RU (495) 989 48 46
Пленка на бампер

АНТИГРАВИЙНАЯ ЗАЩИТА БАМПЕРА

 

Момент через мощность и обороты формула


Соотношение между мощностью и моментом силы

Ниже два калькулятора, которые переводят мощность в момент силы (или крутящий момент) и наоборот для заданной угловой скорости. Формулы под калькулятором.

Момент силы и мощность

Момент силы, Ньютон-метр

Угловая скорость, оборотов в минуту

Точность вычисления

Знаков после запятой: 3

Мощность, Ватт

 

Мощность, килоВатт

 

content_copy Ссылка save Сохранить extension Виджет

Мощность и момент силы
Точность вычисления

Знаков после запятой: 2

Момент силы, Ньютон-метр

 

content_copy Ссылка save Сохранить extension Виджет

Несколько формул/
Для мощности:

где P — мощность (Ватты или килоВатты), τ — крутящий момент (Ньютон-метр), ω — угловая скорость (радиан в секунду), а точка обозначает скалярное произведение.
Для момента силы:

Угловая скорость в калькуляторе задается в оборотах в минуту, приведение ее к радианам в секунду тривиально:

так как один оборот это радиан.

Крутящий момент и зависимость крутящего момента

Как рассчитать крутящий момент, зная обороты и мощность двигателя?

Крутящий момент напрямую зависит от мощности и числа оборотов двигателя в минуту. Имеется общепринятая формула расчета крутящего момента, выражаемого в Ньютон-метрах ( русское обозначение Н·м, международное N·m ) 

 

M = P х 9550 / N

 

Где P - это мощность двигателя в киловаттах (кВт)

N - обороты вала в минуту

 

 

Как рассчитать мощность двигателя, зная крутящий момент и обороты?

Для такого расчета существует формула:

 

P = M х N / 9550

 

Где M - это крутящий момент двигателя

N - это обороты двигателя

 

Для скорости и простоты расчета воспользуйтесь удобным калькулятором крутящего момента. Впишите в ячейки калькулятора имеющиеся значения и калькулятор автоматически проставит результаты расчета.

 

Калькулятор крутящего момента

Мощность момент — Энциклопедия журнала "За рулем"

Может ли бульдозер обогнать «формулу 1»? Может, но только на очень короткой дистанции

Часто эксперты автомобильных изданий, рассказывая о выдающейся динамике машины, в первую очередь превозносит огромный крутящий момент двигателя, оставляя мощности роль второго плана. Мол, благодаря именно моменту машина ровно и напористо разгоняется в широком диапазоне оборотов и скоростей. Особенно востребовано это качество на высших передачах, – ведь тяговые силы и ускорения на них в любом случае не столь велики, как на первой или второй передаче. А для безаварийного движения в потоке транспорта возможность быстро прибавить скорость зачастую играет судьбоносную роль. Ездить на таком автомобиле даже психологически легче. И все же, когда нужно быстрей разогнаться, что важней – мощность или крутящий момент?
Сразу отметим: чаще всего эти два параметра «конфликтуют»… в головах журналистов, охотно повторяющих признанные публикой «истины» без какого-либо их анализа. На самом же деле смешно рассматривать мощность в отрыве от крутящего момента и наоборот. Первая показывает энергию, ежесекундно вырабатываемую двигателем, тогда как крутящий момент – всего лишь силовой фактор, показывающий, как нагружен при работе коленчатый вал. Крутящий момент может существовать и сам по себе, без мощности. Например, при неожиданной остановке перегруженного двигателя на крутом подъеме, в песке, при буксировке тяжелого прицепа в какой-то миг момент еще есть, а движения уже нет. А в некоторых механизмах можно обнаружить и длительно действующий на какой-нибудь вал момент, удерживающий его от поворота. Например, в рулевом механизме, когда мы лишь удерживаем управляемые колеса в нужных положениях, тогда как дорога пытается их нарушить. А самый типичный пример: пытаясь открутить «прикипевший» болт, ключ удлинили метровой трубой, – а болт ни с места. Момент огромный, а работа не идет. А коли нет работы – то нет и мощности.

Тут впору вспомнить школьную физику. Нарисуйте круг радиуса R – это будет сечение вала – и приложите к нему «касательную» силу F. Крутящий момент этой силы М = F • R. За один оборот вала сила F пройдет путь 2πR – и выполнит работу: А = F • R • 2π = М • 2π . А работа за n оборотов: А = М • 2π • n. Если n – число оборотов в минуту, то работа за одну секунду – то есть, мощность – составит N = М • 2πn /60.
Выражение 2π n /60 = 0,1047 n = ω – угловая скорость вала. Итак, N = М • 0,1047 n (Формула [1]).
Но мы имеем дело не только с вращающимися деталями, но и движущимися линейно. В этом случае в формуле (1) момент М заменим силой F, а угловую скорость ω – линейной v. Получим: N = F • v (Формула [2]).
Эти формулы равноправны. Замерив, например, тяговую силу колес, умножим на достигнутую машиной скорость – и найдем затрачиваемую мощность. Но если крутящий момент на ведущей оси умножить на угловую скорость колес, получим то же самое.
Итак, мощность – это работа (или энергия) израсходованная или произведенная за 1 секунду. Конечно, о «законе сохранения энергии» знает каждый. Говоря по пионерски, она «не возникает из ничего», но и не исчезает, не оставив следа. Так, лишь около четверти тепловой энергии, получаемой двигателем от сгорания топлива, превращается в механическую, соответствующая мощность (эффективная) тратится на движение машины. Большая же часть полученной в цилиндрах двигателя теплоты идет на «обогрев» окружающего нас мира.
Эффективная мощность тоже доходит до ведущих колес не вся – до 15 % ее может рассеять в виде тепла трение в узлах и агрегатах трансмиссии. Но для нас важней другое: если при открытом дросселе (или при полной подаче топлива в дизель) двигатель выдает на колеса сколько-то киловатт, то это – его «потолок». Никакими простыми механизмами вроде коробок передач, редукторов и т. п. превысить эту величину невозможно – этого «закон сохранения» не допустит.
Итак, крутящий момент – это удобный для нас «инструмент», связывающий процессы в двигателе с трансмиссией машины и ведущими колесами. Но не более того! Ракетчики, например, запрягают пламя напрямую, получают гигантские тяги и мощности, но о крутящих моментах вспоминают лишь в расчетах турбонасосных агрегатов, – да и то, если двигатели не твердотопливные!
Из формулы (1) видно, что для получения достаточной мощности вовсе не обязателен огромный крутящий момент, ведь в произведении два сомножителя. Почему бы, например, не увеличивать мощность при постоянном моменте, наращивая угловую скорость в каком-то диапазоне оборотов? При этом мощность растет по оборотам линейно. А постоянство момента в заданном диапазоне – не чудо, которым некоторые почему-то восторгаются, а всего лишь признак постоянства тяговых сил. Если пренебречь сопротивлением воздуха (к примеру, на первой передаче оно невелико), то и ускорение машины в этом диапазоне постоянное. Это довольно удобно для водителя. Но спросим себя: если бы в начале диапазона момент был таким же, а ближе к пресловутым «верхам» стал больше, стал бы с таким «подхватом» автомобиль хуже? – Вряд ли. Разве только что-нибудь нарушилось бы в смысле экологии.
Мощность можно менять и при постоянных оборотах. Пример: мы ехали со скоростью 90 км/ч по горизонтальному шоссе, а с началом подъема, дабы сохранить скорость, пришлось больше открыть дроссель. Это увеличение момента в чистом виде.
Итак, имеем дело с формулой (1). К примеру, перед нами скромный двигатель грузовика с моментом 35 кгм при оборотах 3000 в минуту. Какова мощность? Тут отметим, что в расчетах всегда важен правильный выбор единиц измерений параметров. Угловую скорость измеряют в 1/сек. А момент? – В старых единицах это кгм. Получаем: N = 35 кгм . 0,1047 . 3000 1/сек = 10993 кгм/сек ≈ 146,6 л.с. А в современной системе СИ: 35 кгм = 343,35 Нм. Тогда N = 343,45 Нм • 0,1047 • 3000 1/сек ≈ 107846 Вт.
На всякий случай напомним, что 1 лс = 75 кгм/сек = 75 • 9,81 Нм/сек = 735,75 Вт. Поэтому 107846 Вт ≈ 146,6 л.с.
А теперь прикинем мощность «формульного» двигателя с таким же скромным моментом, но при оборотах 18 тысяч! Результат – 880 л.с. (647 кВт), которые обеспечивают машине роскошную динамику. Никакого чуда нет: чем больше циклов совершит наш «моментик» за одну секунду, тем больше и совершенная им работа. Еще пример. В авиатехнике ныне практически господствуют газотрубинные двигатели. Повторив наш расчет для небольшого двигателя, с оборотами свободной турбины 40 тысяч в минуту, получим мощность около 1950 л.с. или 1438 кВт. Момент турбины невелик, но ведь воздушный винт приводится от нее не напрямую, а через редуктор, – а уж «мощи» ему хватает!
Но вернемся к автомобилю. Как уже сказано, любому комфортней ездить на машине, у которой под капотом достаточно и мощности, и момента. Но многим приходится ездить на скромных авто, возможности коих, как нынче говорят, «очень бюджетные»! Всякий, кто не умеет вовремя переключать передачи, с ними испытывает неприятности. Значит, надо учиться, друзья. Ну а что делать владельцу авто с АКП? На смену недовольству двигателем зачастую приходят претензии к автомату. Нередко – справедливые, ведь у АКПП тоже случаются специфические болячки, требующие ремонта. Но часто они оказываются не обоснованными: современный автомобиль, насыщенный электроникой и настроенный изготовителем на строгое выполнение жестких экологических норм, вовсе не обязан подстраиваться под любую российскую лихость!
Гусеничному трактору дернуться и оборвать сцепку – плевое дело. Это похоже на выстрел из ружья – можно на миг и «формулу I» опередить. А дольше – никак. Ружье от ракеты отличается принципиально: последняя сохраняет нужное ускорение достаточно долго. В свое время, при стартах к Луне гигант «Сатурн 5» массой свыше 3100 т отделялся от пускового устройства мягко, как пассажирский поезд, – с ускорением чуть больше 1 м/сек2. А минут через пять, по мере выгорания топлива, настолько «терял в весе», что его скорость перед выключением первой ступени составляла 3 км/сек.
Низшая передача бульдозера крайне «коротка»: чуть «перекрутил» – тяга упала. А другие не лучше, – вон и «формула» уже растворилась за горизонтом, так что для серьезных игрищ «мощи» на гусеницах маловато.
Если пренебречь разницей в КПД передач (она невелика), то на любой передаче машину движут одни и те же киловатты. Но движут по-разному. Момент и тяговая сила на ведущих колесах подчиняются «золотому правилу»: сколько процентов выиграешь в скорости, столько потеряешь в силе. Это показывают рис. 1 и 2. Если двигатель заведомо слаб, с ним сильно не разгонишься.

Рис. 1. Величины мощности N1 ... N5 на ведущей оси не зависят от включенной передачи. Точки пересечения кривой Nсопр с кривыми N3, N4 и N5 дают информацию о максимальных скоростях автомобиля на этих передачах. Здесь самая скоростная на горизонтальной дороге в безветрие – четвертая.

