RU (495) 989 48 46
Пленка на бампер

АНТИГРАВИЙНАЯ ЗАЩИТА БАМПЕРА

 

Модуль эра глонасс


Блок 75. Модуль аварийного вызова (J949). Эра-Глонасс — Skoda Rapid, 1.6 л., 2017 года на DRIVE2

Продолжаю исследовать свой автомобиль. Добрался до 75 блока.
И так, вы купили новый автомобиль 17 м.г. и у вас установлена система аварийной связи "Эра-Глонасс".
Плохо это или хорошо — я рассуждать не буду. Сам считаю, что раз система установлена — пусть работает.
Что же это такое и зачем оно нужно?
Читаем мануал:
Система аварийного вызова (далее просто система) в случае ДТП с раскрытием подушки безопасности автоматически устанавливает соединение по номеру аварийного вызова. Номер аварийного вызова можно также набрать вручную.
После соединения производится коммуникация со службой аварийного вызова через встроенные в автомобиль динамик и микрофон. Если голосовая коммуникация невозможна (например, вследствие ранения), то существует возможность установления импровизированной коммуникации с помощью так называемых тонов DTMF — нажатиями на клавишу аварийного вызова.

В нише под климатом расположился динамик этого устройства, а под передним пассажирским — блок и аккумулятор для обеспечения бесперебойного соединения.
Простое отключение проводов от блока приводит к периодическому появлению на панели приборов о неисправности блока. Отключение "Эра-Глонасс" на Jetta
Теперь каснемся технической стороны вопроса — можно ли её настроить|отключить ?

Что выдает нам ВАСЯ Версия 17.2.0 на этот блок:
Адрес 75: Модуль аварийного вызова (J949) Label: Не найден
Part No SW: 3Q0 035 284 HW: 3Q0 035 284
Компонент: OCULowMQBLGE h33 0577
Ревизия: -------- Серийный номер: 0
Кодировка: 035301016916120D0000000040456003806608
Мастерская #: WSC 01530 935 00200
ASAM Dataset: EV_OCULowMQBLGE 003042
ROD: EV_OCULowMQB.rod

Лейбл не найден, значит подсказок в кодировании блока мы не увидим.
Смотрим каналы адаптаций:

