RU (495) 989 48 46
Пленка на бампер

АНТИГРАВИЙНАЯ ЗАЩИТА БАМПЕРА

 

Мощность газовой турбины


Информация о газовых турбинах | Kawasaki Heavy Industries

Принцип работы газовой турбины

Как и дизельный или бензиновый двигатель, газовая турбина - это двигатель внутреннего сгорания с рабочим циклом впуск-сжатие-сгорание (расширение)-выпуск. Но, существенно отличается основное движение. Рабочий орган газовой турбины вращается, а в поршневом двигателе движется возвратно-поступательно.

Принцип работы газовой турбины показан на рисунке ниже. Сначала, воздух сжимается компрессором, затем сжатый воздух подается в камеру сгорания. Здесь, топливо, непрерывно сгорая, производит газы с высокой температурой и давлением. Из камеры сгорания газ, расширяясь в турбине, давит на лопатки и вращает ротор турбины (вал с крыльчатками в виде дисков, несущих рабочие лопатки), который в свою очередь опять вращает вал компрессора. Оставшаяся энергия снимается через рабочий вал.

Особенности газовых турбин

Типы газовых турбин по конструкции и назначению

Самый основной тип газовой турбины - создающий тягу реактивной струей, он же самый простой по конструкции.
Этот двигатель подходит для самолетов, летающих на высокой скорости, и используется в сверхзвуковых самолетах и реактивных истребителях.

У этого типа есть отдельная турбина за турбореактивным двигателем, которая вращает большой вентилятор впереди. Этот вентилятор увеличивает поток воздуха и тягу.
Этот тип малошумен и экономичен на дозвуковых скоростях, поэтому газовые турбины именно этого типа используются для двигателей пассажирских самолётов.

Эта газовая турбина выдает мощность как крутящий момент, причем у турбины и компрессора общий вал. Часть полезной мощности турбины идет на вращение вала компрессора, а остальная энергия передается на рабочий вал.
Этот тип используют, когда нужна постоянная скорость вращения, например - как привод генератора.

В этом типе вторая турбина размещается после турбины с газогенератором, и вращательное усилие передается на нее реактивной струей. Эту заднюю турбину называют силовой. Поскольку валы силовой турбины и компрессора не связаны механически, скорость вращения рабочего вала свободно регулируется. Подходит как механический привод с широким диапазоном скоростей вращения.
Этот тип широко используется в винтовых самолетах и вертолетах, а также в таких установках, как приводы насоса/компрессора, главные судовые двигатели, приводы генератора и т.п.

Что такое газовая турбина серии GREEN?

Принцип, которому Kawasaki следует в газотурбинном бизнесе, начиная с разработки в 1972 году нашей первой ГТУ, позволил нам предлагать клиентам все более совершенное оборудование, т.е., более энергоэффективное и экологичное. Идеи, заложенные в наших продуктах, получили высокую оценку мирового рынка и позволили нам накопить референции на более, чем 10 000 турбин (на конец марта 2014 года) в составе резервных генераторов и когенерационных систем.
Газовые турбины Kawasaki всегда имели большой успех, и мы, показывая еще большую нашу приверженность этому принципу, дали им новое название "Газовые турбины GREEN".

Проект K: Создание газовой турбины с самым высоким КПД в мире

Внутри К: Подразделение газовых турбин, Акаси / завод Seishin

Контакты

Если вам нужна дополнительная информация о нашем бизнесе, пожалуйста, свяжитесь с нами.

Контакты

global.kawasaki.com

особенности конструкции и принцип работы

Газотурбинные установки (ГТУ) востребованы в промышленности, транспортной сфере, широко используются в энергетической отрасли. Это не очень сложное по конструкции оборудование, которые имеет высокий КПД и экономично в использовании.

Газовые турбины во многом схожи с двигателями, работающими на дизеле или бензине: как и в ДВС, тепловая энергия, получаемая при сгорании топлива, переходит в механическую. При этом в установках открытого типа используются продукты сгорания, в закрытых системах - газ или обычный воздух. Одинаково востребованы и те, и другие. Кроме открытых и закрытых, различают турбокомпрессорные турбины и установки со свободно-поршневыми газогенераторами.

Проще всего рассмотреть конструкцию и принцип работы газовой турбины на установке турбокомпрессорного типа, которая работает при постоянном давлении.

Конструкция газовой турбины

Газовая турбина состоит из компрессора, воздухопровода, камеры сгорания, форсунки, проточной части, неподвижных и рабочих лопаток, патрубка для отработанных газов, редуктора, гребного винта и пускового двигателя.

За запуск турбины отвечает пусковой двигатель. Он приводит в движение компрессор, который раскручивается до нужной частоты вращения. Затем:

Таким образом, газ в смеси с воздухом, сгорая, образует рабочую среду, которая, расширяясь, ускоряется и раскручивает лопатки, а за ними - и гребной винт. В последующем кинетическая энергия превращается в электричество или используется для передвижения морского судна.

Сэкономить на топливе можно, используя принцип регенерации тепла. В этом случае воздух, поступающий в турбину, согревается за счет отработанных газов. В результате установка расходует меньше топлива и происходит больше кинетической энергии. Регенератор, где подогревается воздух, одновременно служит для охлаждения отработанных газов.

Особенности ГТУ закрытого типа

Газовая турбина открытого типа забирает воздух из атмосферы и выводит отработанный газ наружу. Это не очень эффективно и опасно, если установка стоит в закрытом помещении, где работают люди. В этом случае используют ГТУ закрытого типа. Такие турбины не выпускают отработанные рабочее тело в атмосферу, а направляют его в компрессор. Оно не перемешивается с продуктами сгорания. Как результат, рабочая среда, циркулирующая в турбине, остается чистой, что увеличивает ресурс установки и сокращает количество поломок.

Однако закрытые турбины имеют слишком большие габариты. Газы, которые не выходят наружу, должны быть достаточно эффективно охлаждены. Это возможно только в больших теплообменниках. Поэтому установки используют на крупных судах, где достаточно места.

Закрытые ГТУ могут иметь и ядерный реактор. В качестве теплоносителя в них используют углекислый газ, гелий или азот. Газ нагревают в реакторе и направляют в турбину.

ГТУ и их отличия от паровых турбин и ДВС

Газовые турбины отличаются от ДВС более простой конструкцией и легкостью ремонта. Важно и то, что в них не предусмотрен кривошипно-шатунный механизм, который делает ДВС громоздким и тяжелым. Турбина легче и меньше двигателя аналогичной мощности приблизительно в два раза. Кроме того, она может работать на топливе низкого сорта.

От паровых газовые турбины отличаются небольшими габаритами и простым запуском. Обслуживать их легче, чем установки, работающие на пару.

Имеют турбины и недостатки: они не настолько экономичны по сравнению с ДВС, сильнее шумят, быстрее приходят в негодность. Впрочем, это не мешает использовать ГТУ в транспорте, промышленности и даже быту. Турбины устанавливают на морских и речных судах, используют в электростанциях, насосном оборудовании и многих других сферах. Они удобны и мобильны, поэтому применяются достаточно часто.