Вся история современной транспортной техники – это непрерывная борьба за большие мощности. У наиболее знаменитых ракетоносителей они давно превысили 100 миллионов кВт. Это не ошибка - именно 100 000 000 000 Вт, или 100 ГигаВатт. И хотя притязания автомобилиста не столь велики, «прохватить» на динамичной машине всякий не прочь.
Главные враги любителя скорости – не гаишники, а силы, тормозящие движение, – от этих не откупишься! Мощность сопротивления воздуха вкупе с мощностью шинных потерь показаны на рис. 1 линией Nсопр.
(Желающие посчитать, могут воспользоваться следующими формулами. Nсопр. = Nw + Nf. Мощность аэродинамических потерь Nw для автомобиля весом 15000 Н при плотности воздуха 1,25 кг/м3, Сх = 0,3 и лобовой площади S = 2 • м2 составляет: Nw = (0,3 • 2 • 1,25)/2 • v3 = 0,375 v3 Вт. А мощность шинных потерь Nf = 0,015 • 15000 • v = 225 v Вт. При 100 км/ч Nсопр составляет лишь 14,5 кВт. А при 200 км/ч – 77 кВт. Разница впечатляет?)
Колеса автомобиля, борясь с мощностями сил сопротивления, при максимальной скорости полностью расходуют мощность, получаемую от двигателя. Но ее характеристика (например, показанная кривой N4 на рис.1) при полностью открытом дросселе похожа на гору с округлой макушкой, тогда как характеристика мощности сопротивлений Nсопр. поднимается как крутая парабола. Чтобы полностью использовать арсенал мощности двигателя – и получить максимум скорости V4 (на горизонтальной трассе, без ветра), передаточное число трансмиссии и размер шин подбирают так, чтобы кривая Nсопр пересекла кривую N4 возле вершины. Максимальные скорости на третьей и пятой передачах (V3 и V5) существенно ниже. Но на спуске или с ветром вдогон выгодней может стать пятая передача, а на подъеме или с ветром в лоб – третья.
Другие враги скорости – подъем дороги и встречный ветер. Подъем с углом всего 1,5% добавит к потерям в шинах еще столько же. Но еще коварней ветер. Его скорость сложится со скоростью машины относительно дороги, – и уже эту сумму в расчете затрат мощности надо возвести в куб! При скорости по спидометру 36 км/ч (10 м/сек) и ровном встречном ветре 5 м/сек мощность Nсопр вырастет лишь на 0,9 кВт, а вот при 180 км/ч (50 м/сек) – аж на 15,5 кВт. Но придуманный нами автомобиль так ехать не может… Маловато мощи! Максимальная скорость снизится почти на 20 км/ч.

Рис. 2 - Так зависит крутящий момент (М1….М5) или тяговая сила (Fтяг 1 …Fтяг 5) на ведущей оси от включенной передачи. При коэффициенте сцепления шин с дорогой 0,7 ведущая ось, нагруженная половиной веса машины (Gавтом = 15000 н), может создать реальную тяговую силу не больше Fмакс. доп. = 5250 Н.

На рис.2 величины крутящего момента М1…М5, а заодно и теоретические тяговые силы F1…F5 на ведущей оси, показаны одними и теми же кривыми, – ведь тяговые силы пропорциональны моментам. Величины сил – на вертикальной оси справа. Но тут важно учесть следующее.
Разгоняет машину не вся тяговая сила, а лишь избыточная – то есть разница между полной тяговой силой колес и сопротивлением воздуха. Отношение этой силы к весу машины академик Чудаков назвал динамическим фактором D. На первой передаче сопротивление воздуха мало, его можно не учитывать – считать, что машину разгоняет полная сила Fтяг.1. Но отталкиваться от дороги сильней, чем позволяет сцепление шин, невозможно! Если, например, ведущая ось несет половину веса машины – 7500 Н, то при коэффициенте сцепления φ = 0,7 тяговая сила не может превысить 35% ее веса. Это неплохо согласуется с такой официальной характеристикой любого автомобиля как предельно возможный угол подъема. С «моноприводом» трудно получить больше. Правда, у машины с задним приводом на подъемах ведущие колеса несколько догружаются весом машины, а вот передний тут невыгоден. Лучшая схема, но сложная и дорогая, – полный привод (конечно, не с такой скромной мощностью, как у «Нивы» или УАЗа!).
Если избыточная сила (на первой передаче, например) слишком велика, машина «шлифует» дорогу. Дело нелепое, нужно перейти на следующую передачу. А вот при разработке нового авто конструктор учитывает высокую мощность двигателя и ее следствие – тяговые силы в передаточных числах трансмиссии. Передачи проектируются как достаточно «длинные», расширяющие диапазон скоростей при достаточных ускорениях. А это значит, что и при более высоких скоростях действуют нужные тяговые силы (или моменты) на колесах. Иначе говоря, реализуется весь арсенал мощности! Значит, она все же важнее.

Споры на тему влияния мощности-момента ведутся давно, и конца им не видно. Вроде бы сто раз уже объясняли самыми разными способами, что тут к чему, а воз и ныне там. Вызывает неподдельный интерес, откуда все же берется заблуждение и почему оно такое устойчивое?
Причин видится две. Одна из них в том, что мощность есть функция от момента. Зависимость мощности от момента стоит барьером, который преодолеть оказывается непросто. Что странно. Поскольку очевидность того, что мощность есть функция не только от момента, но и от оборотов, не оспаривается, и тот факт, что у разных двигателей бывает весьма большой разброс по соотношению мощности к моменту, также не подвергается сомнению. То есть существует молчаливое согласие с тем, что мощность есть функция от двух аргументов - оборотов и момента, но при этом зависимость от оборотов как бы игнорируется. Почему?
А в этом и есть вторая, главная причина заблуждения. И ключевая фраза здесь: "Человек совершенно может не иметь понятие про мощность.А вот разницу в ускорении на 3 и 4 передаче он вполне способен почувствовать." Ясно, что на динамику автомобиля оказывают большое влияние и передаточные числа КПП. На графике 1 видны кривые мощности двигателя, смещенные в зависимости от разных передаточных чисел и кривая сопротивлений. Видно, что с ростом передаточного числа динамика резко возрастает. Это очевидно и вопросов не вызывает. Странно, что не менее очевидный факт, что бОльшая часть времени при разгоне приходится вовсе не на 1 и 2 передачи, а на 3-4, при этом упускается из виду.
При разгоне здравомыслящий водитель пользуется всеми четырьмя передачами и весьма широким диапазоном частот вращения двигателя. При этом редко задумывается о том, что динамика разгона на высокой скорости мала и плохо ощущается, но именно на нее и приходится львиная доля времени разгона (по той простой причине, повторю, что на высших передачах динамика хуже и потому занимает бол

Как рассчитать крутящий момент электродвигателя

Крутящий момент электродвигателя – это сила вращения его вала. Именно момент вращения определяет мощность Вашего двигателя. Измеряется в ньютонах на метр или в килограмм-силах на метр.

Виды крутящих моментов:

Таблица крутящих моментов электродвигателей

В данной таблице собраны крутящие моменты наиболее распространенных в Украине электродвигателей АИР, а также требуемый при пуске – пусковой, максимально допустимый для данного типа электродвигателя – максимальный крутящий момент и момент инерции двигателей АИР (усилие важное при подборе электромагнитного тормоза, например)

