчики DO в растворе. Этот метод измерения зависит от расхода из-за потребления молекул кислорода 7 .Когда кислород потребляется, датчики могут производить искусственно заниженные показания DO в ситуациях отсутствия потока 7 . Электрохимические датчики растворенного кислорода следует перемешивать с пробой до тех пор, пока показания растворенного кислорода не перестанут повышаться.

Полярографические датчики растворенного кислорода

Поперечное сечение полярографического датчика растворенного кислорода.

Полярографический датчик DO - это электрохимический датчик, состоящий из серебряного анода и катода из благородного металла (например, золота, платины или, реже, серебра) в растворе хлорида калия (KCl) 8 .Когда прибор включен, перед калибровкой или измерением требуется 5-60-минутный прогрев для поляризации электродов. Электроды поляризованы постоянным напряжением (от 0,4 В до 1,2 В требуется для восстановления кислорода) от катода к аноду ( 8 ). Когда электроны движутся в направлении, противоположном току, анод становится положительно поляризованным, а катод становится отрицательно поляризованным 14 . Эта поляризация возникает, когда электроны перемещаются от анода к катоду по внутренней проволочной цепи 19 .Когда кислород диффундирует через мембрану, молекулы восстанавливаются на катоде, увеличивая электрический сигнал 7 . Поляризационный потенциал поддерживается постоянным, пока датчик обнаруживает изменения тока, вызванные восстановлением растворенного кислорода 7 . Чем больше кислорода проходит через мембрану и уменьшается, тем больше электрический ток, считываемый полярографическим датчиком растворенного кислорода.

Это реакция, состоящая из двух частей - окисления серебряного анода и восстановления растворенного кислорода.Эти реакции протекают следующим образом:


Ag - серебряный анод
KCl и H 2 O - раствор хлорида калия
Au / Pt - золотой или платиновый катод * инертный электрод - не участвует *

Серебряный анод Реакция и окисление
4Ag —-> 4Ag + + 4e -
4Ag + 4KCl —-> 4AgCl + 4K +

Реакция золотого катода и восстановление кислорода
* Катод Au / Pt инертен и пропускает только электроны; он не участвует в реакции * 18
O 2 + 4e - + 2H 2 O —-> 4OH -
4OH - + 4K + —-> 4KOH

Общая реакция
O 2 + 2H 2 O + 4KCl + 4Ag —-> 4AgCl + 4KOH
Золото / платиновый катод исключен из уравнения реакции, так как он не мешает и не участвует в реакции 18 .В полярографическом датчике растворенного кислорода роль катода заключается в том, чтобы принимать и передавать электроны от анода к молекулам кислорода. Чтобы кислород мог приобрести электроны, реакция восстановления кислорода должна происходить на поверхности катода 13 . Электроны, проходящие от серебряного анода к катоду через внутреннюю цепь, используются для восстановления молекул кислорода до гидроксид-ионов на поверхности катода, создавая ток. Этот ток пропорционален потребляемому кислороду и, следовательно, парциальному давлению кислорода в образце 15 .

Серебряный анод окисляется во время этого процесса, поскольку он отдает свои электроны реакции восстановления, но окисление происходит только при проведении измерений. 7 . Эта реакция заметна по мере того, как анод темнеет (покрытие AgCl). По мере накопления оксидного покрытия производительность датчика ухудшится. 7 . Это будет видно не только визуально при взгляде на электрод, но и при использовании датчика растворенного кислорода. Показания будут необычно низкими, не будут стабилизироваться или датчик не откалибрует 7 .Когда это происходит, электроды можно очистить для восстановления рабочих характеристик датчика 7 . Техническое обслуживание электродов должно происходить гораздо реже, чем замена мембраны, которая основана на заявке 7 .

Импульсные полярографические датчики растворенного кислорода

Поперечное сечение импульсного полярографического датчика растворенного кислорода.

Пульсирующие полярографические датчики растворенного кислорода устраняют необходимость перемешивания образца для обеспечения точности измерения растворенного кислорода. Быстроимпульсный датчик растворенного кислорода аналогичен стационарному полярографическому датчику растворенного кислорода, поскольку оба используют золотой катод и серебряный анод.Как стационарные датчики, так и датчики с частыми импульсами также измеряют растворенный кислород, создавая постоянное напряжение для поляризации электродов 7 . Однако эти пульсирующие полярографические датчики DO включаются и выключаются примерно каждые четыре секунды, позволяя растворенному кислороду пополняться на мембране и поверхности катода 7 . Это пополнение создает практически нулевую зависимость от потока 7 . Чтобы последовательно поляризовать и деполяризовать электроды в течение этих коротких периодов времени, пульсирующий полярографический датчик DO включает в себя третий серебряный электрод сравнения, отдельный от серебряного анода 7 .Электрохимическая реакция (окисление серебра и восстановление кислорода) остается прежней.