 

23 августа 2017

Поделитесь ссылкой со своими друзьями:

prometey-energy.ru

В 2021 году Россия запустит серийное производство отечественных газовых турбин большой мощности

Обнадеживающую новость принесла завершившаяся на днях «Российская энергетическая неделя». «Роснано» переходит на импортозамещение даже в тех отраслях, где позиции нашей страны были исторически слабы. Так, уже 3 тыс. часов успешно отработала первая российская газовая турбина ГТД-110М по командам единого диспетчера. Как сообщил заместитель директора департамента Минпромторга по станкостроению и инвестиционному машиностроению Олег Токарев, через полтора-два года технологию можно будет тиражировать.

«ПРОИЗВОДСТВЕННОЙ БАЗОЙ СТАНЕТ РОСТЕХ»

«Сейчас мы рассматриваем вопрос серийного производства этой турбины. Для этого мы создаем достаточно широкий круг производителей в рамках кооперации. Надеемся, что база будет сосредоточена в рамках группы компаний «Ростех», но с привлечением множества компаний, - отметил Олег Токарев. - Нам необходимо произвести еще два двигателя, чтобы три двигателя длительный цикл испытаний прошли».

Сейчас в России нет собственного серийного производства газовых турбин большой мощности. Модернизацией проекта российской газовой турбины ГТД-110М с 2014 года занимался консорциум из «ОДК-Сатурн», «Интер РАО» и «Роснано» - Инжиниринговый центр «Газотурбинные технологии». За это время разработчикам удалось устранить конструктивные недостатки, повысить надежность и технологические характеристики конструкции. Доработки проверялась как расчетным путем, так и экспериментально.

«Газотурбинные технологии» добились повышения ряда технико-экономических характеристик турбины. Так, мощность установки выросла со 110 до 115 МВ. Изначально КПД установки был на уровне 35,5%, фактически испытания сейчас подтвердили до 37%, а в составе комплексной парогазовой установки – до 52%. Это улучшило экономику проекта - такому блоку достаточно текущих тарифов на электроэнергию, рост цен потребителям не грозит.

«СИЛЫ НАЙДЕНЫ»

К октябрю модернизированная турбина успешно отработала 3 тыс. часов испытаний, разбитые на два этапа – стендовые испытания и опытно-промышленная эксплуатация. Первые 700 часов отработаны в апреле на стенде в составе одиночной газовой турбины (без парогазовой части). В мае 2019 года по итогам испытания инспекция подтвердила целостность всех элементов и готовность двигателя к дальнейшей эксплуатации.

Как уточнили в пресс-службе компании «Роснано», в июне газовая турбина с испытательного стенда была переставлена в серийную ячейку блока Ивановских ПГУ (парогазовых установок) мощностью 325 МВт. С конца июня турбина находится в опытно-промышленной эксплуатации и поставляет электроэнергию в единую энергосистему.

Теперь установка проходит плановый осмотр. Если дефектов не обнаружат, то эффективность и безопасность проекта ГТД-110М будет подтверждена, а инвестпроект по модернизации - завершен. Ожидается, что турбина останется в промышленной эксплуатации на Ивановских ПГУ.

На пути к качественному продукту разработчики сталкивались с неполадками и повреждениями установки, что немудрено в случае такой сложной энергетической технологии, но планомерно исправляли их. «Не могу не отметить, опыт создания турбины ГТД-110М очень сложной, имеющий свою непростую историю. Тем не менее, спасибо участникам «Газотурбинных технологий»: силы были найдены, возможности были найдены, - обратился к разработчикам проекта Олег Токарев.

Второй путь, который обсуждают машиностроители и энергокомпании, - перенести в России зарубежные технологии турбостроения. Но сделать это крайне сложно: Минпромторг поставил жесткие требования к локализации: Она должна быть на уровне 90%, включая критические компоненты: по сути весь лопаточный тракт, включая горячий тракт, камеры сгорания, требования по литым заготовкам, упаковкам, системы управления. «Это критические важные элементы, которые мы должны локализовать», - заявил Токарев. Готовы ли на это наши зарубежные партнеры – большой вопрос.

Фото с сайта НПО «Сатурн»

«НА УРОВЕНЬ ВЫСОКОТЕХНОЛИЧНЫХ ДЕРЖАВ»

Обратим внимание, что газовая турбина - ключевой элемент парогазового цикла — самой эффективной сегодня технологии в традиционной тепловой энергетике. Дело в том, что на парогазовых установках электричество производится дважды — с помощью газовой, а затем паровой турбины. На выходе из первой газ остается горячим. Его тепло можно использовать, чтобы подогреть котел с водой: вырабатываемый пар запускает вторую турбину.

В Советском Союзе ПГУ строили только экспериментально. В производстве тепла упор делали на уголь и мазут, а также менее экономичный паросиловой цикл. В последнее десятилетие парогазовая технология пользуется большим спросом на мировом рынке, а в России стала базой в программе модернизации тепловой энергетики прошлого десятилетия. Но за неимением собственных закупались импортные турбины вместе с сервисом от GEи Simens, услуги по регулярном облуживанию после девальвации рубля в 2014 году влетели в копеечку энергетикам.

Напомним, зависимость от импорта привела к скандалу в 2017 году. Тогда в Крыму строили две электростанции, для которых нужны были газовые установки большой мощности. Турбины Siemens закупили на вторичном рынке и обновили силами российских заводов, однако это все-равно вызвало недовольство европейских производителей, ограничивших поставки высокотехнологичного оборудования в Россию. После Минэнерго и Минпромторг всерьез взялись за импортозамещение, чтобы избежать санкционных рисков в базовой отрасли. «Создание собственных компетенций в турбиностроении выведет нашу страну на уровень высокотехнологической державы», - резюмировал Олег Токарев.

www.kp.ru

Газовые турбины

Сегодня на территории Российской Федерации свыше 30 ГВт генерирующих мощностей работают в парогазовом цикле. Доля оборудования иностранных компаний в суммарной установленной мощности введенных в эксплуатацию ПГУ и ГТУ составляет более 70%.

В 2018 году Правительством России в целях обеспечения энергобезопасности и энергонезависимости принято решение о воссоздании в стране отечественного производства газовых турбин.

В это же время «Силовые машины», с учетом достижений в традиционной для предприятия области паровых турбин, значительным опытом в освоении новых видов продукции и накопленным опытом по созданию газотурбинных установок в прошлом, начали программу освоения производства современных отечественных энергетических газовых турбин класса ГТЭ-65 и ГТЭ-170.

В 2019 году «Силовые машины» одержали победу в конкурсе Министерства промышленности и торговли РФ на право получения субсидии на проведение научно-исследовательских, опытно-конструкторских и технологических работ в рамках производства газовых турбин большой мощности. В настоящее время при поддержке Минпромторга России «Силовые машины» проводят комплекс НИОКР в партнерстве с ключевыми научно-исследовательскими и промышленными организациями страны - Сибирским отделением РАН, НПО ЦКТИ, ЦИАМ, ВТИ, ЦНИИТМАШ и многими другими.

Благодаря этой работе «Силовые машины» смогут в краткосрочной перспективе предложить рынку две полностью российские газовые турбины — 65 МВт и 170 МВт.