IDE00001-Производственный режим, 00 00 00
IDE00761-MAS08397-Время работы после отключения-Долгосрочный запас энергии, 1 mAh
IDE00761-MAS08398-Время работы после отключения-Краткосрочный запас энергии, 1 mAh
IDE00761-MAS08399-Время работы после отключения-Время ожидания от режима Sleep до режима Standby, 5 min
IDE00761-MAS08400-Время работы после отключения-Время ожидания от режима Standby до режима Stop, 336 H
IDE00761-MAS08950-Время работы после отключения-Интервал для циклического режима останова в режиме готовности, 0 min
IDE00761-MAS08951-Время работы после отключения-Интервал для циклического режима ожидания в режиме готовности, 0 min
IDE00761-MAS08952-Время работы после отключения-Интервал для режима готовности, 0 d
IDE00761-MAS08953-Время работы после отключения-Время цикла после режима готовности, 0 H
IDE00761-MAS08954-Время работы после отключения-Установление связи после включения питания клеммы 15, Да
IDE00761-MAS08955-Время работы после отключения-Интервал для установления связи после включения питания кл. 15,15 min
IDE00766-Задержка: опорный канал, 0 ms
IDE00769-Номер 1 для информационного вызова,
IDE00770-Номер 1 для вызова техпомощи,
IDE02067-Статус антенны телефона, автоматически
IDE02330-Номер 2 для информационного вызова,
IDE02331-Номер 2 для вызова техпомощи,
IDE02332-Отключить производственный режим, 0
IDE03481-Номер аварийного вызова, +4953170222603
IDE04307-MAS00688-Автомобиль: список функций BAP-Многофункциональный дисплей, не активир.
IDE04307-MAS02957-Автомобиль: список функций BAP-Время, не активир.
IDE04307-MAS06654-Автомобиль: список функций BAP-Устройство управления зарядкой, не активир.
IDE07699-Оператор мобильной сети, iot.tm.vwg-connect.eu
IDE09244-Вместимость топливного бака, 0 l
IDE11138-Сертификат, VzT_NAR
MAS07467-Предупреждение о превышении скорости: минимальная скорость, 0 km/h
MAS08170-Профиль пользователя: имя,
MAS08171-Профиль пользователя: пароль,
MAS08172-Мобильные онлайн-службы: первое имя хоста, er-cgw-ca0d-mbbservices.audi-connect.de/mbb/vehicles/v1_cai/
MAS08173-Мобильные онлайн-службы: второе имя хоста, er-cgw-ca0d-mbbservices.audi-connect.de/mbb/vehicles/v1_cai/
MAS08174-Параметр возврата: DNS-сервер,
MAS08175-IDE02634-Мобильные онлайн-службы: порог активации-Время блокировки при деактивации, 0 min
MAS08175-MAS07123-Мобильные онлайн-службы: порог активации-Пробег для активации, 0 km
MAS08176-Тестовый номер для экстренного вызова,
MAS08981-ENG101574-Характеристика яркости световой индикации работы: красной-X1,0
MAS08982-ENG101574-Характеристика яркости световой индикации работы: зелёной-X1,0
MAS08983-Коэффициент яркости световой индикации работы: красной, 60 %
MAS08984-Коэффициент яркости световой индикации работы: зелёной, 40 %
MAS09650-Пороговое значение для распознавания движения а/м, 5 km/h
ENG123200-Driving_Follow_Up_Time, 5 min
ENG123187-MAS01424-Geofencing_Area_First_Radius-Максимальное значение, 4294967295 m
ENG123187-MAS01425-Geofencing_Area_First_Radius-Минимальное значение, 1 m
ENG123190-MAS01424-Geofencing_Area_Highth-Максимальное значение, 4294967295 m
ENG123190-MAS01425-Geofencing_Area_Highth-Минимальное значение, 1 m
ENG123192-MAS01424-Geofencing_Area_Latitude-Максимальное значение, +2.147.483.648
ENG123192-MAS01425-Geofencing_Area_Latitude-Минимальное значение, -2.147.483.648
ENG123191-MAS01424-Geofencing_Area_Longitude-Максимальное значение, +2.147.483.648
ENG123191-MAS01425-Geofencing_Area_Longitude-Минимальное значение, -2.147.483.648
ENG123188-MAS01424-Geofencing_Area_Second_Radius-Максимальное значение, 4294967295 m
ENG123188-MAS01425-Geofencing_Area_Second_Radius-Минимальное значение, 1 m
ENG123189-MAS01424-Geofencing_Area_Width-Максимальное значение, 4294967295 m
ENG123189-MAS01425-Geofencing_Area_Width-Минимальное значение, 1 m
ENG123186-ENG123304-Manual_Emergency_Call-Radio_On_Trigger, выкл.
ENG123186-ENG123305-Manual_Emergency_Call-Vehicle_Termination, выкл.
ENG125481-Number_Of_Navigation_Destinations, 20
ENG123194-ENG123349-Online_Services_Communication_Protocol-APN_Auth_Type, PAP_CHAP
ENG123194-ENG123350-Online_Services_Communication_Protocol-GSM_Automatic_Operator, автоматически
ENG123194-ENG123354-Online_Services_Communication_Protocol-Keep_Connection_Alive_If_Event_Expected_Within, 10 min
ENG123194-ENG123356-Online_Services_Communication_Protocol-PDP_Grace_Time, 120 s
ENG123194-ENG123351-Online_Services_Communication_Protocol-PDP_Type, IPv4
ENG123194-ENG123352-Online_Services_Communication_Protocol-TCP_Max_Receive_Window, 65535 B
ENG123194-ENG123353-Online_Services_Communication_Protocol-TCP_Max_Transmit_Window, 65535 B
ENG123194-ENG123355-Online_Services_Communication_Protocol-TCPMS, 532 B
ENG123196-ENG123362-Online_Services_Data_Roaming-Core_Service_Management, активир.
ENG123196-ENG125484-Online_Services_Data_Roaming-Core_Service_Telephony, активир.
ENG123196-ENG123286-Online_Services_Data_Roaming-Geofencing, активир.
ENG123196-ENG125485-Online_Services_Data_Roaming-JobMechanism, активир.
ENG123196-ENG123288-Online_Services_Data_Roaming-POI_Address_Import, активир.
ENG123196-ENG123215-Online_Services_Data_Roaming-Remote_Battery_Charging_M