Так как импульсные полярографические датчики уменьшают зависимость от потока при измерении DO, пробу воды не нужно перемешивать при использовании этого датчика 7 .

Гальванические датчики растворенного кислорода

Поперечное сечение гальванического датчика растворенного кислорода.

Последний электрохимический датчик растворенного кислорода гальванический. В гальваническом датчике растворенного кислорода электроды изготовлены из разнородных металлов.Металлы имеют разные электропотенциалы в зависимости от их ряда активности (насколько легко они отдают или принимают электроны) 17 . При помещении в раствор электролита потенциал между разнородными металлами вызывает их самополяризацию 16 . Эта самополяризация означает, что гальванический датчик DO не требует времени на прогрев. Чтобы уменьшить содержание кислорода без внешнего приложенного потенциала, разность потенциалов между анодом и катодом должна быть не менее 0,5 вольт 16 .

Анод в гальваническом датчике растворенного кислорода обычно представляет собой цинк, свинец или другой активный металл, а катод - серебро или другой благородный металл 3 . Раствор электролита может быть гидроксидом натрия, хлоридом натрия или другим инертным электролитом 8,27 . Электрохимическая реакция в гальванических датчиках DO очень похожа на реакцию в полярографических датчиках DO, но без необходимости в отдельном постоянном потенциале. Разные электроды самополяризуются, при этом электроны движутся внутрь от анода к катоду 7 .Катод остается инертным, он служит только для передачи электронов и не вмешивается в реакцию 20 . Таким образом, анод окисляется, а кислород восстанавливается на поверхности катода. Эти реакции протекают следующим образом:


Zn / Pb - цинковый или свинцовый анод
NaCl и h3O - раствор хлорида натрия
Ag - серебряный катод * инертный электрод, не реагирует *

Анодная реакция и окисление цинка
2Zn - -> 2Zn 2+ + 4e -

Реакция на серебряном катоде и восстановление кислорода
* Катод из серебра инертен и пропускает только электроны, не участвуя в реакции * 18
O 2 + 4e - + 2H 2 O —-> 4OH -
4OH - + 2Zn 2+ —-> 2Zn (OH) 2

Общая реакция
O 2 + 2H 2 O + 2Zn ---> 2 Zn (OH) 2
Как и в реакции полярографического датчика растворенного кислорода, катод не участвует в уравнении, потому что это инертный электрод 18 .Серебряный катод принимает электроны от анода и передает их молекулам кислорода. Эта операция происходит на поверхности катода 8 . Ток, возникающий при восстановлении кислорода, пропорционален парциальному давлению кислорода в образце воды 15 .

Гидроксид цинка, образующийся в результате этих реакций, осаждается в растворе электролита. Этот осадок виден как белое твердое вещество на кончике датчика 7 .Этот осадок не покрывает анод и не расходует электролит и, таким образом, не влияет на работу датчика, пока его количество не станет чрезмерным. Если это произойдет, это может повлиять на способность ионов проводить ток между катодом и анодом 22 . Если выходной сигнал датчика необычно низкий или показания не стабилизируются, необходимо заменить раствор электролита 7 .

Поскольку электроды гальванического датчика DO являются самополяризованными, окисление цинка будет происходить даже тогда, когда прибор не используется. 7 .При этом гальванический датчик растворенного кислорода будет работать эффективно даже при израсходовании цинкового анода, хотя его, возможно, придется заменять чаще, чем полярографический датчик растворенного кислорода 7, .

Измерение растворенного кислорода колориметрическим методом

Существует два варианта анализа растворенного кислорода колориметрическим методом. Они известны как метод индигокармина и метод родазина D. В обоих вариантах используются колориметрические реагенты, которые реагируют и меняют цвет при взаимодействии с кислородом в воде 6 .Эти взаимодействия основаны на окислении реагента, и степень изменения цвета пропорциональна концентрации растворенного кислорода 27 . Измерение растворенного кислорода колориметрическими методами можно проводить с помощью спектрофотометра, колориметра или простого компаратора. Использование спектрофотометра или колориметра дает более точные результаты, в то время как сравнение с компаратором, таким как цветовое колесо или цветовой блок, выполняется быстро и недорого. Однако, поскольку человеческий глаз необъективен, это может привести к некоторой неточности 6 .

Индигокармин

Согласно методу индигокармина, чем глубже синий цвет, тем выше концентрация растворенного кислорода.