К концу 2019 года на предприятии было воссоздано конструкторское бюро газотурбинных установок, реализуется масштабный комплекс научно-исследовательских и опытно-конструкторских работ, определены отечественные поставщики критически важных комплектующих и заготовок, ведется модернизация собственной производственной и экспериментально-исследовательской базы. Первые образцы ГТЭ-170 будут запущены в опытно-промышленную эксплуатацию в 2022–2023 годах, а ГТЭ-65 — с 2024-го.

Газовые турбины ГТЭ-65 и ГТЭ-170 могут использоваться в составе парогазовых установок как в моноблоке с индивидуальной паровой турбиной, так и в дубль-блоке с общей, на две ГТУ, паровой турбиной.

Успешное освоение технологии производства газовых турбин российской компанией позволит снизить зависимость отечественной энергетики от импорта данного типа оборудования, обеспечит энергетическую и технологическую безопасность государства.

Подробнее

www.power-m.ru

История создания газотурбинных установок - Машиностроение

Идея использования энергии горячих дымовых газов для совершения механической работы известна человечеству очень давно.

Идея использования энергии горячих дымовых газов для совершения механической работы известна человечеству очень давно.

По имеющимся данным она была высказана и реализована еще Героном Александрийским, которым был построен прибор, где для целей вращения использовалась энергия восходящего горячего газового потока.

Позднее, в 15 веке, Леонардо да Винчи была высказана идея «дымового вертела» для обжарки туш животных.

Принцип действия «дымового вертела» совершенно подобен принципу действия ветряной мельницы.

«Дымовой вертел» размещался в дымоходе, и вращение его создавалось дымовыми газами, проходившими через колесо с насаженными на него лопастями.

Подобное устройство было осуществлено в средние века.

1й патент на проект газотурбинной установки (ГТУ) был выдан в 1791 г в Англии Д.Барберу.

В патенте Барбера, хотя и в примитивной форме, были представлены все основные элементы современных ГТУ: имелись воздушный и газовый компрессоры, камера горения и активное турбинное колесо.

Для работы предполагалось использовать продукты перегонки угля, дерева или нефти.

Для понижения температуры рабочих газов предполагалось впрыскивание воды в камеру горения.

В 19 веке продолжались попытки многочисленных ученых и изобретателей различных стран создать ГТУ, пригодную для практического использования.

Однако эти попытки были обречены на неудачу вследствие низкого уровня науки и техники.

Металлы, которые могли бы длительное время противостоять температурам порядка 500 оС и выше еще не были получены.

Свойства, газов и паров были изучены недостаточно.

Состояние газодинамики не могло обеспечить создания хороших проточных частей турбины и компрессора.

В России также предпринимались попытки создать ГТУ, в частности, инженер-механиком русского военно-морского флота П. Кузьминским.

Он разработал, а затем и осуществил небольшую газопаровую турбинную установку, состоявшую из камеры сгорания, в которую кроме воздуха и топлива, подавался водяной пар, получавшийся в змеевике, окружавшем камеру.

Газопаровая смесь затем поступала в многоступенчатую турбину радиального типа.

Горение топлива (керосина) происходило при постоянном давлении порядка 10 кгс/см2.

При испытаниях, несмотря на принятые меры, камера горения быстро прогорала и выходила из строя.

Создать длительно действующую установку не удалось.

В 1900 - 1904 гг в Германии инженером Штольце была построена и испытана ГТУ, в которой понижение температуры рабочих газов перед поступлением их в турбину осуществлялось за счет большого избытка воздуха, подававшегося компрессором в камеру горения.

Испытания установки не дали положительных результатов.

Вся мощность, развивавшаяся газовой турбиной, расходовалась только на привод компрессора.

Полезная мощность установки была равна 0.

В 1905 - 1906 гг французскими инженерами Арманго и Лемалем были построены 2 ГТУ, работавшие на керосине.

Снижение температуры газов перед турбинами примерно до 560 °С достигалось впрыскиванием воды.

Мощность газовой турбины 1й ГТУ равнялась 25 л.с., 2й - 400 л.с.

От 2й установки впервые была получена полезная мощность.

КПД установки был чрезвычайно низок и не превышал 3 - 4 %, хотя КПД собственно турбины достигал уже 70 - 75 %.

Над созданием ГТУ работал также немецкий ученый доктор Хольцварт, который провел обширные экспериментальные работы, основанные на глубоких теоретических исследованиях.

Начиная с 1908 г по проектам Хольцварта было построено несколько ГТУ. Наибольший КПД, который был получен в опытах с турбинами Хольцварта за период до 1927 г составил 14 %.

Те немногие, фактически работавшие ГТУ, которые были построены за рассмотренный период времени, либо обладали низким КПД, либо были конструктивно очень сложны и мало надежны в эксплуатации, что, естественно, являлось препятствием для их практического использования.

Реальное применение газовых турбин началось в 1950х гг.

Первые практически эксплуатировавшиеся газовые турбины выполнялись утилизационными.

Они работали на газах, отходивших от двигателей внутреннего сгорания, и приводили в действие воздуходувку, осуществлявшую наддув того же двигателя (увеличение воздушной зарядки цилиндров).

Подобная система впервые была применена в авиации и позволила уменьшить падение мощности мотора с увеличением высоты полета.

1я газотурбинная электростанция (ГТЭС) с турбоагрегатом мощностью 5000 кВт была введена в эксплуатацию в 1939 г в Швейцарии.

ГТЭС была выполнена по простейшей схеме и работала при температуре газа перед турбиной порядка 560 °С.

Позднее, в 1950х гг, в Швейцарии же была построена и эксплуатировалась ГТЭС в местечке Бецнау с турбоагрегатами мощностью в 12 и 25 МВт при начальной температуре газа 650 °С.

Тепловая схема установок была усложнена, что обеспечило более высокий КПД.

С 1950х гг начинается быстрое развитие газотурбостроения во всех странах, имевших развитую турбостроительную промышленность.

В стационарном применении ГТУ наметились 2 основные направления: использование на магистральных газопроводах (МГП) и для выработки электроэнергии на электростанциях.

На МГП газотурбинные агрегаты применяются для привода компрессоров, перекачивающих газ.

На отечественных заводах (НЗЛ, УТЗ, ЛМЗ) был освоен выпуск подобных турбонагнетателей первоначально мощностью 4 МВт, затем 5, 6, 10, 16, 25 МВт и более мощных.

Суммарная мощность ГТУ, выпущенных для этих целей только заводами Советского Союза и России, превышает многие миллионы кВт.

ГТУ на электростанциях, как основной тип двигателя для привода электрогенераторов, используются главным образом в тех районах, где имеется природный газ, а так же, учитывая их возможности к быстрому пуску, для покрытия пиковых нагрузок, возникающих в энергосистемах в относительно кратковременные периоды наибольшего потребления энергии.

На ЛМЗ, в частности, освоен выпуск турбоагрегатов мощностью 100 МВт.

Предпринимались попытки применения газотурбинных агрегатов в новых технологических процессах - с использованием в качестве топлива для ГТУ продуктов подземной газификации угля.