www.drive2.ru

Эра, когда сложно потеряться / НПП ИТЭЛМА corporate blog / Habr

Как все-таки изменился мир. Вы помните замечательный в своей лиричности роман Антуана де Сент-Экзюпери “Ночной полет”? По сюжету почтовый самолет из-за циклона потерялся в пространстве, и в финале не ясно, разбился он или сумел совершить вынужденную посадку, и где это произошло. Сейчас подрастает поколение, которое будет удивляться самой возможности заблудиться, потому что навигаторы окружают их всю жизнь. И ситуация “где-то кто-то попал в беду, а об этом никто не знает” постепенно тоже исчезает. Катастрофа самолета будет очень быстро зафиксирована по множеству каналов. Предусмотрительный турист возьмет с собой устройство размером со смартфон и сможет позвать на помощь в случае проблем. А в автомобилях внедряются системы, которые способны автоматически распознать аварию и вызвать спасателей самостоятельно, даже если водитель и пассажиры не в состоянии это сделать.


Спутник ГЛОНАСС-К в павильоне “Космос” ВДНХ

Меньше чем через десять лет после событий “Ночного полета” на самолетах стали все чаще появляться радиокомпасы — антенна в виде кольца позволяла узнать направление на источник радиосигнала — специальную станцию или даже обычную радиовещательную.


Lockheed Electra, сверху отлично видна антенна радиокомпаса в виде кольца, фото Christian Bramkapmp/aitliners.net

Отказ техники или недостаточная квалификация для работы с оборудованием могли стать факторами такого же драматического, как и в “Ночном полете”, исчезновения известной летчицы Амелии Эрхарт — на острове Хауленд, промежуточной цели кругосветного перелета, слышали ее самолет и принимали радиосообщения о попытках найти атолл и заканчивающемся топливе. Останки Амелии Эркхарт, штурмана Фредерика Нунана и самолета не найдены до сих пор.

У антенны в виде кольца было еще и неприятное свойство — она показывала направление на источник сигнала, но не могла сказать, приближается самолет к нему или, наоборот, удаляется. Из-за этого во время Второй мировой войны погиб весь экипаж бомбардировщика B-24 “Lady Be Good” — они пролетели радиомаяк и удалились в пустыню. Когда у самолета кончилось топливо, они выпрыгнули с парашютом и попытались дойти до базы, не зная, что до нее семь сотен километров. По злой иронии судьбы самолет спланировал и совершил сравнительно мягкую посадку на песок. Спустя пятнадцать лет его нашли в пустыне. Радиостанция, по которой можно было бы позвать на помощь, осталась исправна.


Бомбардировщик B-24, кольцо антенны в черном каплеобразном обтекателе наверху

Но в целом радиокомпас оказался очень полезным устройством — можно было лететь по воздушным коридорам между радиомаяками, а если в зоне слышимости было несколько маяков, то можно было с неплохой точностью определять свое положение — пересечение пеленгов (направлений на радиомаяк) от обозначенных на карте передатчиков дает точку, в которой находится самолет. Несмотря на все достижения спутниковой навигации, радиомаяки используются в самолетовождении до сих пор.