Двигатель
кВт/об
Мном, Нм
Мпуск, Нм
Ммакс, Нм
Минн, Нм
АИР56А2
0,18/2730
0,630
1,385
1,385
1,133
АИР56В2
0,25/2700
0,884
1,945
1,945
1,592
АИР56А4
0,12/1350
0,849
1,868
1,868
1,528
АИР56В4
0,18/1350
1,273
2,801
2,801
2,292
АИР63А2
0,37/2730
1,294
2,848
2,848
2,330
АИР63В2
0,55/2730
1,924
4,233
4,233
3,463
АИР63А4
0,25/1320
1,809
3,979
3,979
3,256
АИР63В4
0,37/1320
2,677
5,889
5,889
4,818
АИР63А6
0,18/860
1,999
4,397
4,397
3,198
АИР63В6
0,25/860
2,776
6,108
6,108
4,442
АИР71А2
0,75/2820
2,540
6,604
6,858
4,064
АИР71В2
1,1/2800
3,752
8,254
9,004
6,003
АИР71А4
0,55/1360
3,862
8,883
9,269
6,952
АИР71В4
0,75/1350
5,306
13,264
13,794
12,733
АИР71А6
0,37/900
3,926
8,245
8,637
6,282
АИР71В6
0,55/920
5,709
10,848
12,560
9,135
АИР71В8
0,25/680
3,511
5,618
6,671
4,915
АИР80А2
1,5/2880
4,974
10,943
12,932
8,953
АИР80В2
2,2/2860
7,346
15,427
19,100
13,223
АИР80А4
1,1/1420
7,398
16,275
17,755
12,576
АИР80В4
1,5/1410
10,160
22,351
24,383
17,271
АИР80А6
0,75/920
7,785
16,349
17,128
12,457
АИР80В6
1,1/920
11,418
25,121
26,263
20,553
АИР80А8
0,37/680
5,196
10,393
11,952
7,275
АИР80В8
0,55/680
7,724
15,449
16,221
10,814
АИР90L2
3/2860
10,017
23,040
26,045
17,030
АИР90L4
2,2/1430
14,692
29,385
35,262
29,385
АИР90L6
1,5/940
15,239
30,479
35,051
28,955
АИР90LА8
0,75/700
10,232
15,348
20,464
15,348
АИР90LВ8
1,1/710
14,796
22,194
32,551
22,194
АИР100S2
4/2850
13,404
26,807
32,168
21,446
АИР100L2
5,5/2850
18,430
38,703
44,232
29,488
АИР100S4
3/1410
20,319
40,638
44,702
32,511
АИР100L4
4/1410
27,092
56,894
65,021
43,348
АИР100L6
2,2/940
22,351
42,467
49,172
35,762
АИР100L8
1,5/710
20,176
32,282
40,352
30,264
АИР112М2
7,5/2900
24,698
49,397
54,336
39,517
АИР112М4
5,5/1430
36,731
73,462
91,827
58,769
АИР112МА6
3/950
30,158
60,316
66,347
48,253
АИР112МВ6
4/950
40,211
80,421
88,463
64,337
АИР112МА8
2,2/700
30,014
54,026
66,031
42,020
АИР112МВ8
3/700
40,929
73,671
90,043
57,300
АИР132М2
11/2910
36,100
57,759
79,419
43,320
АИР132S4
7,5/1440
49,740
99,479
124,349
79,583
АИР132М4
11/1450
72,448
173,876
210,100
159,386
АИР132S6
5,5/960
54,714
109,427
120,370
87,542
АИР132М6
7,5/950
75,395
150,789
165,868
120,632
АИР132S8
4/700
54,571
98,229
120,057
76,400
АИР132М8
5,5/700
75,036
135,064
165,079
105,050
АИР160S2
15/2940
48,724
97,449
155,918
2,046
АИР160М2
18,5/2940
60,094
120,187
192,299
2,884
АИР180S2
22/2940
71,463
150,071
250,119
4,288
АИР180М2
30/2940
97,449
214,388
341,071
6,821
АИР200М2
37/2950
119,780
275,493
383,295
16,769
АИР200L2
45/2940
146,173
380,051
584,694
19,003
АИР225М2
55/2955
177,750
408,824
710,998
35,550
АИР250S2
75/2965
241,568
628,078
966,273
84,549
АИР250М2
90/2960
290,372
784,003
1161,486
116,149
АИР280S2
110/2960
354,899
887,247
1171,166
212,939
АИР280М2
132/2964
425,304
1233,381
1488,563
297,713
АИР315S2
160/2977
513,268
1231,844
1693,786
590,259
АИР315М2
200/2978
641,370
1603,425
2116,521
962,055
АИР355SMA2
250/2980
801,174
1281,879
2403,523
2163,171
АИР160S4
15/1460
98,116
186,421
284,538
7,457
АИР160М4
18,5/1460
121,010
229,920
350,930
11,375
АИР180S4
22/1460
143,904
302,199
402,932
15,110
АИР180М2
30/1460
196,233
470,959
588,699
27,276
АИР200М4
37/1460
242,021
532,445
847,072
46,952
АИР200L4
45/1460
294,349
647,568
941,918
66,229
АИР225М4
55/1475
356,102
997,085
1317,576
145,289
АИР250S4
75/1470
487,245
1218,112
1559,184
301,605
АИР250М4
90/1470
584,694
1461,735
1871,020
467,755
АИР280S4
110/1470
714,626
2072,415
2429,728
578,847
АИР280М4
132/1485
848,889
1697,778
2886,222
1612,889
АИР315S4
160/1487
1027,572
2568,931
3802,017
2363,416
АИР315М4
200/1484
1287,062
3217,655
4247,305
3603,774
АИР355SMA4
250/1488
1604,503
3690,356
4492,608
8985,215
АИР355SMВ4
315/1488
2021,673
5054,183
5862,853
12534,375
АИР355SMС4
355/1488
2278,394
5012,466
6151,663
15493,078
АИР160S6
11/970
108,299
205,768
314,067
12,021
АИР160М6
15/970
147,680
339,665
443,041
20,675
АИР180М6
18,5/970
182,139
400,706
546,418
29,324
АИР200М6
22/975
215,487
517,169
711,108
50,209
АИР200L6
30/975
293,846
617,077
881,538
102,846
АИР225М6
37/980
360,561
721,122
1081,684
186,050
АИР250S6
45/986
435,852
784,533
1307,556
440,210
АИР250М6
55/986
532,708
1012,145
1811,207
633,922
АИР280S6
75/985
727,157
1454,315
2326,904
1090,736
АИР280М6
90/985
872,589
1745,178
2792,284
1657,919
АИР315S6
110/987
1064,336
1809,372
2873,708
4044,478
АИР315М6
132/989
1274,621
2166,855
3696,400
5735,794
АИР355МА6
160/993
1538,771
2923,666
3539,174
11848,540
АИР355МВ6
200/993
1923,464
3654,582
4423,968
17118,832
АИР355MLA6
250/993
2404,330
4568,228
5529,960
25485,901
AИР355MLB6
315/992
3032,510
6065,020
7278,024
40029,133
АИР160S8
7,5/730
98,116
156,986
235,479
13,246
АИР160М8
11/730
1007,329
1712,459
2417,589
181,319
АИР180М8
15/730
196,233
333,596
529,829
41,994
АИР200М8
18,5/728
242,685
509,639
606,714
67,952
АИР200L8
22/725
289,793
579,586
724,483
88,966
АИР225М8
30/735
389,796
701,633
1052,449
214,388
АИР250S8
37/738
478,794
861,829
1196,985
481,188
АИР250М8
45/735
584,694
1052,449
1520,204
695,786
АИР280S8
55/735
714,626
1357,789
2143,878
1071,939
АИР280М8
75/735
974,490
1754,082
2728,571
1851,531
АИР315S8
90/740
1161,486
1509,932
2671,419
4413,649
АИР315М8
110/742
1415,768
2265,229
3964,151
6370,957
АИР355SMA8
132/743
1696,635
2714,616
3902,261
12215,774
AИР355SMB8
160/743
2056,528
3496,097
4935,666
18097,443
AИР355MLA8
200/743
2570,659
4627,187
6940,781
26991,925
AИР355MLB8
250/743
4498,654
7647,712
10796,770
58032,638
Расчет крутящего момента – формула

Примечание: при расчете стоит учесть коэффициент проскальзывания асинхронного двигателя. Номинальное количество оборотов двигателя не совпадает с реальным. Точное количество оборотов вы сможете найти, зная маркировку, в таблице выше.


Расчет онлайн

Для расчета крутящего момента электродвигателя онлайн введите значение мощности ЭД и реальную угловую скорость (количество оборотов в минуту)

тут будет калькулятор

После расчета крутящего момента, посмотрите схемы подключения асинхронных электродвигателей звездой и треугольником на сайте «Слобожанского завода»

Мощность и вращающий момент электродвигателя. Что это такое?


Мощность и вращающий момент электродвигателя

Данная глава посвящена вращающему моменту: что это такое, для чего он нужен и др. Мы также разберём типы нагрузок в зависимости от моделей насосов и соответствие между электродвигателем и нагрузкой насоса.

Вы когда-нибудь пробовали провернуть вал пустого насоса руками? Теперь представьте, что вы поворачиваете его, когда насос заполнен водой. Вы почувствуете, что в этом случае, чтобы создать вращающий момент, требуется гораздо большее усилие.



А теперь представьте, что вам надо крутить вал насоса несколько часов подряд. Вы бы устали быстрее, если бы насос был заполнен водой, и почувствовали бы, что потратили намного больше сил за тот же период времени, чем при выполнении тех же манипуляций с пустым насосом. Ваши наблюдения абсолютно верны: требуется большая мощность, которая является мерой работы (потраченной энергии) в единицу времени. Как правило, мощность стандартного электродвигателя выражается в кВт.



Вращающий момент (T) - это произведение силы на плечо силы. В Европе он измеряется в Ньютонах на метр (Нм).



Как видно из формулы, вращающий момент увеличивается, если возрастает сила или плечо силы - или и то и другое. Например, если мы приложим к валу силу в 10 Н, эквивалентную 1 кг, при длине рычага (плече силы) 1 м, в результате, вращающий момент будет 10 Нм. При увеличении силы до 20 Н или 2 кг, вращающий момент будет 20 Нм. Таким же образом, вращающий момент был бы 20 Нм, если бы рычаг увеличился до 2 м, а сила составляла 10 Н. Или при вращающем моменте в 10 Нм с плечом силы 0,5 м сила должна быть 20 Н.




Работа и мощность

Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила - любая сила - вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определённый момент времени.

Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).



Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.



Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.

Приведем единицы измерения к общему виду.



Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.



Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.



Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.

Как образуется вращающий момент и частота вращения?

Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.

В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.



Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.

Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:



Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.




Потребляемая мощность электродвигателя

Ток ротора индуцируется через источник питания, к которому подсоединён электродвигатель, а магнитное поле частично создаётся напряжением. Входную мощность можно вычислить, если нам известны данные источника питания электродвигателя, т.е. напряжение, коэффициент мощности, потребляемый ток и КПД.



В Европе мощность на валу обычно измеряется в киловаттах. В США мощность на валу измеряется в лошадиных силах (л.с.).

Если вам необходимо перевести лошадиные силы в киловатты, просто умножьте соответствующую величину (в лошадиных силах) на 0,746. Например, 20 л.с. равняется (20 • 0,746) = 14,92 кВт.

И наоборот, киловатты можно перевести в лошадиные силы умножением величины в киловаттах на 1,341. Это значит, что 15 кВт равняется 20,11 л.с.


Момент электродвигателя

Мощность [кВт или л.с.] связывает вращающий момент с частотой вращения, чтобы определить общий объём работы, который должен быть выполнен за определённый промежуток времени.

Рассмотрим взаимодействие между вращающим моментом, мощностью и частотой вращения, а также их связь с электрическим напряжением на примере электродвигателей Grundfos. Электродвигатели имеют одну и ту же номинальную мощность как при 50 Гц, так и при 60 Гц.



Это влечёт за собой резкое снижение вращающего момента при 60 Гц: частота 60 Гц вызывает 20%-ное увеличение числа оборотов, что приводит к 20%-ному уменьшению вращающего момента. Большинство производителей предпочитают указывать мощность электродвигателя при 60 Гц, таким образом, при снижении частоты тока в сети до 50 Гц электродвигатели будут обеспечивать меньшую мощность на валу и вращающий момент. Электродвигатели обеспечивают одинаковую мощность при 50 и 60 Гц.

Графическое представление вращающего момента электродвигателя изображено на рисунке.



Иллюстрация представляет типичную характеристику вращающий момент/частота вращения. Ниже приведены термины, используемые для характеристики вращающего момента электродвигателя переменного тока.

Пусковой момент (Мп): Механический вращающий момент, развиваемый электродвигателем на валу при пуске, т.е. когда через электродвигатель пропускается ток при полном напряжении, при этом вал застопорен.

Минимальный пусковой момент (Ммин): Этот термин используется для обозначения самой низкой точки на кривой вращающий момент/частота вращения электродвигателя, нагрузка которого увеличивается до полной скорости вращения. Для большинства электродвигателей Grundfos величина минимального пускового момента отдельно не указывается, так как самая низкая точка находится в точке заторможенного ротора. В результате для большинства электродвигателей Grundfos минимальный пусковой момент такой же, как пусковой момент.

Блокировочный момент (Мблок): Максимальный вращающий момент - момент, который создаёт электродвигатель переменного тока с номинальным напряжением, подаваемым при номинальной частоте, без резких скачков скорости вращения. Его называют предельным перегрузочным моментом или максимальным вращающим моментом.

Вращающий момент при полной нагрузке (Мп.н.): Вращающий момент, необходимый для создания номинальной мощности при полной нагрузке.


Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:

Постоянная мощность

Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.



Постоянный вращающий момент

Как видно из названия - «постоянный вращающий момент» - подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.



Переменный вращающий момент и мощность

«Переменный вращающий момент» - эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.

Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.

Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.



Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.

Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.

В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.

Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.

Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.



На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения - мал, а потребный вращающий момент при высокой частоте вращения - велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность - кубу скорости вращения.



Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:

Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.



В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.

Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.


Соответствие электродвигателя нагрузке

Если нужно определить, отвечает ли вращающий момент определённого электродвигателя требованиям нагрузки, Вы можете сравнить характеристики скорости вращения/вращающего момента электродвигателя с характеристикой скорости вращения/ вращающего момента нагрузки. Вращающий момент, создаваемый электродвигателем, должен превышать потребный для нагрузки вращающий момент, включая периоды ускорения и полной скорости вращения.

Характеристика зависимости вращающего момента от скорости вращения стандартного электродвигателя и центробежного насоса.



Если мы посмотрим на характеристику , то увидим, что при ускорении электродвигателя его пуск производится при токе, соответствующем 550% тока полной нагрузки.



Когда двигатель приближается к своему номинальному значению скорости вращения, ток снижается. Как и следовало ожидать, во время начального периода пуска потери на электродвигателе высоки, поэтому этот период не должен быть продолжительным, чтобы не допустить перегрева.

Очень важно, чтобы максимальная скорость вращения достигалась как можно точнее. Это связано с потребляемой мощностью: например, увеличение скорости вращения на 1% по сравнению со стандартным максимумом приводит к 3%-ному увеличению потребляемой мощности.

Потребляемая мощность пропорциональна диаметру рабочего колеса насоса в четвертой степени.