С этой целью на ЛМЗ были изготовлены 2 турбоагрегата мощностью по 12 МВт, смонтированы на Шацкой электростанции (Рязанская область) и запущены в эксплуатацию.

Однако работы, проводившиеся в течение ряда лет, показали, что путь использования в газотурбинных агрегатах низкокалорийных продуктов подземной газификации в энергетике неперспективен с экономической точки зрения.

Паротурбинные установки с обычной схемой использования топлива экономичнее и надежнее.

Поэтому в 1961 г работы по освоению сжигания продуктов перегонки твердого топлива в газотурбинных агрегатах были прекращены, а Шацкая электростанция остановлена.

Еще одно из направлений по применению ГТУ для выработки электроэнергии - использование авиационных газотурбинных агрегатов.

Эти агрегаты имеют высокое техническое совершенство, компактны, надежны, не требуют охлаждающей воды, быстро запускаются в работу (1-3 мин) и при минимальных работах по реконструкции могут быть использованы для привода электрогенераторов как для передвижных автоматизированных энергоустановок небольшой мощности (1000 - 3000 кВт), так и для более мощных, в том числе пиковых.

Мобильные установки монтируются на трейлерах и могут быть доставлены практически в любой район для обслуживания строительных объектов и снятия пиковых нагрузок.

Стандартные обозначения ГТУ, принятые в отечественной практике (как пример): ГТ-35-770-2, ГТ-50-800, ГТ-100-750-1, ГТ-45-950. Здесь первые цифры - мощность в МВт, вторые - температура газа перед турбиной, гр.С и третья - номер модели.

В газотурбостроении промышленно развитых стран, так же, как и в паротурбостроении, практически существует единый мировой уровень по тенденциям развития, мощностям турбоагрегатов и их параметрам.

neftegaz.ru

Газовая турбина - это... Что такое Газовая турбина?

Промышленная газовая турбина в разобранном виде.

Га́зовая турби́на (фр. turbine от лат. turbo вихрь, вращение) — это двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и/или нагретого газа преобразуется в механическую работу на валу.[1][2] Горение топлива может происходить как вне турбины, так и в самой турбине.[источник не указан 404 дня] Основными элементами конструкции являются ротор (рабочие лопатки, закреплённые на дисках) и статор, выполненный в виде выравнивающего аппарата (направляющие лопатки, закреплённые в корпусе).

Газовые турбины используются в составе газотурбинных двигателей, стационарных газотурбинных установок (ГТУ) и парогазовых установок (ПГУ).

История

Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. до н. э.). В восемнадцатом веке англичанин Джон Барбер получил патент на устройство, которое имело большинство элементов, присутствующих в современных газовых турбинах. В 1872 году Франц Столц разработал газотурбинный двигатель.[источник не указан 404 дня] Однако только в конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня, Густаф Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленного использования паровые турбины.[3]

Принцип работы

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 11 ноября 2011.

Газ под высоким давлением поступает через сопловой аппарат турбины в область низкого давления, при этом расширяясь и ускоряясь. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Газовая турбина чаще всего используется как привод генераторов.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Более сложные турбины (которые используются в современных турбореактивных двигателях), могут иметь несколько валов, сотни турбинных и статорных лопаток, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Упорные подшипники и радиальные подшипники являются критическими элементом разработки. Традиционно они были гидродинамические, или охлаждаемые маслом шарикоподшипники. Их превзошли воздушные подшипники, которые успешно используются в микротурбинах и вспомогательных силовых установках.

Типы газовых турбин

Газовые турбины часто используются во многих ракетах на жидком топливе, а также для питания турбонасосов, что позволяет использовать их в легковесных резервуарах низкого давления, хранящих значительную сухую массу.

Промышленные газовые турбины для производства электричества

Газовая турбина серии GE H. Эта 480-мегаваттная турбинная установка имеет тепловой кпд 60 % в конфигурациях комбинированного цикла.

Отличие промышленных газовых турбин от авиационных в том, что их массогабаритные характеристики значительно выше, они имеют каркас, подшипники и лопастную систему более массивной конструкции. По размерам промышленные турбины варьируются от монтируемых на грузовики мобильных установок до огромных комплексных систем. Парогазовые турбины могут иметь высокий КПД — до 60 % — при использовании выхлопа газовой турбины в рекуперативном генераторе пара для работы паровой турбины. С целью увеличения КПД они также могут работать в когенераторных конфигурациях: выхлоп используется в системах теплоснабжения - ГВС и отопления, а также с использыванием абсорбционных холодильных машинах в системах хладоснабжения. Одновременное использование выхлопа для получения тепла и холода называется режимом тригенерации. Коэффициент использования топлива в тригенераторном режиме, в сравнении с когенераторным может достигать более 90 %.[источник не указан 404 дня]

Турбины в больших промышленных газовых турбинах работают на синхронных с частотой переменного тока скоростях — 3000 или 3600 оборотов в минуту (об./мин.).[источник не указан 404 дня]

Газовые турбины простого цикла могут выпускаться как для большой, так и для малой мощности. Одно из их преимуществ — способность входить в рабочий режим в течение нескольких минут, что позволяет использовать их как мощность во время пиковых нагрузок. Поскольку они менее эффективны, чем электростанции комбинированного цикла, они обычно используются как пиковые электростанции и работают от нескольких часов в день до нескольких десятков часов в год, в зависимости, от потребности в электроэнергии и генерирующей емкости. В областях с недостаточной базовой нагрузкой и на электростанциях, где электрическая мощность выдается в зависимости от нагрузки, газотурбинная установка может регулярно работать в течение большей части суток. Типичная турбина простого цикла может выдавать от 100 до 300 мегаватт (МВт) мощности и иметь тепловой КПД 35-40 %.[источник не указан 404 дня] Максимальные КПД турбин простого цикла достигает 41 %.[источник не указан 404 дня]

Микротурбины

Отчасти, успех микротурбин обусловлен развитием электроники, делающей возможной работу оборудования без вмешательства человека. Микротурбины применяются в самых сложных проектах автономного электроснабжения.

Преимущества и недостатки газотурбинных двигателей

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 11 ноября 2011.

Преимущества газотурбинных двигателей

Недостатки газотурбинных двигателей

Эти недостатки объясняют, почему дорожные транспортные средства, которые меньше, дешевле и требуют менее регулярного обслуживания, чем танки, вертолеты и крупные катера, не используют газотурбинные двигатели, несмотря на неоспоримые преимущества в размере и мощности. А также то, почему в аэропортах при короткой стыковке двигатели самолета не останавливают - излишне потребленное топливо дешевле ремонта турбин из-за пусков-остановов.