Радионавигационная карта района вокруг Санкт-Петербурга, деревняиваново.рф

Фиксированные коридоры над стационарными маяками прекрасно подходят для гражданской авиации, но военным придется действовать над вражеской территорией, где противник не будет помогать с радиомаяками, и цель для бомбардировщиков каждый день может меняться. Уже в начале Второй мировой войны немцы использовали все более сложные системы радионавигации для того, чтобы наводить свои бомбардировщики на Лондон.


Система Knickebein, бомбардировщики летят по одному лучу и сбрасывают бомбы в момент пересечения второго, иллюстрация Dahnielson/wikimedia.org

Англичане отвечали радиопротиводействием, нарушая нормальную работу систем своими сигналами. Отдельная ирония заключается в том, что возглавлявший эту борьбу Реджинальд Виктор Джонс обожал розыгрыши и наверняка наслаждался тем, что получил ресурсы целой страны, чтобы обманывать немецких пилотов. В итоге Люфтваффе затроллили радиоэлектронной борьбой настолько, что они потеряли всякую веру в системы радионаведения для бомбардировщиков.

После войны в гражданской авиации для небольших дальностей стандартом стала система VOR/DME, позволяющая определять и расстояние, и направление на радиомаяк. По аналогичному принципу работают и военные системы — западная TACAN и советская/российская РСБН. Передатчик на самолете отправляет запрос, который ретранслируется наземной станцией. По времени задержки ответа определяется расстояние между самолетом и станцией. Для определения направления на радиомаяк используются другие антенны: одна вращается, и ее сигнал обегает горизонт по кругу. Другая испускает всенаправленный сигнал в момент, когда первая антенна излучает в направлении на север. По разнице времени между приемом первого и второго сигналов на самолете можно определить, с какой стороны он находится относительно станции.


Антенна, совмещающая VOR/DME и TACAN, источник

Для дальних расстояний в системах OMEGA, LORAN, “Чайка” и РСДН использовался другой принцип. Допустим, есть три радиопередатчика на большом расстоянии друг от друга, синхронно испускающие сигнал. Из-за того, что скорость света конечна, сигналы достигнут самолета не одновременно. На самолете не знают расстояния ни до одной станции, но знают разницу во времени получения сигнала и, следовательно, разницу расстояний до станций. Знание о разнице расстояний между двумя станциями дает гиперболу. Три станции позволяют построить две гиперболы, пересечение которых дает две возможные точки, в которых может находиться самолет. Например, если мы знаем, что до Москвы на 480 км ближе, чем до Питера, то можем находиться как в Днепре (бывший Днепропетровск), так и в Уфе. А если до Москвы нам на 50 км дальше, чем до Омска, то мы можем быть в Уфе или Перми. Совмещение условий даст Уфу, из которой я пишу этот текст.


Иллюстрация Cosmia Nebula/wikimedia.org

Этот принцип называется “гиперболическая навигация” и был впервые использован в английской системе Gee для наведения уже британских бомбардировщиков на немецкие города. Главной сложностью является синхронизация наземных передатчиков, удаленных на огромные расстояния, но с появлением атомных часов задача была в целом решена в 1960-х. Для обеспечения работы на больших расстояниях использовались длинные волны, поэтому антенны систем были очень высокими.


Антенна системы OMEGA в Японии, когда-то самое высокое сооружение в стране, фото министерства земли, инфраструктуры, транспорта и туризма Японии/wikimedia.org

Начало космической эры вызвало интерес и ко спутниковой навигации. Сотрудники лаборатории прикладной физики университета Джона Хопкинса Уильям Гайр и Джордж Вайфенбах, принимая сигналы первого спутника, обнаружили, что могут рассчитать его орбиту, измеряя доплеровский сдвиг его сигнала. Эффект Доплера — изменение частоты сигнала от движущегося источника — когда спутник приближался к лаборатории, она повышалась, когда удалялся — понижалась.