Уменьшение диаметра рабочего колеса насоса на 10% приводит к уменьшению потребляемой мощности на (1- (0.9 * 0.9 * 0.9 * 0.9)) * 100 = 34%, что равно 66% номинальной мощности. Эта зависимость определяется исключительно на практике, так как зависит от типа насоса, конструкции рабочего колеса и от того, насколько вы уменьшаете диаметр рабочего колеса.


Время пуска электрдвигателя

Если нам необходимо подобрать типоразмер электродвигателя для определённой нагрузки, например для центробежных насосов, основная наша задача состоит в том, чтобы обеспечить соответствующий вращающий момент и мощность в номинальной рабочей точке, потому что пусковой момент для центробежных насосов довольно низкий. Время пуска достаточно ограниченно, так как вращающий момент довольно высокий.



Нередко для сложных систем защиты и контроля электродвигателей требуется некоторое время для их пуска, чтобы они могли замерить пусковой ток электродвигателя. Время пуска электродвигателя и насоса рассчитывается с помощью следующей формулы:



tпуск = время, необходимое электродвигателю насоса, чтобы достичь частоты вращения при полной нагрузке

n = частота вращения электродвигателя при полной нагрузке

Iобщ = инерция, которая требует ускорения, т.е. инерция вала электродвигателя, ротора, вала насоса и рабочих колёс.

Момент инерции для насосов и электродвигателей можно найти в соответствующих технических данных.



Мизб = избыточный момент, ускоряющий вращение. Избыточный момент равен вращающему моменту электродвигателя минус вращающий момент насоса при различных частотах вращения.

Мизб можно рассчитать по следующим формулам:







Как видно из приведённых вычислений, выполненных для данного примера с электродвигателем мощностью 4 кВт насоса CR, время пуска составляет 0,11 секунды.


Число пусков электродвигателя в час

Современные сложные системы управления электродвигателями могут контролировать число пусков в час каждого конкретного насоса и электродвигателя. Необходимость контроля этого параметра состоит в том, что каждый раз, когда осуществляется пуск электродвигателя с последующим ускорением, отмечается высокое потребление пускового тока. Пусковой ток нагревает электродвигатель. Если электродвигатель не остывает, продолжительная нагрузка от пускового тока значительно нагревает обмотки статора электродвигателя, что приводит к выходу из строя электродвигателя или сокращению срока службы изоляции.

Обычно за количество пусков, которое может выполнить электродвигатель в час, отвечает поставщик электродвигателя. Например, Grundfos указывает максимальное число пусков в час в технических данных на насос, так как максимальное количество пусков зависит от момента инерции насоса.


Мощность и КПД (eta) электродвигателя

Существует прямая связь между мощностью, потребляемой электродвигателем от сети, мощностью на валу электродвигателя и гидравлической мощностью, развиваемой насосом.

При производстве насосов используются следующие обозначения этих трёх различных типов мощности.



P1 (кВт) Входная электрическая мощность насосов - это мощность, которую электродвигатель насоса получает от источника электрического питания. Мощность P! равна мощности P2, разделённой на КПД электродвигателя.

P2 (кВт) Мощность на валу электродвигателя - это мощность, которую электродвигатель передает на вал насоса.

Р3 (кВт) Входная мощность насоса = P2, при условии, что соединительная муфта между валами насоса и электродвигателя не рассеивает энергию.

Р4 (кВт) Гидравлическая мощность насоса.

Что такое мощность двигателя и крутящий момент. Как рассчитать мощность мотора

Автор Павел Александрович Белоусов На чтение 6 мин. Просмотров 148

Мощность двигателя – это величина, показывающая, какую работу способен совершить мотор в единицу времени. То есть то количество энергии, которую двигатель передает на трансмиссию за определенный временной промежуток. Измеряется в киловаттах (кВт) или лошадиных силах (л. с.).

Как рассчитывается мощность двигателя?

Расчет мощности мотора проводится несколькими способами. Самый доступный способ – через крутящий момент. Умножаем крутящий момент на угловую скорость – получаем мощность двигателя.

N_дв=M∙ω=2∙π∙M∙n_дв

где:

N_дв – мощность двигателя, кВт;

M – крутящий момент, Нм;

ω – угловая скорость вращения коленчатого вала, рад/сек;

π – математическая постоянная, равная 3,14;

n_дв – частота вращения двигателя, мин-1.

Мощность рассчитывается и через среднее эффективное давление. Камера сгорания имеет определенный объем. Разогретые газы воздействуют на поршень в цилиндре с определенным давлением. Двигатель вращается с некоторой частотой. Произведение объема двигателя, среднего эффективного давления и частоты вращения, поделенное на 120, и даст теоретическую мощность двигателя в кВт.

N_дв=(V_дв∙P_эфф∙n_дв)/120

где:

V_дв – объем двигателя, см3;

P_эфф – эффективное давление в цилиндрах, МПа;

120 – коэффициент, применяемый для расчета мощности четырехтактного двигателя (у двухтактных ДВС этот коэффициент равен 60).

Для расчета лошадиных сил киловатты умножаем на 0,74.

N_(дв л.с.)=N_дв∙0,74

где:

N_дв л.с. – мощность двигателя в лошадиных силах, л. с.

Другие формулы мощности двигателя используются в реальных расчетах реже. Эти формулы включают в себя специфичные переменные. И чтобы измерить мощность двигателя по другим методикам, нужно знать производительность форсунок или массу потребленного двигателем воздуха.

На практике расчет мощности автопроизводители выполняют эмпирическим способом, то есть замеряют на стенде и строят график зависимости по факту, на основании полученных во время испытаний показателей.

Мощность двигателя – величина непостоянная. Для каждого мотора есть кривая, которая отображает на графике зависимость мощности от частоты вращения коленчатого вала. До определенного пика, примерно до 4-5 тысяч оборотов, мощность растет пропорционально оборотам. Далее идет плавное отставание роста мощности, кривая наклоняется. Примерно к 7-8 тысячам оборотов мощность идет на спад. Сказывается перекрытие клапанов на большой частоте вращения коленвала и падение КПД мотора из-за недостаточно интенсивного газообмена.

Чтобы узнать мощность двигателя, обратитесь к инструкции по эксплуатации авто. В разделе с техническими характеристиками мотора будет указана мощность и обороты, при которых она достигает пикового значения. Если мощность указана киловаттах, чтобы рассчитать лошадиные силы двигателя, воспользуйтесь приведенной выше формулой. В некоторых случаях автопроизводитель предоставляет график, на котором есть зависимость мощности двигателя и крутящего момента от частоты оборотов.

Видео: Простыми словами без сложных формул и расчетов, что такое мощность, крутящий момент и обороты двигателя.

Мощность ДВС определяет, насколько быстро автомобиль способен передвигаться или ускоряться (совершать работу). Полезная мощность двигателя рассчитывается с учетом потерь в трансмиссии, то есть указывает, сколько от изначальной мощности мотора по факту доходит до колес авто.

Что такое крутящий момент

Крутящий момент в двигателе автомобиля – это вращающая сила, которая численно равна произведению приложенной силы (давление раскаленных газов на поршень) на плечо (расстояние между осями коренных и шатунных шеек коленчатого вала в проекции, перпендикулярной оси вращения коленвала). Измеряется крутящий момент в ньютонах на метр (Нм).

Крутящий момент ДВС зависит от силы давления на поршень и расстояния между коренными и шатунными шейками. Зависимость здесь прямая. Чем больше плечо и чем больше давление на поршень – тем больше крутящий момент двигателя.

У дизельных двигателей степень сжатия больше. Больше и ход поршня в цилиндре (при равном с бензиновым мотором диаметре цилиндров). А это значит, что и расстояние между коренными и шатунными шейками будет больше. То есть длиннее плечо. За счет большей степени сжатия при рабочем такте у дизелей выше сила, давящая на поршень. Крутящий момент в дизельных моторах при прочих равных больше, чем в бензиновых.

Крутящий момент влияет на то, сколько энергии отдает мотор в текущий момент времени. Крутящий момент есть та величина, которая определяет фактически передаваемую в данный момент времени энергию на трансмиссию. Чем больше момент, тем сильнее тяга двигателя при текущих оборотах.

Что лучше: мощность или крутящий момент

Мощность и крутящий момент двигателя – величины взаимосвязанные. Это хорошо видно в формуле из первого пункта.

Пик крутящего момента на графике зависимости от частоты вращения мотора появляется раньше, чем пик мощности. Это справедливо как для дизельных, так и для бензиновых моторов. Однако у дизелей крутящий момент достигается раньше, и плато (интервал частоты вращения при пиковом значении) длиннее. У бензиновых ДВС мощность выше, хотя для ее достижения нужно раскрутить мотор почти до максимальных оборотов.

Сказать определенно, что лучше: мощность или крутящий момент, нельзя. Все зависит от случая. Трансмиссия современного авто способна трансформировать эти величины под требуемые условия. Поясним на примерах.

Для тяжелой техники, которой важна тяга в широком диапазоне оборотов, важнее крутящий момент. Мотор должен хорошо тянуть. Раскручивать его до предельных оборотов не нужно. Отчасти поэтому почти вся коммерческая техника оснащается дизельными моторами.

В гоночных автомобилях важнее мощность. Моторы этих авто по оборотам пилоты во время заездов держат в красной зоне. Двигатель отдает максимальную мощность. А трансмиссия преобразовывает мощность в тягу.

Для гражданских авто важен стиль вождения. Для езды на автомате подойдут оба мотора. Автоматическая трансмиссия будет держать мотор в диапазоне оборотов, при которых двигатель отдает максимум своего потенциала.

Для агрессивной езды на механике с раскручиванием двигателя в красную зону тахометра лучше подойдет бензиновый мотор. Но в этом случае нужно понимать, что для получения максимальной производительности от мотора потребуется держать его на пике оборотов и часто переключать передачи. Пик мощности у бензинового ДВС имеет малый диапазон и находится около максимальных оборотов. Для уверенных обгонов и ускорений нужно будет понижать передачу и раскручивать двигатель.

Для размеренной езды, особенно в городе, больше подходит дизель. Для обгона на дизельном авто зачастую не потребуется переходить на пониженную передачу, а высокий крутящий момент в широком диапазоне оборотов позволит реже переключаться.

Зависимость мощности

от крутящего момента - x-engineer.org

В этой статье мы собираемся понять, как создается крутящий момент двигателя , как рассчитывается мощность двигателя и что такое крутящий момент и кривая мощности . Также мы собираемся взглянуть на карты крутящего момента и мощности двигателя (поверхности).

К концу статьи читатель сможет понять разницу между крутящим моментом и мощностью, как они влияют на продольную динамику автомобиля и как интерпретировать кривые крутящего момента и мощности при полной нагрузке.

Определение крутящего момента

Крутящий момент можно рассматривать как крутящего момента , приложенного к объекту. Крутящий момент (вектор) - это произведение между силой (вектором) и расстоянием (скаляр). Расстояние, также называемое плечом рычага , измеряется между силой и точкой поворота. Подобно силе, крутящий момент является вектором и определяется амплитудой и направлением вращения.

Изображение: Момент затяжки на колесном болте

Представьте, что вы хотите затянуть / ослабить болты колеса.Нажатие или вытягивание рукоятки гаечного ключа, соединенного с гайкой или болтом, создает крутящий момент (вращающее усилие), который ослабляет или затягивает гайку или болт.