Примечания

  1. ГОСТ Р 51852-2001 Установки газотурбинные. Термины и определения  (рус.) (2003). — «Газовая турбина: компонент газотурбинного двигателя, преобразующий потенциальную энергию нагретого рабочего тела под давлением в механическую работу.»  Архивировано из первоисточника 25 июня 2012. Проверено 11 ноября 2011.
  2. Д. Н. Ушаков. Толковый словарь Ушакова. — 1940.
  3. Константин Владиславович Рыжов. [lib.aldebaran.ru/author/ryzhov_konstantin/ryzhov_konstantin_100_velikih_izobretenii/ 100 великих изобретений]. — М., 2006. — ISBN 5‑9533‑0277‑0

Литература

См. также

Ссылки

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 13 мая 2011.

dic.academic.ru

Турбокомпрессор — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 июля 2018; проверки требуют 10 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 июля 2018; проверки требуют 10 правок. Турбореактивный двигатель

Турбокомпрессор (разговорное «турбина», фр. turbine от лат. turbo — вихрь, вращение) — это устройство, использующее отработавшие газы (выхлопные газы) для увеличения давления внутри камеры сгорания.

Схема турбовентиляторного двигателя
1 — Вентилятор.
2 — Компрессор низкого давления.
3 — Компрессор высокого давления.
4 — Камера сгорания.
5 — Турбина высокого давления.
6 — Турбина низкого давления.
7 — Сопло.
8 — Вал ротора высокого давления.
9 — Вал ротора низкого давления.

Основной агрегат, состоящий из доцентрового или осевого компрессора и газовой турбины для его привода, установленных на одном валу, называется турбокомпрессором. Основным назначением турбокомпрессора является повышение давления рабочего тела газотурбинного двигателя за счёт его нагнетания компрессором, который получает мощность от турбины. Турбокомпрессор в совокупности с камерой сгорания, расположенной между турбиной и компрессором, называется газогенератором. Турбокомпрессор низкого давления турбореактивного двигателя (ТРД), состоящий из компрессора низкого давления (вентилятора) и турбины, иногда называют турбаком.[1][2]

Разрез автомобильного турбокомпрессора

В автомобилях турбокомпрессор используется для нагнетания воздуха или топливовоздушной смеси в двигатель внутреннего сгорания за счет энергии выхлопных газов для улучшения его характеристик.

Для двигателей малой мощности[источник не указан 3095 дней] применяют турбокомпрессоры с центростремительной турбиной, а на двигателях большой мощности[источник не указан 3095 дней] (тракторные, тепловозные, судовые) — с осевой турбиной.[источник не указан 3095 дней] Компрессор всегда центробежный,[источник не указан 3095 дней] так как осевой компрессор имеет более сложную конструкцию и склонность к помпажу. Наименьшие размеры имеют турбокомпрессоры для двигателей легковых автомобилей — диаметр их колёс порядка 50 мм. Наибольшие размеры у судовых турбокомпрессоров — диаметр колёс — до 1,2 м.

Поток отработанных газов, имеющих значительную температуру и давление, через выпускной коллектор поступает в корпус турбины. За счёт давления газов на лопасти колесо турбины вращается (около 15-30 000 об/мин у крупных ТК, до 100 000 об/мин у ТК легковых автомобилей), а поскольку оно напрямую соединено валом с колесом компрессора — компрессор также начинает крутиться, нагнетая воздух во впускной коллектор.

Вал турбокомпрессора вращается в подшипниках, смазываемых маслом под давлением от системы смазки двигателя. Для двигателей небольшой мощности в турбокомпрессорах используют золотниковый механизм. Большая часть отработанных газов через золотник поступает на турбину, а остаток газов через специальный канал в кожухе обходит колесо турбины. Из-за большого давления воздух сильно нагревается, для его охлаждения был разработан интеркулер.

Направляющий аппарат[править | править код]

Направляющий аппарат (спрямляющий аппарат, англ. Inlet guide vanes) — набор лопаток, закрепленных на статоре, задача которых выравнивать воздушный поток между вентиляторными ступенями. Выравнивание шаговой неравномерности потока за лопаточным венцом рабочего колеса производится для повышения аэродинамической эффективности вентиляторных ступеней и снижения уровня шума.[3]Увеличение площади поверхности спрямляющего аппарата повышает аэродинамическое сопротивление и снижает КПД компрессора, так как часть энергии затрачивается на отклонение потока.

ru.wikipedia.org

Турбореактивный двигатель — Википедия

Схема работы ТРД:
1. Забор воздуха
2. Компрессор низкого давления
3. Компрессор высокого давления
4. Камера сгорания
5. Расширение рабочего тела в турбине и сопле
6. Горячая зона
7. Турбина
8. Зона входа первичного воздуха в камеру сгорания
9. Холодная зона
10. Входное устройство

Турбореактивный двигатель (ТРД, англоязычный термин — turbojet engine) — воздушно-реактивный двигатель (ВРД), в котором сжатие рабочего тела на входе в камеру сгорания и высокое значение расхода воздуха через двигатель достигается за счёт совместного действия встречного потока воздуха и компрессора, размещённого в тракте ТРД сразу после входного устройства, перед камерой сгорания.

В 1791 году английский изобретатель Джон Барбер предложил идею коловратного двигателя с поршневым компрессором, камерой сгорания и газовой турбиной. В 1909 году русский изобретатель Н. В. Герасимов запатентовал схему газотурбинного двигателя для создания реактивной тяги (турбореактивного двигателя)[1][2][3]. Патент на использование газовой турбины для движения самолёта получен в 1921 году французским инженером Максимом Гийомом[fr].

Первый образец турбореактивного двигателя продемонстрировал английский инженер Фрэнк Уиттл 12 апреля 1937 года и созданная им небольшая частная фирма Power Jets[en]. Он основывался на теоретических работах Алана Гриффита[en].

Первое полезное применение турбореактивного двигателя произошло в Германии на самолёте Heinkel He 178 с ТРД HeS 3[en]. ТРД разработан Хансом фон Охайном почти одновременно с Уиттлом — первый пуск в сентябре 1937 года, изготовлялся фирмой Heinkel-Hirth Motorenbau. Лётчик Эрих Варзиц совершил первый полёт 27 августа 1939 года.

Компрессор втягивает воздух, сжимает его и направляет в камеру сгорания. В ней сжатый воздух смешивается с топливом, воспламеняется и расширяется. Расширенный газ заставляет вращаться турбину, которая расположена на одном валу с компрессором. Остальная часть энергии перемещается в сужающееся сопло. В результате направленного истечения газа из сопла на двигатель действует реактивная тяга. При горении топлива воздух, служащий рабочим телом, нагревается до 1500-2000 градусов цельсия.

Ключевые характеристики ТРД следующие:

  1. Создаваемая двигателем тяга.
  2. Удельный расход топлива (масса топлива, потребляемая за единицу времени для создания единицы тяги/мощности)
  3. Расход воздуха (масса воздуха, проходящего через каждое из сечений двигателя за единицу времени)
  4. Степень повышения полного давления в компрессоре
  5. Температура газа на выходе из камеры сгорания.
  6. Масса и габариты.

Степень повышения полного давления в компрессоре является одним из важнейших параметров ТРД, поскольку от него зависит эффективный КПД двигателя. Если у первых образцов ТРД (Jumo-004) этот показатель составлял 3, то у современных он достигает 40 (General Electric GE90).