Зная орбиту спутника можно было решить обратную задачу — определить свое положение по доплеровскому сдвигу сигнала спутника. Так родилась навигационная система Transit. Первый спутник попытались вывести на орбиту в 1959 (неудачно), второй запустили в апреле 1960 и в том же году успешно провели первые тесты. Систему ввели в эксплуатацию в 1964.


Спутник Transit 5-А в Национальном музее воздухоплавания и астронавтики США

Пять спутников в пяти плоскостях на полярных орбитах высотой 1100 км давали глобальное покрытие. Обычно в космосе находилось десять спутников, по одному запасному на каждую плоскость. Задача определения своего положения была нетривиальной, требовала большого количества математических расчетов и для большей точности требовала неподвижности носителя. Например, для американских подводных лодок пришлось разрабатывать специальный компьютер AN/UYK-1, герметизированный и выполненный в таком форм-факторе, чтобы его можно было протащить в люк.


Реклама компьютера от производителя

Поскольку орбита спутника со временем менялась, он передавал не только текущее время, но и элементы своей орбиты, которые дважды в день загружались со станций связи. Наземные станции около полюсов, зная свое положение, постоянно измеряли орбиты спутников и отправляли на них параметры орбит, которые затем использовались для решения обратной задачи у пользователей системы.

Но все сложности окупались приобретенными возможностями — подводная лодка выдвигала антенну всего на две минуты, ловила сигналы спутника и могла определить свое местоположение с точностью до 100 метров. Вскоре систему Transit сделали доступной для гражданского применения, и она не только помогла многим морякам, но и позволила решить довольно необычные задачи, так, например, усреднив множество измерений, была скорректирована высота горы Эверест.

В СССР была создана навигационно-связная система “Циклон” с гражданским вариантом “Цикада”, работавшие по аналогичному принципу и состоящие из 6 спутников. Transit прекратил работу в 1996, последний спутник системы “Циклон” отправился на орбиту в 2010.

Конечно же, Transit и аналоги не обошлись без недостатков — всего пять спутников означало, что в районе экватора появления спутника над горизонтом приходилось ждать несколько часов, в средних широтах ожидание уменьшалось до 1-2 часов. Да и точность в 100 метров быстро захотелось улучшить. Уже в 1973 году в США начали проект новой навигационной системы GPS, первый прототип которой отправился на орбиту в 1978 году. Новая система использовала модификацию уже известного вам подхода.

Помните гиперболическую навигацию? GPS и аналоги реализуют тот же самый принцип. Все спутники транслируют точное время и параметры своей орбиты. Из-за того, что скорость света конечна, метки времени приходят к пользователю не одновременно. У пользователя нет синхронизированных со спутниками атомных часов, поэтому он знает только разницу между показаниями, но этого достаточно. Сигнал от трех спутников позволяет построить в пространстве два гиперболоида, пересечение которых даст гиперболу, которая коснется поверхности земного шара в двух точках, одна будет правильным местоположением, а вторая — настолько неверным, что ее будет легко отбросить.


Иллюстрация Мюнхенского технического университета

Если добавить четвертый спутник, то три гиперболоида пересекутся в одной точке и позволят определить еще и высоту над поверхностью. А каждый дополнительный спутник даст новые гиперболоиды, которые будут повышать точность. 24 спутника в трех плоскостях обеспечивают круглосуточную доступность системы.

По аналогичному принципу работают и другие современные системы навигации: российская ГЛОНАСС, европейская Galileo. У китайской «Бэйдоу» тот же принцип, но спутники расположены на орбитах разной высоты. И самая драматическая история, без сомнения, у российской ГЛОНАСС.

Разработка системы была начата в 1976 году, и первый аппарат отправился на орбиту в 1982. Сначала запускали небольшие серии — 10, 9, 12 спутников, а с 1988 года началось полноценное развертывание группировки большой серией, в которой произвели 56 спутников.