Крутящий момент Т [Нм] является произведением силы F [Н] и длины плеча рычага a [м] .

\ [\ bbox [# FFFF9D] {T = F \ cdot a} \]

Чтобы увеличить величину крутящего момента, мы можем либо увеличить силу, либо длину плеча рычага, либо и то, и другое.

Пример : Рассчитайте крутящий момент, полученный на болте, если рычаг гаечного ключа имеет значение 0.25 м и приложенная сила 100 Н (что примерно эквивалентно толкающей силе 10 кг )

\ [T = 100 \ cdot 0,25 = 25 \ text {Нм} \]

Тот же крутящий момент можно было бы получить, если бы плечо рычага было 1 м и усилие всего 25 Н .

Тот же принцип применяется к двигателям внутреннего сгорания. Крутящий момент на коленчатом валу создается силой, прикладываемой к шейке шатуна через шатун.

Изображение: Крутящий момент на коленчатом валу

Крутящий момент T будет создаваться на коленчатом валу на каждой шейке шатуна каждый раз, когда поршень находится в рабочем ходе.Плечо рычага a в данном случае имеет радиус кривошипа (смещение) .

Величина силы F зависит от давления сгорания внутри цилиндра. Чем выше давление в цилиндре, чем выше сила на коленчатом валу, тем выше выходной крутящий момент.

Изображение: функция расчета крутящего момента двигателя для давления в цилиндре

Длина плеча рычага влияет на общую балансировку двигателя . Слишком большое его увеличение может привести к дисбалансу двигателя, что приведет к увеличению усилий на шейках коленчатого вала.

Пример : Рассчитайте крутящий момент на коленчатом валу для двигателя со следующими параметрами:

Диаметр цилиндра, B [мм] 85
Давление в цилиндре, p [бар] 12
Смещение кривошипа, a [мм] 62

Сначала мы вычисляем площадь поршня (предполагая, что головка поршня плоская, а ее диаметр равен диаметру отверстия цилиндра):

\ [A_p = \ frac {\ pi B ^ 2} {4} = \ frac {\ pi \ cdot 0.2 \]

Во-вторых, мы рассчитаем силу, приложенную к поршню. Чтобы получить силу в Н, (Ньютон), мы будем использовать давление, преобразованное в Па (Паскаль).

\ [F = p \ cdot A_p = 120000 \ cdot 0,0056745 = 680.94021 \ text {N} \]

Предполагая, что вся сила в поршне передается на шатун, крутящий момент рассчитывается как:

\ [T = F \ cdot a = 680.94021 \ cdot 0.062 = 42.218293 \ text {Нм} \]

Стандартная единица измерения крутящего момента - Н · м (Ньютон-метр).В частности, в США единицей измерения крутящего момента двигателя является фунт-сила · фут (фут-фунт). Преобразование между Н · м и фунт-сила · фут :

\ [\ begin {split}
1 \ text {lbf} \ cdot \ text {ft} & = 1.355818 \ text {N} \ cdot \ text {m} \\
1 \ text {N} \ cdot \ text {m} & = 0.7375621 \ text {lbf} \ cdot \ text {ft}
\ end {split} \]

Для нашего конкретного примера крутящий момент в британских единицах (США):

\ [T = 42.218293 \ cdot 0.7375621 = 31.138615 \ text {lbf} \ cdot \ text {ft} \]

Крутящий момент T [N] также может быть выражен как функция среднее эффективное давление двигателя.

\ [T = \ frac {p_ {me} V_d} {2 \ pi n_r} \]

где:
p me [Па] - среднее эффективное давление
V d [m 3 ] - рабочий объем двигателя
n r [-] - количество оборотов коленчатого вала за полный цикл двигателя (для 4-тактного двигателя n r = 2 )

Определение мощности

В физике мощность - это работа, выполненная во времени, или, другими словами, скорость выполнения работы .В системах вращения мощность P [Вт], является произведением крутящего момента T [Нм] и угловой скорости ω [рад / с] .

\ [\ bbox [# FFFF9D] {P = T \ cdot \ omega} \]

Стандартная единица измерения мощности - Вт, (ватт) и скорости вращения - рад / с, (радиан в секунду) . Большинство производителей транспортных средств предоставляют мощность двигателя в л.с., (мощность торможения) и скорость вращения в об / мин, (оборотов в минуту).Поэтому мы будем использовать формулы преобразования как скорости вращения, так и мощности.

Чтобы преобразовать об / мин в рад / с , мы используем:

\ [\ omega \ text {[rad / s]} = N \ text {[rpm]} \ cdot \ frac {\ pi} { 30} \]

Чтобы преобразовать рад / с в об / мин , мы используем:

\ [N \ text {[rpm]} = \ omega \ text {[rad / s]} \ cdot \ frac {30 } {\ pi} \]

Мощность двигателя также может быть измерена в кВт вместо Вт для более компактного значения.Чтобы преобразовать кВт в л.с. и обратно, мы используем:

\ [\ begin {split}
P \ text {[bhp]} & = 1.36 \ cdot P \ text {[кВт]} \\
P \ text {[кВт]} & = \ frac {P \ text {[bhp]}} {1.36}
\ end {split} \]

В некоторых случаях вы можете найти л.с., (мощность в лошадиных силах) вместо л.с. как единица измерения мощности.

Имея скорость вращения, измеренную в об / мин и крутящий момент в Нм , формула для расчета мощности следующая:

\ [\ begin {split}
P \ text {[кВт]} & = \ frac {\ pi \ cdot N \ text {[rpm]} \ cdot T \ text {[Nm]}} {30 \ cdot 1000} \\
P \ text {[HP]} & = \ frac {1.36 \ cdot \ pi \ cdot N \ text {[rpm]} \ cdot T \ text {[Nm]}} {30 \ cdot 1000}
\ end {split} \]

Пример . Рассчитайте мощность двигателя как в кВт, , так и в л.с. , если крутящий момент двигателя составляет 150 Нм, и частота вращения двигателя 2800 об / мин .

\ [\ begin {split}
P & = \ frac {\ pi \ cdot 2800 \ cdot 150} {30 \ cdot 1000} = 44 \ text {kW} \\
P & = \ frac {1.36 \ cdot \ pi \ cdot 2800 \ cdot 150} {30 \ cdot 1000} = 59,8 \ text {HP}
\ end {split} \]

Динамометр двигателя

Скорость двигателя измеряется с помощью датчика на коленчатом валу (маховике).В идеале, чтобы рассчитать мощность, мы должны также измерить крутящий момент на коленчатом валу с помощью датчика. Технически это возможно, но не применяется в автомобильной промышленности. Из-за условий эксплуатации коленчатого вала (температуры, вибрации) измерение крутящего момента двигателя с помощью датчика не является надежным методом. Также довольно высока стоимость датчика крутящего момента. Поэтому крутящий момент двигателя измеряется во всем диапазоне скорости и нагрузки с помощью динамометра (испытательный стенд) и отображается (сохраняется) в блоке управления двигателем.

Изображение: Схема динамометрического стенда двигателя

Динамометр - это в основном тормоз (механический, гидравлический или электрический), который поглощает мощность, производимую двигателем. Самым используемым и лучшим типом динамометра является электрический динамометр . Фактически это электрическая машина , которая может работать как генератор или как двигатель . Изменяя крутящий момент нагрузки генератора, двигатель может быть переведен в любую рабочую точку (скорость и крутящий момент).Кроме того, при отключенном двигателе (без впрыска топлива) генератор может работать как электродвигатель для вращения двигателя. Таким образом можно измерить трение двигателя и потери крутящего момента насоса.

Для электрического динамометра ротор соединен с коленчатым валом. Связь между ротором и статором электромагнитная. Статор закреплен через плечо рычага на датчике нагрузки . Чтобы сбалансировать ротор, статор будет прижиматься к датчику нагрузки. Крутящий момент T рассчитывается путем умножения силы F , измеренной в датчике нагрузки, на длину плеча a рычага.

\ [T = F \ cdot a \]

Параметры двигателя: тормозной момент, тормозная мощность (л.с.) или удельный расход топлива при торможении (BSFC) содержат ключевое слово «тормоз», потому что для их измерения используется динамометр (тормоз). .

В результате динамометрического испытания двигателя получается карт крутящего момента (поверхности), которые дают значение крутящего момента двигателя при определенных оборотах двигателя и нагрузке (стационарные рабочие точки). Нагрузка двигателя эквивалентна положению педали акселератора.

Пример карты крутящего момента для бензинового двигателя с искровым зажиганием (SI) :

Двигатель
крутящий момент
[Нм]
Положение педали акселератора [%]
5 10 20 30 40 50 60 100
Двигатель
частота вращения
[об / мин]
45 90 107 109 110 111 114 116
1300 60 105 132 133 134 136 138 141
1800 35 89 133 141 1 42 144 145 149
2300 19 70 133 147 148 150 151 155
2800 3 55 133 153 159 161 163 165
3300 0 41 126 152 161 165 167 171
3800 0 33 116 150 160 167 170 175
4300 0 26 110 155 169 176 180 184
4800 9008 4 0 18 106 155 174 179 185 190
5300 0 12 96 147 167 175 181 187
5800 0 4 84 136 161 170 175 183
6300 0 72 120 145 153 159 171

Пример схемы мощности для бензинового двигателя с искровым зажиганием (SI) :

Двигатель
мощность
[ Л.с.]
Положение педали акселератора [%]
5 10 20 9 0084 30 40 50 60 100
Скорость двигателя

[об / мин]
800 5 12 13 13 13 13
1300 11 19 24 25 25 25 26 26
1800 9 23 34 36 36 37 37 38
2300 6 23 44 48 48 49 49 51
2800 1 22 53 61 63 64 65 66
3300 0 19 59 71 76 78 78 80
3800 0 18 63 81 87 90 92 95
4300 0 16 67 95 103 108 110 113
4800 0 12 72 106 119 122 126 130
5300 0 9 72 111 126 132 137 141
5800 0 90 084 3 69 112 133 140 145 151
6300 0 0 65 108 130 137 143 153

Электронный блок управления (ЕСМ) ДВС имеет карту крутящего момента, хранящуюся в памяти.Он вычисляет (интерполирует) функцию крутящего момента двигателя от текущих оборотов двигателя и нагрузки. В ECM нагрузка выражается как давление во впускном коллекторе для бензиновых двигателей (искровое зажигание, SI) и время впрыска или масса топлива для дизельных двигателей (воспламенение от сжатия, CI). Стратегия расчета крутящего момента двигателя имеет поправки на основе температуры и давления всасываемого воздуха.

График данных крутящего момента и мощности, функции частоты вращения и нагрузки двигателя дает следующие поверхности:

Изображение: Поверхность крутящего момента двигателя SI

Изображение: Поверхность мощности двигателя SI

Для лучшей интерпретации карт крутящего момента и мощности можно построить двухмерную линию крутящего момента для фиксированного значения положения педали акселератора.

Изображение: кривые крутящего момента двигателя SI

Изображение: кривые мощности двигателя SI

Крутящий момент и мощность двигателя при полной нагрузке

Как вы видели, крутящий момент и мощность Двигатель внутреннего сгорания зависит как от частоты вращения двигателя, так и от нагрузки. Обычно производители двигателей публикуют характеристики крутящего момента и кривых (кривые) при полной нагрузке (100% положение педали акселератора). Кривые крутящего момента и мощности при полной нагрузке подчеркивают максимальный крутящий момент и распределение мощности во всем диапазоне оборотов двигателя.