Для повышения газодинамической устойчивости компрессоров они выполняются двухкаскадными (НК-22) или трехкаскадными (НК-25). Каждый из каскадов работает со своей скоростью вращения и приводится в движение своим каскадом турбины. При этом вал 1-го каскада компрессора (низкого давления), вращаемого последним (самым низкооборотным) каскадом турбины, проходит внутри полого вала компрессора второго каскада (каскада высокого давления для двухкаскадного двигателя, каскада среднего давления для трехкаскадного). Каскады двигателя также именуют роторами низкого, среднего и высокого давления.

ТРД J85 производства компании General Electric. Между 8 ступенями компрессора и 2 ступенями турбины расположена кольцевая камера сгорания.

Камера сгорания большинства ТРД имеет кольцевую форму и вал турбина-компрессор проходит внутри кольца камеры. При поступлении в камеру сгорания воздух разделяется на 3 потока.

Первичный воздух — поступает через фронтальные отверстия в камере сгорания, тормозится перед форсунками и принимает непосредственное участие в формировании топливно-воздушной смеси. Непосредственно участвует в сгорании топлива. Топливо-воздушная смесь в зоне сгорания топлива в ВРД по своему составу близка к стехиометрической.

Вторичный воздух — поступает через боковые отверстия в средней части стенок камеры сгорания и служит для их охлаждения путём создания потока воздуха с гораздо более низкой температурой, чем в зоне горения.

Третичный воздух — поступает через специальные воздушные каналы в выходной части стенок камеры сгорания и служит для выравнивания поля температур рабочего тела перед турбиной.

Из камеры сгорания нагретое рабочее тело поступает на турбину, расширяется, приводя её в движение и отдавая ей часть своей энергии, а после неё расширяется в сопле и истекает из него, создавая реактивную тягу.

ТРД ВК-1 КБ Климова, с ныне всё реже использующимися центробежным компрессором и трубчатой камерой сгорания. Создан на основе лицензионного Rolls-Royce Nene[en] для МиГ-15, МиГ-17.

Благодаря компрессору ТРД (в отличие от ПВРД) может «трогать с места» и работать при низких скоростях полёта, что для двигателя самолёта является совершенно необходимым, при этом давление в тракте двигателя и расход воздуха обеспечиваются только за счёт компрессора.

При повышении скорости полёта давление в камере сгорания и расход рабочего тела растут за счёт роста напора встречного потока воздуха, который затормаживается во входном устройстве (так же, как в ПВРД) и поступает на вход низшего каскада компрессора под давлением более высоким, чем атмосферное, при этом повышается и тяга двигателя.

Диапазон скоростей, в котором ТРД эффективен, смещён в сторону меньших значений, по сравнению с ПВРД. Агрегат «турбина-компрессор», позволяющий создавать большой расход и высокую степень сжатия рабочего тела в области низких и средних скоростей полёта, является препятствием на пути повышения эффективности двигателя в зоне высоких скоростей:

Повышение допустимой температуры рабочего тела на входе в турбину является одним из главных направлений совершенствования ТРД. Если для первых ТРД эта температура едва достигала 1000 К, то в современных двигателях она приближается к 2000 К. Это обеспечивается как за счёт применения особо жаропрочных материалов, из которых изготовляются лопатки и диски турбин, так и за счёт организации их охлаждения: воздух из средних ступеней компрессора (гораздо более холодный, чем продукты сгорания топлива) подается на турбину и проходит сквозь сложные каналы внутри турбинных лопаток.

В результате максимальная скорость истечения реактивной струи у ТРД меньше, чем у ПВРД, что в соответствии с формулой для реактивной тяги ВРД на расчетном режиме, когда давление на срезе сопла равно давлению окружающей среды,[4]

P=G⋅(c−v){\displaystyle P=G\cdot (c-v)}, (1)

где P{\displaystyle P} — сила тяги,
G{\displaystyle G} — секундный расход массы рабочего тела через двигатель,
c{\displaystyle c} — скорость истечения реактивной струи (относительно двигателя),
v{\displaystyle v} — скорость полёта,
ограничивает сверху диапазон скоростей, на которых ТРД эффективен, значениями M = 2,5 — 3 (M — число Маха). На этих и более высоких скоростях полёта торможение встречного потока воздуха создаёт степень повышения давления, измеряемую десятками единиц, такую же, или даже более высокую, чем у высоконапорных компрессоров, и ещё бо́льшее сжатие становится нежелательным, так как воздух при этом нагревается, а это ограничивает количество тепла, которое можно сообщить ему в камере сгорания. Таким образом, на высоких скоростях полёта (при M > 3) агрегат турбина-компрессор становится бесполезным, и даже контрпродуктивным, поскольку только создаёт дополнительное сопротивление в тракте двигателя, и в этих условиях более эффективными становятся прямоточные воздушно-реактивные двигатели.

Форсажная камера[править | править код]

Форсажная камера ТРД General Electric J79. Вид со стороны сопла. В торце находится стабилизатор горения с установленными на нём топливными форсунками, за которым видна турбина. F-18 Hornet на форсаже взлетает с палубы авианосца

Хотя в ТРД имеет место избыток кислорода в камере сгорания, этот резерв мощности не удаётся реализовать напрямую — увеличением расхода горючего в камере — из-за ограничения температуры рабочего тела, поступающего на турбину. Этот резерв используется в двигателях, оборудованных форсажной камерой, расположенной между турбиной и соплом. В режиме форсажа в этой камере сжигается дополнительное количество горючего, внутренняя энергия рабочего тела перед расширением в сопле повышается, в результате чего скорость его истечения возрастает, и тяга двигателя увеличивается, в некоторых случаях, более, чем в 1,5 раза, что используется боевыми самолётами при полетах на высоких скоростях. В форсажной камере применяется стабилизатор, функция которого состоит в снижении скорости за ним до околонулевых значений, что обеспечивает стабильное горение топливной смеси. При форсаже значительно повышается расход топлива, ТРД с форсажной камерой практически не нашли применения в коммерческой авиации, за исключением самолётов Ту-144 и Конкорд, полеты которых уже прекратились.

Скоростной разведчик SR-71 с гибридными ТРД/ПВРД.

Гибридный ТРД / ПВРД[править | править код]

Турбопрямоточный двигатель J58

В 1960-х годах в США был создан гибридный ТРД / ПВРД Pratt & Whitney J58, использовавшийся на стратегическом разведчике SR-71 Blackbird. До числа Маха М = 2,4 он работал как ТРД с форсажем, а на более высоких скоростях открывались каналы, по которым воздух из входного устройства поступал в форсажную камеру, минуя компрессор, камеру сгорания и турбину, подача топлива в форсажную камеру увеличивалась, и она начинала работать, как ПВРД. Такая схема работы позволяла расширить скоростной диапазон эффективной работы двигателя до М = 3,2. В то же время двигатель уступал по весовым характеристикам как ТРД, так и ПВРД, и широкого распространения этот опыт не получил.

Гибридный ТРД / РД[править | править код]

Двигатели этого типа при полете в атмосфере в качестве окислителя используют кислород из атмосферного воздуха, а при полете за пределами атмосферы в качестве окислителя используют жидкий кислород из топливных баков. Двигатели такого типа планировалось использовать в проекте HOTOL и намечено в проекте Skylon[5].