«Новости Космонавтики», 1999, №2

В начале 90-х 12 работающих спутников уже позволяли ограниченно использовать систему, а полное развертывание было закончено в 1995 году. Увы, в условиях экономических проблем группировка начала деградировать. Сравнительно небольшой срок жизни аппаратов и редкие запуски — после 1995 года было по одному пуску с тремя спутниками в 1998 и 2000 годах, привели к тому, что в 2001 году осталось всего 6 работоспособных аппаратов. Но с начала нулевых началось возрождение группировки. В 2003 году на орбиту отправился первый аппарат второго поколения, “ГЛОНАСС-М”, самым важным отличием которого стал увеличенный срок существования.


«ГЛОНАСС-М», фото Bin im Garten/wikimedia.org

Примененные технические решения оказались удачными, и сегодня самые старые из работающих спутники были запущены в 2007 году и превзошли гарантийный срок работы в два раза. Но сегодня перед созвездием стоит новый вызов. Изначально планировалось, что на смену второму поколению придет третье, “ГЛОНАСС-К”, которое перейдет на негерметичную платформу, обещающую еще большую долговечность. Но спутники использовали импортные компоненты, которые стали недоступны после осложнения политической ситуации в 2014 году. И в итоге было принято решение перейти на модифицированный тип, “ГЛОНАСС-К2”, использующий отечественные компоненты. Сейчас созвездие проходит драматичный этап, когда выбывающие из строя спутники второго поколения должны будут заменяться на уже произведенные и находящиеся на хранении, и параллельно развертывается производство новой модификации.


«ГЛОНАСС-К2», изображение USSR BOY/wikimedia.org

Пока что дела идут неплохо — запас “ГЛОНАСС-М” почти закончился — предпоследний аппарат отправится на орбиту в марте, последний по необходимости, скорее всего в этом году. “ГЛОНАСС-К” есть в запасе 9 штук, из которых один должен полететь в мае. А первый “-К2” может быть запущен уже в 2021 году.

Для гражданских пользователей даже худшие сценарии не несут никаких проблем — четыре глобальные навигационные системы означают, что навигаторы всегда будут видеть спутники и иметь возможность определять свое положение. И не только, навигационные системы могут помогать в самых разных случаях. В Европе с 2018 и РФ с 2015 для новых автомобилей обязательна установка системы, распознающей аварию и автоматически передающей вызов в экстренные службы — eCall и ЭРА-ГЛОНАСС.

Обе системы совместимы и работают по одному принципу: датчики в автомобиле фиксируют факт аварии — раскрытие подушек безопасности, деформацию кузова и т.п., определяют степень аварии и координаты происшествия по спутниковым навигационным системам и отправляют сообщение в службы спасения через сети сотовой связи. По информации на конец 2019 года в России уже больше 4,6 миллионов автомобилей оснащены «ЭРА-ГЛОНАСС», за год зафиксировано примерно 36 тысяч вызовов, из них 17 тысяч в автоматическом режиме. По подсчетам специалистов система спасает в год 3-4 тысячи человек.

Вот так выглядит устройство «ЭРА-ГЛОНАСС» производства НПП ИТЭЛМА:

Более 30% всех автомобилей России оборудованы устройствами, собранными в ИТЭЛМА. Системы ЭРА-ГЛОНАСС проходят на предприятии полный цикл: мы создаем архитектуру, разрабатываем ПО, делаем прототип, тестируем его и после успешных испытаний интегрируем модуль в автомобиль еще до того, как он сойдет с заводского конвейера.

За разработку систем экстренного реагирования ЭРА-ГЛОНАСС и проектов на базе IoT на предприятии отвечает дирекция «Телематика», в ней открыты несколько вакансий для программистов и разработчиков.



О компании ИТЭЛМАМы большая компания-разработчик automotive компонентов. В компании трудится около 2500 сотрудников, в том числе 650 инженеров.

Мы, пожалуй, самый сильный в России центр компетенций по разработке автомобильной электроники. Сейчас активно растем и открыли много вакансий (порядка 30, в том числе в регионах), таких как инженер-программист, инженер-конструктор, ведущий инженер-разработчик (DSP-программист) и др.