Изображение: параметры крутящего момента и мощности двигателя при полной нагрузке

Форма приведенных выше кривых крутящего момента и мощности не соответствует реальному двигателю, их целью является объяснение основных параметров. Тем не менее, формы соответствуют реальным характеристикам искрового зажигания (бензин), левого впрыска, атмосферного двигателя.

Частота вращения двигателя Н e [об / мин] характеризуется четырьмя основными моментами:

Н мин - минимальная стабильная частота вращения двигателя при полной нагрузке
Н Tmax - частота вращения двигателя при максимальном крутящем моменте двигателя
N Pmax - частота вращения двигателя при максимальной мощности двигателя; также называется номинальная частота вращения двигателя
N max - максимальная стабильная частота вращения двигателя

На минимальной частоте вращения двигатель должен работать плавно, без колебаний и остановок.Двигатель также должен обеспечивать работу на максимальной скорости без каких-либо повреждений конструкции.

крутящий момент двигателя при полной нагрузке кривая T e [Нм] характеризуется четырьмя точками:

T 0 - крутящий момент двигателя при минимальных оборотах двигателя
T max - максимальный двигатель крутящий момент (максимальный крутящий момент или номинальный крутящий момент )
T P - крутящий момент двигателя при максимальной мощности двигателя
T M - крутящий момент двигателя при максимальной частоте вращения двигателя

В зависимости от типа всасываемого воздуха (атмосферный или с турбонаддувом) максимальный крутящий момент может быть точечным или линейным.Для двигателей с турбонаддувом или наддувом максимальный крутящий момент может поддерживаться постоянным между двумя значениями частоты вращения двигателя.

Мощность двигателя при полной нагрузке кривая P e [л.с.] характеризуется четырьмя точками:

P 0 - мощность двигателя при минимальных оборотах двигателя
P max - максимальная мощность двигателя мощность (пиковая мощность или номинальная мощность )
P T - мощность двигателя при максимальном крутящем моменте двигателя
P M - мощность двигателя при максимальной частоте вращения

Область между минимальными оборотами двигателя N мин и максимальная частота вращения двигателя Н Tmax называется зоной нижнего конца крутящего момента.Чем выше крутящий момент в этой области, тем лучше возможности запуска / разгона автомобиля. Когда двигатель работает в этой области при полной нагрузке, если сопротивление дороги увеличивается, частота вращения двигателя будет уменьшаться, что приведет к падению крутящего момента двигателя и остановке двигателя . По этой причине эта область также называется областью нестабильного крутящего момента .

Область между максимальной частотой вращения двигателя N Tmax и максимальной частотой вращения двигателя N Pmax называется диапазоном мощности .Во время разгона автомобиля для достижения наилучших характеристик переключение передач (вверх) следует выполнять на максимальной мощности двигателя. В зависимости от передаточных чисел коробки передач после переключения на выбранной передаче частота вращения двигателя падает до максимального крутящего момента, что обеспечивает оптимальное ускорение. Переключение передач на максимальной мощности двигателя позволит поддерживать частоту вращения двигателя в пределах диапазона мощности.

Область между максимальной частотой вращения двигателя N Pmax и максимальной частотой вращения двигателя N max называется зоной верхнего конца крутящего момента.Более высокий крутящий момент приводит к более высокой выходной мощности, что означает более высокую максимальную скорость автомобиля и лучшее ускорение на высокой скорости.

Когда частота вращения двигателя поддерживается между максимальной частотой вращения двигателя N Tmax и максимальной частотой вращения двигателя N max , если сопротивление транспортного средства увеличивается, частота вращения двигателя упадет, а выходной крутящий момент увеличится, таким образом компенсация увеличения дорожной нагрузки. По этой причине эта область называется областью стабильного крутящего момента .

Ниже вы можете найти несколько примеров кривых крутящего момента и мощности при полной нагрузке для различных типов двигателей. Обратите внимание на форму кривых в зависимости от типа двигателя (с искровым зажиганием или с компрессионным зажиганием) и типа воздухозаборника (атмосферный или с турбонаддувом).

Крутящий момент и мощность двигателя Honda 2.0 при полной нагрузке

9008 7
Архитектура цилиндров 4-рядный

Изображение: Двигатель Honda 2.0 SI - кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1998
Впрыск топлива порт клапана
Воздухозаборник атмосферный
Выбор фаз газораспределения регулируемый
T макс. [Нм] 190
N Tmax [об / мин] 4500
4 3 макс. [Л.с.] 155
Н Pmax [об / мин] 6000
N макс. [об / мин] 6800

Saab 2.Крутящий момент и мощность двигателя 0T при полной нагрузке

Архитектура цилиндров 4 рядных

Изображение: Двигатель Saab 2.0T SI - кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1998
Впрыск топлива порт клапана
Воздухозаборник с турбонаддувом
Выбор фаз газораспределения фиксированный
T макс. [Нм] 265
N Tmax [об / мин] 2500
HP 35 [макс. ] 175
N Pmax [об / мин] 5500
N макс. [об / мин] 6300

Audi 2.0 Крутящий момент и мощность двигателя TFSI при полной нагрузке

9 0082
Архитектура цилиндров 4 рядных

Изображение: Двигатель Audi 2.0 TFSI SI - кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1994
Впрыск топлива прямой
Воздухозаборник с турбонаддувом
Выбор фаз газораспределения фиксированный
T макс. [Нм] 280
N Tmax [об / мин] 1800 - 5000
35 макс. [Л.с.] 200
Н Pmax [об / мин] 5100 - 6000
N max [об / мин] 6500

Toyota 2.0 Крутящий момент и мощность двигателя D-4D при полной нагрузке

Архитектура цилиндров 4 рядных

Изображение: Двигатель Toyota 2.0 CI - кривые крутящего момента и мощности при полной нагрузке

Топливо дизель (CI)
Объем двигателя [см 3 ] 1998
Впрыск топлива прямой
Воздухозаборник с турбонаддувом
Выбор фаз газораспределения фиксированный
T макс. [Нм] 300
N Tmax [об / мин] 2000 - 2800
P макс. [л.с.] 126
N Pmax [об / мин] 3600
N max [об / мин] 5200

Mercedes-Benz 1.8 Крутящий момент и мощность двигателя Kompressor при полной нагрузке

Архитектура цилиндров 4 рядных

Изображение: Двигатель Mercedes Benz 1.8 Kompressor SI - кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 1796
Впрыск топлива порт клапана
Воздухозаборник с наддувом
Синхронизация клапана фиксированная
T макс. [Нм] 230
N Tmax [об / мин] 2800 - 4600
35 P макс. Л.с.] 156
Н Pmax [об / мин] 5200 90 084
N макс. [об / мин] 6250

BMW 3.0 крутящий момент и мощность двигателя TwinTurbo при полной нагрузке

Архитектура цилиндров 6-рядный

Изображение: Двигатель BMW 3.0 TwinTurbo SI - кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 2979
Впрыск топлива прямой
Воздухозаборник двухступенчатый
с турбонаддувом82
Выбор фаз газораспределения переменный
T макс. [Нм] 400
N Tmax [об / мин] 1300 - 5000
4 P макс. [л.с.] 306
Н Pmax [об / мин] 580 0
N макс. [об / мин] 7000

Mazda 2.6 крутящий момент и мощность при полной нагрузке

Архитектура цилиндров 2 Ванкеля

Изображение: Двигатель Mazda 2.6 SI - кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 1308 (2616)
Впрыск топлива порт клапана
Воздухозаборник атмосферный
Клапан синхронизация фиксированная
T max [Нм] 211
N Tmax [об / мин] 5500

003 P max [л.с.

231
N Pmax [об / мин] 8200
Н макс. [об / мин] 9500

Porsche 3.6 крутящий момент и мощность двигателя при полной нагрузке

900 переменная
Архитектура цилиндров 6 плоских

Изображение: Двигатель Porsche 3.6 SI - кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 3600
Впрыск топлива порт клапана
Воздухозаборник атмосферный
ГРМ
T макс. [Нм] 405
N Tmax [об / мин] 5500
P max [л.с.] 54
N Pmax [об / мин] 7600
N 90 134 макс. [об / мин] 8400

Ключевые положения, которые следует учитывать в отношении мощности и крутящего момента двигателя:

Крутящий момент

Мощность

По любым вопросам или наблюдениям относительно этого руководства, пожалуйста, используйте форму комментариев ниже.

Не забывайте ставить лайки, делиться и подписываться!

.

Угловое движение - мощность и крутящий момент

Мощность и момент тела при угловом движении

Мощность вращающегося тела может быть выражена как

P = T ω

= T 2 π n об / с

= T π n об / мин /30 (1)

где

P = мощность (Вт)

T = крутящий момент или момент (Нм)

= угловая скорость (рад / с)

π = 3.14 ...

n об / с = оборотов в секунду (об / с, 1 / с)

n об / мин = оборотов в минуту (об / мин, 1 / мин)

Примечание! - объект, такой как электродвигатель, может иметь активный момент без вращения, но без вращения ( ω = 0 ) не вырабатывается энергия.

В имперских единицах

P = T n об / мин /5252 (1b)

где

P = мощность (л.с.)

T = крутящий момент (фут-фунт f )

Пример - момент, создаваемый вращающимся двигателем

Электродвигатель работает со скоростью 3600 об / мин с измеренной потребляемой мощностью 2000 Вт .Момент, создаваемый двигателем (без потерь), можно рассчитать, переставив (1) на

T = 30 P / (π n об / мин )

= 30 (2000 Вт) / (π ( 3600 об / мин))

= 5,3 Нм

Калькулятор моментов

P - мощность (Вт)

n м - обороты (об / мин)

Крутящий момент тела в угловом движении

T = I α (2)

где

I = момент инерции (кг · м 2 , фунт f фут · с 2 )

α = угловое ускорение (рад / с 2 )

.

Формула крутящего момента (момент инерции и угловое ускорение)

При вращательном движении крутящий момент требуется для создания углового ускорения объекта. Величина крутящего момента, необходимого для создания углового ускорения, зависит от распределения массы объекта. Момент инерции - это величина, описывающая распределение. Его можно найти путем интегрирования по массе всех частей объекта и расстоянию от них до центра вращения, но также можно найти моменты инерции для общих форм.Крутящий момент на данной оси является произведением момента инерции и углового ускорения. Единицы крутящего момента - ньютон-метры (Н ∙ м).

крутящий момент = (момент инерции) (угловое ускорение)

τ = Iα

τ = крутящий момент вокруг определенной оси (Н ∙ м)

I = момент инерции (кг ∙ м 2 )

α = угловое ускорение (радиан / с 2 )

Формула крутящего момента Вопросы:

1) Момент инерции твердого диска равен, где M - масса диска, а R - радиус.Каждое колесо игрушечной машинки имеет массу 0,100 кг и радиус 20,0 см. Если угловое ускорение колеса составляет 1,00 радиан / с 2 , каков крутящий момент?

Ответ: Крутящий момент можно найти с помощью формулы крутящего момента и момента инерции твердого диска. Крутящий момент:

τ = Iα

τ = 0,0020 Н ∙ м

Крутящий момент, прилагаемый к одному колесу, составляет 0,0020 Н ∙ м.