Метод индигокармина можно использовать для измерения концентрации растворенного кислорода от 0,2 до 15 частей на миллион (мг / л). Этот метод дает синий цвет, интенсивность которого пропорциональна концентрации растворенного кислорода 31 . Трехвалентное железо, двухвалентное железо, нитрит и гидросульфит натрия могут мешать этому методу 27 .Кроме того, реагенты не следует подвергать воздействию яркого света, поскольку длительное воздействие может испортить индигокармин 32 . Однако на этот метод не влияют температура, соленость или растворенные газы 28 . Тесты низкого диапазона зависят от времени и должны анализироваться в течение 30 секунд, в то время как тесты высокого диапазона требуют двухминутного времени обработки 31 .

Родазин D

При измерении растворенного кислорода метод родазина D дает насыщенный розово-розовый цвет.

Метод родазина D используется для определения очень низких концентраций растворенного кислорода. Реагенты родазин D реагируют с растворенным кислородом с образованием темно-розового раствора 30 , способного измерять в частях на миллиард (ppb). Этот колориметрический метод не зависит от солености или растворенных газов, таких как сульфид, которые могут присутствовать в пробе воды 28 . Однако окислители, такие как хлор, трехвалентное железо и двухвалентная медь, могут мешать и вызывать более высокие показания DO 29 .Другими причинами ошибки являются полисульфиды, гидрохинон / бензохинон, а также бор и перекись водорода (если присутствуют оба) 29 . Кроме того, цвет и мутность образца могут влиять на точность показаний 29 . Этот метод зависит от времени, так как анализ должен быть проведен в течение 30 секунд после смешивания реагента 30 .

Измерение растворенного кислорода титриметрическим методом

Титриметрический метод анализа растворенного кислорода известен как метод Винклера.Этот метод был разработан L.W. Винклер, венгерский химик, в 1888 г. 4 . Также известный как йодометрический метод, метод Винклера - это титриметрическая процедура, основанная на окислительных свойствах растворенного кислорода 26 . Этот метод долгое время был стандартом точности и точности при измерении растворенного кислорода 27 .

Метод Винклера

Образцы собирают, фиксируют и титруют либо в полевых условиях, либо в лаборатории. Образец следует зафиксировать реагентами как можно скорее, чтобы предотвратить смещение уровней кислорода из-за перемешивания или контакта с атмосферой.Для метода Винклера требуется специальная бутылка, известная как бутылка BOD, которая предназначена для герметизации без захвата воздуха внутри 1 . Сегодня необходимые реагенты могут поставляться в заранее отмеренных пакетах для большей точности и простоты использования. 33 . При использовании этого метода количество титранта, необходимое для завершения реакции, пропорционально концентрации растворенного кислорода в образце 6 .

Хотя метод Винклера по-прежнему является признанным стандартом для анализа растворенного кислорода, выявлено несколько проблем. 27 .Этот метод подвержен человеческим ошибкам, неточностям, загрязнению проб и помехам. 6 . Кроме того, титрование может занять много времени и быть обременительным в области 7 .

Модифицированные методы Винклера

Основные этапы измерения растворенного кислорода методом титрования Азида-Винклера.

Сейчас существует семь модифицированных методов Винклера, каждый из которых создан для решения различных проблем (например, мешающего загрязнения). 27 . Самым популярным из них является метод Азида-Винклера, поскольку он решает проблемы с йодом, присутствующим в исходном методе 1 .Однако остальные модифицированные методы создают новую проблему - эти методы требуют предварительного знания образца (например, других присутствующих элементов), чтобы сделать правильный выбор метода 27 .

Если есть время и склонность, титриметрический метод анализа растворенного кислорода может быть точным и точным. Однако новые технологии позволили создать датчики растворенного кислорода, которые проще и быстрее использовать и которые могут быть столь же точными в большинстве приложений. 27 .

Процитируйте эту работу

Fondriest Environmental, Inc. «Измерение растворенного кислорода». Основы экологических измерений. 7 января 2014 г. Web. .

Дополнительная информация

.

Что влияет на измерения растворенного кислорода? Часть 1 из 4

Барабан, пожалуйста ..... Самая важная переменная для измерений растворенного кислорода - , температура . Поэтому важно убедиться, что датчик температуры на приборе правильно измеряет, поскольку температура влияет на измерения DO двояко.