Регулируемые сопла[править | править код]

Регулируемое сопло ТРДДФ F-100 самолёта F-16 створки максимально открыты Регулируемое сопло ТРДФ АЛ-21 регулируемые створки максимально закрыты

ТРД, скорость истечения реактивной струи в которых может быть как дозвуковой, так и сверхзвуковой на различных режимах работы двигателей, оборудуются регулируемыми соплами. Эти сопла состоят из продольных элементов, называемых створками, подвижных относительно друг друга и приводимых в движение специальным приводом, позволяющим по команде пилота или автоматической системы управления двигателем изменять геометрию сопла. При этом изменяются размеры критического (самого узкого) и выходного сечений сопла, что позволяет оптимизировать работу двигателя при полётах на разных скоростях и режимах работы двигателя.[1]

Область применения[править | править код]

ТРД наиболее активно развивались в качестве двигателей для всевозможных военных и коммерческих самолётов до 70-80-х годов XX века. В настоящее время ТРД потеряли значительную часть своей ниши в авиастроении, будучи вытесненными более экономичными двухконтурными ТРД (ТРДД).

Двухконтурный турбореактивный двигатель[править | править код]

Схема ТРДД с малой степенью двухконтурности.

Впервые двухконтурный ТРД предложен создателем первого работоспособного ТРД Фрэнком Уитлом в начале 1930-х годов. Советский учёный и конструктор А. М. Люлька с 1937 года исследовал этот принцип и представил заявку на изобретение двухконтурного турбореактивного двигателя (авторское свидетельство 22 апреля 1941 года). Первые образцы ТРД с форсажными камерами созданы в Rolls-Royce во второй половине 1940-х годов, а Conway стал первым серийным.

В основе двухконтурных ТРД (далее — ТРДД) принцип вовлечения дополнительной массы воздуха в создание тяги, чтобы, прежде всего, увеличить КПД реактивного двигателя в плотной атмосфере. Эта часть воздуха нагнетается через внешний контур двигателя.

Пройдя через входное устройство, воздух попадает в компрессор низкого давления, иногда называемым вентилятором. После чего поток разделяется на две части: во внешний контур и, минуя камеру сгорания, далее в сопло, а другая часть во внутренний контур ТРД, где обычно последние ступени турбины приводят вентилятор.

Наиболее эффективные и мощные ТРДД делают трёхкаскадными, двух- и трёхвальными. К двум роторам внутреннего контура, называемого ещё газогенератором, добавляется ещё один, в котором вентилятор и последний каскад турбины соединены валом, расположенном внутри валов газогенератора.

Параметром ТРДД является степень двухконтурности — отношение расхода массы воздуха через внешний контур к расходу через внутренний. Повышение КПД достигается за счёт уменьшения разницы между скоростью истечения газов из сопла и скоростью самолёта за счёт увеличения расхода воздуха в двигателе, то есть увеличения площади входа в двигатель. Это ведёт к росту лобового сопротивления и массы.

ТРДД выполняют со смешением потоков контуров за турбиной и без смешения, с коротким внешним контуром. При смешении потоки смешиваются в особой камере и покидают двигатель через единое сопло с выровненной температурой. Наличие камеры смешения приводит к увеличению габаритов и массы двигателя, но увеличивает КПД и снижает шум, создаваемый струёй.

ТРДД, подобно ТРД, могут быть снабжены регулируемыми соплами и форсажными камерами для сверхзвуковых военных самолётов.

Управление вектором тяги (УВТ) / Отклонение вектора тяги (ОВТ)[править | править код]

Отклоняемые створки сопла с ОВТ. ТРДД Rolls-Royce Pegasus, поворотные сопла которого позволяют осуществлять вертикальные взлёт и посадку. Устанавливается на самолёте Harrier.

Специальные поворотные сопла на некоторых ТРДД позволяют отклонять истекающий из сопла поток рабочего тела относительно оси двигателя. ОВТ приводит к дополнительным потерям тяги двигателя за счёт выполнения дополнительной работы по повороту потока и усложняет управление самолётом. Но эти недостатки полностью компенсируются значительным повышением манёвренности и сокращением разбега самолёта при взлёте и пробега при посадке, вплоть до вертикальных взлёта и посадки. ОВТ используется исключительно в военной авиации.

ТРДД с высокой степенью двухконтурности / Турбовентиляторный двигатель[править | править код]

Порою в популярной литературе ТРДД с высокой степенью двухконтурности (выше 2) называют турбовентиляторными. В англоязычной литературе этот двигатель называется turbofan с добавлением уточнения high bypass (высокая двухконтурность), сокращённо — hbp. ТРДД с высокой степенью двухконтурности выполняются, как правило, без камеры смешения. По причине большого входного диаметра таких двигателей их сопло внешнего контура достаточно часто делают укороченным с целью снижения массы двигателя.

Область применения[править | править код]

Можно сказать, что с 1960-х и по сей день в самолётном авиадвигателестроении — эра ТРДД. ТРДД различных типов являются наиболее распространённым классом ВРД, используемых на самолётах, от высокоскоростных истребителей-перехватчиков с ТРДД с малой степенью до гигантских коммерческих и военно-транспортных самолётов с ТРДД с высокой степенью двухконтурности.

Як-44 с винтовентиляторными двигателями Д-27

У винтовентиляторного двигателя поток холодного воздуха создаётся двумя соосными, вращающимися в противоположных направлениях, многолопастными саблевидными винтами, приводимыми в движение от турбины через редуктор. Степень двухконтурности таких двигателей достигает 90.

На сегодня известен лишь один серийный образец двигателя этого типа — Д-27 (ЗМКБ «Прогресс» им. академика А. Г. Ивченко, г. Запорожье, Украина.), использовавшийся на самолёте Як-44 с крейсерской скоростью полёта 670 км/ч, и на Ан-70 с крейсерской скоростью 750 км/ч.

Турбовинтовой двигатель. Привод винта от вала турбины осуществляется через редуктор Устройство турбовинтового двигателя

Турбовинтовые двигатели (ТВД) или турбовальные двигатели (ТВЛД)[источник не указан 290 дней] относятся к ВРД непрямой реакции.

Конструктивно ТВД схож с ТРД, в котором мощность, развиваемая последним каскадом турбины, передаётся на вал воздушного винта (обычно через редуктор). Этот двигатель не является, строго говоря, реактивным (реакция выхлопа турбины составляет не более 10 % его суммарной тяги), однако традиционно их относят к ВРД. Турбовинтовые двигатели используются в транспортной и гражданской авиации при полётах с крейсерскими скоростями 400—800 км/ч.

В ТВЛД газ, исходящий их камеры сгорания, направляется, во-первых, на турбину, приводящую в движение компрессор, а во-вторых, на турбину, связанную с приводным валом. Приводной вал механически соединяется с редуктором, приводящим в движение несущий винт. Таким образом, в ТВЛД связь ротора и выходного вала является чисто газодинамической. Такое техническое решение преимущественно применяется для силовых установок вертолетов из-за большого момента инерции несущего винта. В случае механической связи несущего винта с газогенератором запуск двигателя требует наличия стартера большой мощности.