2) Момент инерции тонкого стержня, вращающегося на оси, проходящей через его центр, равен, где M - масса, а L - длина стержня.Предположим, что лопасть вертолета представляет собой тонкий стержень массой 150,0 кг и длиной 8,00 м. Какой крутящий момент требуется для достижения углового ускорения 18,00 радиан / с 2 ?

Ответ: Крутящий момент можно найти с помощью формулы крутящего момента и момента инерции тонкого стержня. Крутящий момент:

τ = Iα

τ = 14 400 Н ∙ м

Требуемый крутящий момент составляет 14 400 Н ∙ м.

.Электродвигатели

- мощность и крутящий момент в зависимости от скорости

Движущая сила электродвигателя составляет крутящий момент - не лошадиные силы.

Крутящий момент - это крутящая сила, которая заставляет двигатель работать, а крутящий момент активен от 0% до 100% рабочей скорости.

Мощность, производимая двигателем, зависит от скорости двигателя и составляет

Примечание ! - полный крутящий момент с нулевой скорости является большим преимуществом для электромобилей.

Для полного стола - повернуть экран!

900 1,5 126 9017 5 41 900 900 900 9017 9017 5 142 6 9 0175 210 9003
Мощность Скорость двигателя (об / мин)
3450 2000 1750 1000 500
Крутящий момент
л.с. кВт (фунт f дюйм)
(фунт f фут)
(Нм) (фунт f дюйм) (фунт) f фут) (Нм) (фунт f дюйм) (фунт фут фут) (Нм) (фунт на дюймов) (фунт на футов) (Нм) (фунт на дюймов) 90 042 (фунт на футов) (Нм)
1 0.75 18 1,5 2,1 32 2,6 3,6 36 3,0 4,1 63 5,3 7,1 126175 1,1 27 2,3 3,1 47 3,9 5,3 54 4,5 6,1 95 7.9 10,7 189 15,8 21,4
2 1,5 37 3,0 4,1 63 5,3 10,5 14,2 252 21,0 28,5
3 2,2 55 4,6 6,2 95 7.9 10,7 108 9,0 12 189 15,8 21,4 378 31,5 42,7
158 13,1 18 180 15 20 315 26,3 36 630 52,5 71
7.5 5,6 137 11 15 236 20 27 270 23 31 473 39 79176
10 7,5 183 15 21 315 26 36 360 30 41 630 142
15 11 274 23 31 473 39 53 540 45 61 61 158 214
20 15 365 30 630 53 71 720 60 81 1260 105 142 2521 210 9007 38 52 788 66 89 900 75 102 1576 131 178 3151 263 548 46 62 945 79 107 1080 90 122 1891 158 214 900 30 731 61 83 1260 105 1441 120 163 2521 210 285 5042 420 570
50 37 131 178 1801 150 204 3151 263 356 6302 525 712
1891 158 214 2161 180 244 3781 315 427 7563 630 145 2206 184 249 2521 285 4412 368 499 8823 735 997
80 60 1461 122 122 2881 240 326 5042 420 570 10084 840 1140
90 67 1644 1644 321 3241 270 366 5672 473 641 11344 945 1282
263 356 3601 300 407 6302 525 712 12605 1050 1425
125 93 2283 190 258 190 258 509 7878 657 891 15756 1313 1781
150 112 2740 228 450 611 9454 788 1069 18907 1576 2137
175 131 31976 131 31976 6302 525 712 1 1029 919 1247 22058 1838 2494
200 149 3654 304 3654 304 413 7205 413 7207 7205 814 12605 1050 1425 25210 2101 2850
225 168 4110 343 675 916 14180 1182 1603 28361 2363 3206
250 187 4567 750 1018 15756 90 176 1313 1781 31512 2626 3562
275 205 5024 419 568 86617 17332 1444 1959 34663 2889 3918
300 224 5480 457 620176 1221 18907 1576 2137 37814 3151 4275
350 261 6394 12175 261 1050 1425 22058 1838 2494 44117 3676 4987
400 298 7307 609 7307 609 826 1260175 25210 2101 2850 50419 4202 5699
450 336 8221 685 929 1832 28361 2363 3206 56722 4727 6412
550 410 10047 8375 1651 2239 34663 2889 3918 69326 5777 7837
600 448 10961 913 1239 913 1239 2443 37814 3151 4275 75629 6302 8549

Мощность электродвигателя, крутящий момент и крутящий момент 2 Расчетные

9000 Уравнения 9000 T дюйм фунт = P л.с. 63025 / n (1)

где

T дюйм = крутящий момент (фунт фунт f )

P л.с. = мощность, выдаваемая электродвигатель (л.с.)

n = оборот в минуту (об / мин)

Альтернативно

T фут-фунт = P л.с. 5252 / n (1b)

где

T фут-фунт 9130b6 = крутящий момент фунт-сила )

Крутящий момент в единицах СИ можно рассчитать как

T Нм = P W 9.549 / n (2)

где

T Нм = крутящий момент (Нм)

P W = мощность (Вт)

n = обороты в минуту (об / мин)

Электродвигатель - зависимость крутящего момента от мощности и скорости

мощность (кВт)

скорость (об / мин)

Электродвигатель - мощность от крутящего момента и скорости

крутящий момент (Нм)

скорость (об / мин)

Электродвигатель - Зависимость скоростиМощность и крутящий момент

мощность (кВт)

крутящий момент (Нм)

Пример - крутящий момент электродвигателя

крутящий момент, передаваемый электродвигателем мощностью 0,75 кВт (750 Вт) при число оборотов 2000 об / мин можно рассчитать как

T = ( 750 Вт ) 9,549 / (2000 об / мин)

= 3,6 (Нм)

Пример - Крутящий момент электродвигателя

Крутящий момент, передаваемый электродвигателем мощностью 100 л.с. при частоте вращения 1000 об / мин можно рассчитать как

T = (100 л.с.) 63025 / (1000 об / мин)

= 6303 (фунт f дюйм)

Для преобразования в фунт-сила-фут - разделите крутящий момент на 12 .

.

Формула крутящего момента (сила на расстоянии)

Формула крутящего момента (сила на расстоянии)

Вопросы по формуле крутящего момента:

1) Автомеханик прикладывает усилие 800 Н к гаечному ключу, чтобы ослабить болт. Она прикладывает силу перпендикулярно рычагу гаечного ключа. Расстояние от болта до руки - 0,40 м. Какова величина прилагаемого крутящего момента?

Ответ: Угол между моментным плечом (рычагом гаечного ключа) и силой равен 90 °, а sin 90 ° = 1.Крутящий момент:

Величина крутящего момента 320 Н ∙ м.

2) Анемометр - прибор для измерения скорости ветра. Он имеет несколько металлических чашек, установленных на горизонтальных стержнях, которые поворачивают центральный стержень. Ветер ловит одну из чашек перпендикулярно ее турнику. Ветер оказывает на чашу силу 70,0 Н на расстоянии 0,30 м от центральной оси. Какова величина крутящего момента, создаваемого ветром?

Ответ: Угол между рычагом момента (горизонтальной штангой) и силой равен 90 °, а sin 90 ° = 1.Крутящий момент:

Величина крутящего момента 21,0 Н ∙ м.

Формула крутящего момента (сила на расстоянии)

.

Все о мощности, крутящем моменте, скорости и ускорении.

Если и есть что-то старое, как сами автомобили, так это желание ехать быстрее. Производители (и тюнеры) постоянно стремятся достичь еще большей способности двигаться как можно быстрее. Так как же сделать машину быстрее и что на самом деле делает ее быстрее?

Крутящий момент против лошадиных сил:

Обычно большинство людей заботятся только о лошадиных силах (или киловаттах для тех из вас, кто живет в месте, где все имеет смысл), когда дело доходит до ускорения их машины.Однако крутящий момент так же важен, в некоторых случаях важнее , чем мощность. Так в чем же на самом деле разница между крутящим моментом и мощностью?

Проще говоря, крутящий момент - это сила вращения , исходящая от двигателя и трансмиссии для привода колес, а мощность - это скорость , с которой совершается эта сила вращения (также известная как работа) . Я мог бы провести по этому поводу целый инженерный урок, но я бы предпочел позволить Джейсону из Engineering Explained заниматься этим. Итак, когда ваша машина едет, на самом деле движется крутящий момент.Больший крутящий момент означает большее усилие, которое вам нужно либо для ускорения вашего автомобиля, либо для тяги груза, поскольку крутящий момент равен Силе x расстояние (также известный как фунт-фут или ньютон-метр). Мощность - это в основном то, насколько быстро вы можете продолжать развивать этот крутящий момент.

5 КБ

Простое объяснение крутящего момента. Уравнение мощности, обратите внимание, как F умножает на D крутящий момент.

Когда дело доходит до ускорения, на самом деле мощность не имеет большого значения. Напомним, что ускорение составляет:

Итак, если наша цель - максимальное ускорение, вы можете сделать это двумя способами: либо увеличить Силу (крутящий момент), прилагаемую двигателем и трансмиссией, либо уменьшить массу, которую двигатель должен перемещать (ваш автомобиль).Сила действительно относится только к скорости. Автомобиль с более высокой мощностью может развивать более высокие скорости и легче поддерживать их, поскольку двигатель может давать больше работы (крутящего момента) с большей скоростью.

Если вы хотите сравнить, насколько быстро две машины могут разогнаться, большинство людей используют соотношение мощности и веса. Однако мощность / вес на самом деле имеют значение только для того, насколько легко вам поддерживать скорость. Например, круизные лайнеры обладают огромным количеством лошадиных сил, иногда даже сотнями тысяч, но из-за большого веса и сопротивления они могут двигаться только с такой скоростью.
Крутящий момент / вес - это гораздо более точный способ сравнить способность автомобиля к ускорению, если предположить, что оба автомобиля имеют схожую конструкцию. Хотите ли вы высокой мощности / веса или крутящего момента / веса (почему не обоих?) Полностью зависит от ваших целей.

Если вы хотите более быстрое ускорение, вам понадобится больший крутящий момент. Так как же увеличить крутящий момент?

Как увеличить крутящий момент:

Крутящий момент можно увеличить одним из двух способов: подавать больше воздуха в двигатель или через трансмиссию.

Двигатель Воздух:
Ваш двигатель - это просто воздушный насос. Чем больше воздуха в него попадает, тем больше работы он может сделать. Единственный способ увеличить приток воздуха к двигателю - это увеличить поток воздуха или увеличить его объем.
Улучшенный воздушный поток, позволяя менее ограничивать поток холодного воздуха к двигателю, позволит вам иметь больше кислорода, доступного для сгорания. Важно, чтобы этот воздух был «прохладным», поскольку при понижении температуры газ становится плотнее, и вы можете поместить больше кислорода в тот же объем.
Ваши клапаны на двигателе также имеют значение, поскольку они контролируют количество поступающего воздуха. Размер клапана, количество клапанов, подъем клапана и продолжительность клапана - все это влияет на входящий воздух и, таким образом, на крутящий момент и лучший диапазон оборотов для крутящего момента.