У нас много интересных задач от автопроизводителей и концернов, двигающих индустрию. Если хотите расти, как специалист, и учиться у лучших, будем рады видеть вас в нашей команде. Также мы готовы делиться экспертизой, самым важным что происходит в automotive. Задавайте нам любые вопросы, ответим, пообсуждаем.


Читать еще полезные статьи:

habr.com

Диагностика ЭРА-Глонасс на автомобилях VW, Skoda, Audi, Seat

Тест работоспособности компонентов и связи системы ЭРА-Глонасс на автомобилях VW, Skoda, Audi, Seat. Самодиагностика проверяет, блок управления, антенны, микрофон, динамик, все соединение устройства, кнопку вызова и состояние аварийной батареи.
Комплекс экстренного реагирования при авариях (аббревиатура ЭРА) работает на базе российской навигационной системы ГЛОНАСС (аналог GPS) и устанавливается на все новые автомобили VW, Skoda, Audi, Seat. 

Принцип работы системы: При нажатии на кнопку аварийное сообщение поступает оператору системы ЭРА-ГЛОНАСС. После этого он попытается связаться с водителем, перезвонив на устройство автомобиля, чтобы выяснить подробности происшествия. Если ему это не удается, то вероятно водитель находится в плохом состоянии, и оператор отправляет вызов медикам и спасателям.

Система состоит из навигационного модуля ГЛОНАСС (GPS), нескольких антенн, микрофона,
динамика, специальной SIM-карты, блока управления и батереи резервного питания на случай отключения аккумулятора автомобиля. На потолке салона автомобиля расположена кнопка экстренного вызова с надписью SOS.

- Проверка ЭРА-ГЛОНАСС относится к автомобилям для России и Белоруссии.
- Вы можете проверить работоспособность отдельных компонентов и связь системы ERA Glonass диагностическим адаптером автомобиля или с помощью самопроверки системы.
- Для запуска функциональной проверки компонентов и связи система ЭРА-ГЛОНАСС должна быть активирована.
- Система ЭРА-ГЛОНАСС активируется впервые после выключения транспортного режима.

Самопроверка проверяет следующее:
- Блок OCU, целостность ПО и работу системы в режиме реального времени
- GNSS (GPS) антенну
- GSM антенну
- Микрофон
- Громкоговоритель
- Соединение устройства с другими компонентами (шина данных, подушка безопасности)
- Подключение компонентов HMI
- Кнопку в обшивке потолка салона
- Состояние аварийной батареи

Самопроверка компонентов и связи системы ЭРА-ГЛОНАСС
- Включите зажигание.
- Откройте крышку защиты от случайного нажати кнопки SOS (стрелка), нажмите кнопку -2- тонким предметом (например, булавкой) и держите ее нажатой около 3х секунд.

1 - Кнопка экстренного вызова
2 - Кнопка запуска теста
3 - Светодиодная сигнальная лампа
- Нажатие кнопки -3- активирует голосовые подсказки для последовательности теста . Некоторые шаги подтверждаются нажатием кнопки -1-.
- Также следуйте голосовым подсказкам.
Голосовая подсказка подтверждает, если тестовая последовательность была завершена успешно.

Результат теста обозначается типом мигающих сигналов от сигнальной лампы -2-.
- После выключения зажигания система ERA Glonass снова активируется, и на короткое время сигнальная лампа загорается зеленым (сигнальная лампа может загораться зеленым, даже если обнаружена неисправность).