Во-первых, из-за увеличения или уменьшения молекулярной активности диффузия кислорода через мембрану электрохимического зонда или чувствительный элемент оптического зонда изменяется в зависимости от температуры.Изменение скорости диффузии в зависимости от температуры может составлять примерно до 4% на градус Цельсия в зависимости от материала мембраны для стационарных электрохимических датчиков, 1% на градус Цельсия для датчиков Rapid Pulse и примерно 1,5% на градус Цельсия для оптических датчики.

Например, если температура образца изменяется с 20 ° C на 15 ° C, сигнал датчика будет уменьшаться с различной скоростью в зависимости от используемого датчика, что даст более низкое значение насыщения DO%, даже если% насыщения воды не изменилось.Следовательно, сигнал датчика необходимо компенсировать при изменении температуры. Это делается путем добавления термистора в цепь старых аналоговых приборов. Для более новых цифровых приборов программное обеспечение компенсирует изменения температуры с помощью запатентованных алгоритмов, которые используют показания температуры термистора зонда.

Регулировка, описанная до сих пор, только компенсирует влияние температуры на скорость диффузии кислорода через мембрану или чувствительный элемент. Помимо этого эффекта, температура также влияет на способность воды растворять кислород.Это научный факт, что растворимость кислорода в воде прямо пропорциональна температуре; см. Таблицу растворимости кислорода.

Более теплая вода не растворяет столько кислорода, как более холодная вода. Например, в насыщенном кислородом образце воды на уровне моря (подвергнутом 760 мм рт. Ст. Барометрического давления) значение% насыщения будет 100% независимо от температуры, поскольку оно полностью насыщено. Однако концентрация растворенного кислорода в мг / л будет изменяться с температурой, потому что растворимость кислорода в воде изменяется с температурой.Например, при 15 ° C вода может растворять 10,08 мг / л, тогда как вода 30 ° C может растворять только 7,56 мг / л кислорода, даже если значение% насыщения составляет 100% в обоих образцах. Следовательно, мы должны скорректировать показания концентрации в мг / л в соответствии с температурой образца.

Оба этих температурных эффекта учитываются при преобразовании сигнала зонда в концентрацию мг / л. Для новых цифровых приборов, таких как оптический ProSolo и традиционный Pro20, программное обеспечение компенсирует оба этих температурных фактора после калибровки прибора и во время считывания.

Температурная компенсация для показания% насыщения получена эмпирическим путем, в то время как преобразование% насыщения, температуры и солености в концентрацию мг / л автоматически выполняется микропрограммой прибора с использованием формул, доступных в Стандартных методах исследования воды и сточных вод. . Расчет для преобразования% насыщения в мг / л и пример приведены ниже.

Определение DO в мг / л по% насыщения

Ниже объясняется, как преобразовать% насыщения в мг / л (также называемое ppm).

Чтобы выполнить это преобразование, должны быть известны температура и соленость образца. По этой причине при расчете значений мг / л необходимо использовать точные значения температуры.

Шаг первый: Определите% насыщения, температуры и солености образца.

Шаг второй: Умножьте значение% насыщения на значение в соответствующем столбце (зависит от солености) и строке (зависит от температуры) таблицы растворимости кислорода.

Пример:

Шаг первый : Образец измеряется так, чтобы иметь: 80% насыщения DO 0 ppt солености при 20 ° C

Шаг второй : Умножение.80 (что является DO%) на 9,09 (значение из таблицы растворимости кислорода при 0 солености и 20º C) = 7,27 мг / л.

Результат : 7,27 - это значение мг / л, которое соответствует показанию насыщения DO 80% образца с нулевой соленостью при 20 ° C.

Что влияет на ваши измерения растворенного кислорода? Часть 4 из 4

Что влияет на ваши измерения растворенного кислорода? Часть 3 из 4

Что влияет на ваши измерения растворенного кислорода? Часть 2 из 4

.Датчик кислорода

- Oxygen sensor - qwe.

Для более быстрой навигации этот iframe предварительно загружает страницу Wikiwand для Датчик кислорода .

Подключено к:
{{:: readMoreArticle.title}}

Из Википедии, свободной энциклопедии

{{bottomLinkPreText}} {{bottomLinkText}} Эта страница основана на статье в Википедии, написанной участники (читать / редактировать).
Текст доступен под Лицензия CC BY-SA 4.0; могут применяться дополнительные условия.
Изображения, видео и аудио доступны по соответствующим лицензиям.
{{current.index + 1}} из {{items.length}}

Спасибо за жалобу на это видео!

Пожалуйста, помогите нам решить эту ошибку, написав нам по адресу support @ wikiwand.com
Сообщите нам, что вы сделали, что вызвало эту ошибку, какой браузер вы используете и установлены ли у вас какие-либо специальные расширения / надстройки.
Спасибо! .

Смотрите также