Рабочий объем:
Рабочий объем определяет, насколько вы можете сжать воздух в двигателе, и чем больше вы можете сжимать, тем больше воздуха вы можете поместить в двигатель. Таким образом, большее перемещение приводит к большему крутящему моменту.
«Погодите, есть много автомобилей с низким рабочим объемом, у которых большой крутящий момент, поскольку они имеют турбонаддув», - можете сказать вы.
Что ж, я здесь, чтобы открыть вам небольшой секрет, принудительная индукция (турбонаддув и наддув) - это всего лишь искусственного смещения . Системы с принудительной индукцией сжимают воздух, когда ваши поршни сжимают воздух, но системы с принудительной индукцией допускают дополнительное сжатие до того, как сжимаются поршни. В безнаддувном двигателе максимальное сжатие воздуха на уровне моря составляет 1 атмосферу (атм), это максимум, на что он способен, если все в порядке. Более высокие возвышения с меньшим давлением воздуха уменьшат естественную компрессию двигателя и, следовательно, сделают его менее крутящим.
Чтобы добиться большей компрессии в двигателе без наддува, необходимо увеличить его рабочий объем. Двигатель 4,0 л может сжимать вдвое больше воздуха, чем двигатель 2,0 л, и (теоретически) будет иметь вдвое больший крутящий момент.
Однако магия наддува означает, что вам не нужно прибегать к более мощному двигателю. Если турбокомпрессор может сжимать воздух до 1 атм (он же 14,7 фунтов на квадратный дюйм или 1,01325 бар), вы просто удваиваете рабочий объем. 1 атм от способности двигателя всасывать воздух и 1 атм от принудительной индукции.Таким образом, 2,0-литровый двигатель с турбонаддувом теоретически теперь имеет такой же рабочий объем и крутящий момент, как 4,0-литровый. Однако это предполагает, что турбонаддув работает во всем диапазоне оборотов при максимальном усилении.

Также не забывайте, что увеличение диаметра отверстия и хода поршня - это еще один способ увеличения рабочего объема и, следовательно, крутящего момента.

Пиковый крутящий момент против крутящего момента «под кривой»:
Высокий крутящий момент - это хорошо, но если этот крутящий момент является пиковым (например, при быстром переходе от низкого крутящего момента к высокому в диапазоне оборотов), у вас может быть меньше выгоды.Более низкая, но пологая кривая крутящего момента, которая обеспечивает большее значение среднего крутящего момента во всем диапазоне оборотов, приведет к лучшему ускорению. Также будет намного легче управлять автомобилем, поскольку крутящий момент на колеса не появляется внезапно.

Это не колдовство Джереми Кларксон.

Трансмиссия:
Автоматическая или ручная, вся цель вашей трансмиссии - управлять крутящим моментом, исходящим от вашего двигателя, и регулировать скорость, с которой вы можете двигаться.Рассчитать передаваемый крутящий момент на колеса на самом деле довольно просто, если предположить, что система работает без потерь (то есть без трения). Допустим, мой двигатель может обеспечить крутящий момент 100 фунт-фут. На первой передаче у меня передаточное число 3: 1, а моя главная передача (дифференциал) - 2,75: 1. Какой крутящий момент идет на колеса? Ну, это простое умножение:
100 x 3 x 2,75 = 825 фунт-фут крутящего момента
В реальной жизни вы умножили бы это на коэффициент трения (обычно 0,85, предполагая потери на трение 15%), чтобы найти крутящий момент, идущий на колеса, а затем, если есть два ведущих колеса с открытым дифференциалом (каждое колесо получает половину крутящего момента), вы умножите это число на половину.

Машины тяжелые, и разогнать их с мертвой точки - непростая задача. Вот почему у нас есть трансмиссии, чтобы увеличить крутящий момент двигателя настолько, чтобы мы могли перемещать наши машины. Однако шестерни могут двигаться только так быстро, а ваш двигатель может только так высоко, поэтому нам нужно несколько передач, чтобы обеспечить более высокие скорости. На более низких передачах передаточное число пониженной передачи, например 3: 1, означает, что у вас будет больший крутящий момент (и, следовательно, большее ускорение), но более низкая максимальная скорость, поскольку двигатель вращается выше, чем колеса.Прямой привод с соотношением 1: 1 означает, что ваш двигатель будет обеспечивать крутящий момент, передаваемый на задний дифференциал, и ваши колеса будут вращаться с той же скоростью, что и двигатель. Более высокие передачи имеют передаточное число повышающей передачи, например 0,8: 1, что означает, что у вас меньше крутящего момента, передаваемого на колеса, но вы можете двигаться быстрее, поскольку колеса могут вращаться выше, чем двигатель. Если бы вы попытались завести машину на 4-й передаче (обычно 1: 1), у вас не было бы механического преимущества, обеспечиваемого регулированием крутящего момента, и, следовательно, ваш двигатель заглох бы, поскольку он не может толкать достаточно сильно.При замедлении мы переключаемся на пониженную передачу, чтобы ограничить скорость движения автомобиля (торможение двигателем), а также иметь большой потенциал крутящего момента для ускорения.

Некоторые автомобили, такие как новая MX-5 Miata, имеют ОЧЕНЬ больших передаточных чисел первой передачи (5,087: 1) для компенсации недостаточного крутящего момента двигателям, что является одной из причин, по которой новая Miata ускоряется так быстро (кроме своей легкий). Американские маслкары с двигателем V8 обычно имеют меньшее передаточное число первой передачи (у моего Камаро 2,667: 1), потому что двигатель уже обеспечивает достаточный крутящий момент, а шины дороги.Таким образом, ваша трансмиссия и передаточное число главной передачи могут иметь такое же значение для ускорения, как и выходной крутящий момент двигателя.

Они что-то делают.

Мощность

Вот где в игру вступает сила. Будь то лошадиные силы, киловатты или эта странная немецкая единица лошадиных сил, мощность имеет значение для чистой скорости. Torque разгоняет вас, а мощность удерживает вас. Чем выше мощность, тем выше скорость, и это то, что мы хотим от нашего гоночного автомобиля. Максимальная скорость вашего автомобиля ограничена как его весом (и вашим весом, жирным), так и силой сопротивления, создаваемой воздухом и шинами. В конце концов вы достигнете точки, когда мощность, которую обеспечивает ваш двигатель, больше не сможет преодолеть силы сопротивления, и вы не сможете двигаться быстрее. Помните, что сопротивление воздуха увеличивается экспоненциально со скоростью, поэтому при движении на 200 км / ч сопротивление в в 4 раза больше, чем при движении на 100 км / ч, и, следовательно, вам потребуется в 4 раза больше лошадиных сил (а затем немного для сопротивления шин ).Как я уже говорил о круизных лайнерах, они могут иметь тысячи лошадиных сил, но сила их собственного веса и трение воды, через которую они проходят, означают, что они могут двигаться только на жилых скоростях для автомобилей.

Итак, как нам получить мощность MOAR ?
(1.) За счет большего крутящего момента, о чем я уже говорил выше.
(2.) Позволяя двигателю работать выше.

Обороты двигателя:
Вы когда-нибудь замечали, что двигатели Honda не только имеют высокую частоту вращения, но и обеспечивают приличную мощность для своего небольшого рабочего объема? Это не ошибка, обороты двигателя во многом зависят от того, сколько мощности вы можете получить.И, не вдаваясь в подробности преобразования угловой скорости и тому подобного, уравнения для мощности следующие:

В имперских единицах В полезных единицах.

Обратите внимание на некоторые особенности этих уравнений:
(1.) Мощность прямо пропорциональна крутящему моменту и оборотам двигателя. Чем больше крутящий момент или больше оборотов в минуту, тем больше у вас будет мощности.
(2.) В обоих уравнениях, в метрической или британской системе, внизу делится константа. Вы найдете эту константу, выполнив некоторые преобразования, но важно то, что частота вращения равна константе (5252 об / мин в британской системе, 9549 об / мин в метрической системе), мощность будет точно равна крутящему моменту, а линии для крутящего момента и мощности на динамометрическом стенде график там пересечется.Обычно мы видим это только на графике в британской системе мер, поскольку большинство двигателей не развивают скорость 9549 об / мин.

Stock LS1 Engine Dyno график. Обратите внимание, что при 5252 об / мин крутящий момент и мощность совпадают.

Когда важна мощность? Как мне получить двигатель с более высокими оборотами?
Нам, автолюбителям, очевидно, нравится больше мощности, потому что мы можем ехать быстрее.Однако когда же power действительно нужен ? Если у вас есть пригородный автомобиль, на котором почти никогда не будет высоких скоростей, то в мощности действительно нет нужды. Высокая мощность полезна только на высоких скоростях, когда автомобиль сильно сопротивляется.

Трековые и гоночные автомобили известны своими высокооборотистыми двигателями и большой мощностью. В Формуле 1 двигатели имеют малый рабочий объем и, несмотря на принудительную индукцию, создают очень небольшой крутящий момент, всего около 215 фунт-футов (290 Н-м). Однако эти двигатели достигают чудовищно высоких оборотов, иногда до 20 000 об / мин, и, таким образом, могут развивать мощность более 800 л.с. (600 кВт).Почему у автомобилей Формулы 1 нет крутящего момента? По правде говоря, поскольку они так мало весят, что все еще могут быстро разгоняться, и цель Формулы 1 состоит в том, чтобы ускориться на , а не на . Вы хотите постоянно поддерживать максимально возможную максимальную скорость, поэтому автомобили Формулы 1 предназначены для поддержания высоких скоростей и, следовательно, на высоких оборотах, на которых сосредоточена вся сила. Вам действительно нужен крутящий момент для быстрого ускорения после замедления перед поворотом, но, поскольку автомобили Формулы 1 проходят повороты на максимальной скорости большинства автомобилей, им не нужно много.

Гоночные спортивные автомобили, такие как Honda S2000, новый Shelby GT350R и E92 M3, считаются «не имеющими» крутящего момента для своего класса. Но, как и болидам Формулы 1, им на самом деле не требуется крутящего момента, они предназначены для работы на очень высоких оборотах и ​​очень высоких скоростях, как на треке.

Чтобы получить двигатель с более высокими оборотами, вам нужно несколько вещей:
(1.) Легкая конструкция поршня, клапана, коленчатого вала и т. Д., Чтобы иметь меньшую возвратно-поступательную массу, препятствующую более высоким скоростям поршня.Мотоциклетные двигатели, в частности, имеют небольшие и, следовательно, легкие компоненты двигателя, что позволяет им развивать очень высокие обороты.
(2.) Хорошая смазка маслом, так как более высокие обороты двигателя требуют большей смазки.
(3.) Конструкция с верхним распределительным валом, поскольку в конструкции толкателя используются более тяжелые пружины и, таким образом, ограничиваются максимальные обороты, прежде чем произойдет смещение клапана. Кроме того, конструкция OHC позволяет использовать более высокие скорости распределительного вала, поскольку используется несколько распределительных валов, а не один.
(4.) Хорошие характеристики охлаждения и обдува, так как двигателю требуется быстрый воздух, и он будет работать очень горячо.
(5.) Высокое соотношение диаметр цилиндра / ход поршня. Глубокие ходы позволяют увеличить сжатие и, следовательно, больший крутящий момент, но мелкие ходы означают, что поршень должен двигаться меньше и, таким образом, может получить более высокие скорости поршня. Двигателям с высокой частотой вращения требуется высокая скорость поршня. Обратите внимание на кривошип старого двигателя Формулы 1, который я разместил ниже, насколько короткие ходы.

Ну вот и все от меня! Не стесняйтесь размещать любые комментарии, вопросы, предложения и т. Д.внизу!

.

Смотрите также