Тест системы ЭРА-Глонасс

ШагПротестированный компонентСостояние / ошибкаСветодиодный индикатор мигает
0Система ЭРА-ГлонассОшибок не обнаружено.зеленый
1VIN автомобиляVIN автомобиля пуст / не сконфигурирован.x1 зеленый,
x1 красный
2МикрофонМикрофон не работает.x1 зеленый,
x2 красный
3ДинамикДинамик не работает.x1 зеленый,
x3 красный
4Кнопка в потолке салонаКнопка не работает.x1 зеленый,
x4 красный
5Подушка безопасности / датчики столкновенияНет сигнала.x1 зеленый,
x5 красный
6Главная GSM антеннаНет сигнала.x1 зеленый,
x6 красный
7Резервная антенна GSM (если установлена)Нет сигнала.x1 зеленый,
x7 красный
8GNSS (GPS) антеннаНет сигнала.x1 зеленый,
x8 красный
9Отключение сигналаОбрыв линии.x1 зеленый,
x9 красный
10Внутренняя ошибка IVSВнутренняя IVS / SIM-карта / NAD не работает должным образом.x1 зеленый,
x10 красный
11Аварийный аккумуляторАккумулятор разряжен / неисправен.x1 зеленый,
x11 красный
12ЗажиганиеОтказ / прерывание зажигания.x1 зеленый,
x12 красный

Источник: Skoda Karoq Technical Site

Как здесь найти нужную информацию?
Расшифровка заводской комплектации автомобиля (англ.)
Расшифровка заводской комплектации VAG на русском!
Диагностика Фольксваген, Ауди, Шкода, Сеат, коды ошибок.

Если вы не нашли информацию по своему автомобилю - посмотрите ее на автомобили построенные на платформе вашего авто.
С большой долей вероятности информация по ремонту и обслуживанию подойдет и для Вашего авто.

vwts.ru

СБКТС - оформите без проблем вместе с Аларм.ру

Установка ЭРА-ГЛОНАСС и получение СБКТС на ввозимые в РФ автомобили

При ввозе поддержанного автомобиля для эксплуатации на территории Российской Федерации необходимо получить СБКТС – свидетельство о безопасности конструкции транспортного средства. Свидетельство выдается только при условии приобретения и последующей установки оборудования ЭРА-ГЛОНАСС, включающего в себя навигационный терминал, кнопку «SOS» и переговорное устройство для связи с оператором.

Оборот ввозимых транспортных средств регламентируется техническим регламентом таможенного союза 018/2011, вступившим в силу с 1 января 2017 года. После этой даты в России стала невозможна постановка на учет ввезенных в нее автомобилей, не оснащенных системой «ЭРА-ГЛОНАСС».

На какие транспортные средства необходима установка системы ЭРА-ГЛОНАСС:

Новые автомобили,
импортируемые в РФ

Новые автомобили,
производимые в РФ

Подержанные автомобили моложе 30 лет, ввозимые в РФ с 1 января 2017 года
(если с момента их выпуска прошло менее 30 лет)

Без установки на автомобиль системы ЭРА-ГЛОНАСС и получения СБКТС таможня не выдаст ему ПТС, что сделает невозможным его законное оформление в ГАИ и дальнейшую эксплуатацию.

Для беспроблемного получения ПТС на таможне и дальнейшей эксплуатации ввезенного транспортного средства мы рекомендуем внимательно соблюсти следующие правила:

Проверить, что выбранное оборудование ЭРА-ГЛОНАСС имеет необходимый сертификат

Проверить, что мастерская, устанавливающая это оборудование, авторизована на выполнение таких работ и имеет подтверждающие это документы

Проверить, что лаборатория, выбранная для оформления СБКТС, числится в списке сертифицированных лабораторий

Компания Аларм.ру имеет аккредитацию «ЭРА Плюс», выданную навигационным холдингом SpaceTeam – наши специалисты прошли необходимое обучение по установке и обслуживанию устройств ЭРА-ГЛОНАСС и располагают всеми необходимыми сертификатами.

Мы поможем вам легально, быстро и за конкурентную цену оснастить свой автомобиль навигационным оборудованием ЭРА-ГЛОНАСС и получить СБКТС, чтобы вы могли беспрепятственно получить ПТС на свой автомобиль и начать его эксплуатацию.

eraglonass-msk.ru


Смотрите также