Использует для нагрева воздуха ядерный реактор вместо сжигания керосина. Главным недостатком является сильное радиационное заражение использованного воздуха. Преимуществом является возможность длительного полета[6].

ru.wikipedia.org

Турбина — Википедия

Монтаж паровой турбины, произведённой Siemens, Германия.

Турби́на (фр. turbine от лат. turbo — вихрь, вращение) — лопаточная машина, в которой происходит преобразование [1]кинетической энергии и/или внутренней энергии рабочего тела (пара, газа, воды) в механическую работу на валу. Струя рабочего тела воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение.

Применяется в качестве привода электрического генератора на тепловых, атомных и гидро электростанциях, как составная часть приводов на морском, наземном и воздушном транспорте, привода компрессора в газотурбинном двигателе, а также гидродинамической передачи, гидронасосах.

Звук небольшой пневматической турбины, использовавшейся для привода генератора немецкой шахтёрской лампы 1940-х гг. Древнеримская турбинная мельница в Чемту, Тунис. Тангенциально направленный поток воды вращал погруженное в воду горизонтальное колесо на вертикальной оси

Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. н. э.). По словам И. В. Линде[2], XIX век породил «массу проектов», которые остановились перед «материальными трудностями» их выполнения. Лишь в конце XIX века, когда развитие термодинамики (повышение КПД турбин до сравнимого с поршневой машиной), машиностроения и металлургии (увеличение прочности материалов и точности изготовления, необходимых для создания высокооборотных колёс), Густаф Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленности паровые турбины.[3]

Хронология[править | править код]

Разработки Густафа Лаваля[править | править код]

Первую паровую турбину создал шведский изобретатель Густав Лаваль в 1883 году. По одной из версий, Лаваль создал её для того, чтобы приводить в действие сепаратор молока собственной конструкции. Для этого нужен был скоростной привод. Двигатели того времени не обеспечивали достаточную частоту вращения. Единственным выходом оказалось сконструировать скоростную турбину. В качестве рабочего тела Лаваль выбрал широко используемый в то время пар. Изобретатель начал работать над своей конструкцией и в конце концов собрал работоспособное устройство. В 1889 году Лаваль дополнил сопла турбины коническими расширителями, так появилось знаменитое сопло Лаваля, которое стало прародителем будущих ракетных сопел. Турбина Лаваля стала прорывом в инженерии. Достаточно представить себе нагрузки, которые испытывало в ней рабочее колесо, чтобы понять, как нелегко было изобретателю добиться стабильной работы турбины. При огромных оборотах турбинного колеса даже незначительное смещение в центре тяжести вызывало сильную вибрацию и перегрузку подшипников. Чтобы избежать этого, Лаваль использовал тонкую ось, которая при вращении могла прогибаться.

Разработки Чарлза Парсонса[править | править код]

Схема активной и реактивной турбин, где ротор — вращающаяся часть, а статор — неподвижная.

В 1884 году английский инженер Чарлз Парсонс получил патент на многоступенчатую турбину. Турбина предназначалась для приведения в действие электрогенератора. В 1885 году он разработал усовершенствованную версию, которая получила широкое применение на электростанциях. В конструкции турбины был применен выравнивающий аппарат, представляющий из себя набор неподвижных венцов (дисков) с лопатками, имевшими обратное направление. Турбина имела три ступени разного давления с разной геометрией лопаток и шагом их установки. Таким образом, в турбине использовался как «активный», так и «реактивный» принцип.

В 1889 году уже около трехсот таких турбин использовалось для выработки электроэнергии. Парсонс старался расширить сферу применения своего изобретения и в 1894 году он построил опытовое судно «Турбиния» с приводом от паровой турбины. На испытаниях оно продемонстрировало рекордную скорость — 60 км/ч.

Невозможность получить большую агрегатную мощность и очень высокая частота вращения одноступенчатых паровых турбин Лаваля (до 30 000 об/мин у первых образцов) привели к тому, что они сохранили своё значение только для привода вспомогательных механизмов. Активные паровые турбины развивались в направлении создания многоступенчатых конструкций, в которых расширение пара осуществлялось в ряде последовательно расположенных ступеней. Это позволило значительно повысить единичную мощность, сохранив умеренную частоту вращения, необходимую для непосредственного соединения вала турбины с вращаемым ею механизмом.

Реактивная паровая турбина Парсонса некоторое время применялась (в основном, на военных кораблях), но постепенно уступила место более компактным комбинированным активно-реактивным турбинам, у которых реактивная часть высокого давления заменена одно- или двухвенчатым активным диском. В результате уменьшились потери на утечки пара через зазоры в лопаточном аппарате, турбина стала проще и экономичнее.

Модель одной ступени паровой турбины Паровая турбина с раскрытым статором. На верхней части статора видны лопатки соплового аппарата.

Ступень турбины состоит из двух основных частей. Рабочего колеса — лопаток установленных на роторе(подвижная часть турбины), которое непосредственно создаёт вращение. И Соплового аппарата — лопаток установленных на статоре (неподвижная часть турбины), которые поворачивают рабочее тело для придания потоку необходимого угла атаки по отношению к лопаткам рабочего колеса.

По направлению движения потока рабочего тела различают аксиальные паровые турбины, у которых поток рабочего тела движется вдоль оси турбины, и радиальные, направление потока рабочего тела в которых перпендикулярно оси вала турбины. Центробежные турбины (турбокомпрессоры) также выделяют как отдельный тип турбин.

По числу контуров турбины подразделяют на одноконтурные, двухконтурные и трёхконтурные. Очень редко турбины могут иметь четыре или пять контуров. Многоконтурная турбина позволяет использовать большие тепловые перепады энтальпии, разместив большое число ступеней разного давления.

По числу валов различают одновальные, двухвальные, реже трёхвальные, связанных общностью теплового процесса или общей зубчатой передачей (редуктором). Расположение валов может быть как коаксиальным так и параллельным с независимым расположением осей валов.

В местах прохода вала сквозь стенки корпуса установлены концевые уплотнения для предупреждения утечек рабочего тела наружу и засасывания воздуха в корпус.

На переднем конце вала устанавливается предельный центробежный регулятор (регулятор безопасности), автоматически останавливающий (замедляющий) турбину при увеличении частоты вращения на 10—12 % сверх номинальной.

По типу рабочего тела[править | править код]

  1. Техническая энциклопедия / Главный редактор Л. К. Мартенс. — М: Государственное словарно-энциклопедическое издательство "Советская энциклопедия", 1934. — Т. 24. — 31 500 экз.
  2. ↑ И. В. Линде. Паровые турбины, вентиляторы и центробежные насосы высокого давления системы инженера А. Рато. // Записки Московскаго отделения Императорского русского технического общества, 1904. С. 563—641.
  3. Константин Владиславович Рыжов. [lib.aldebaran.ru/author/ryzhov_konstantin/ryzhov_konstantin_100_velikih_izobretenii/ 100 великих изобретений]. — М., 2006. — ISBN 5‑9533‑0277‑0.
  4. 1 2 Билимович Б. Ф. Законы механики в технике. — М.: Просвещение, 1975. — Тираж 80000 экз. — С. 169.
  5. Меркулов И. А. Газовая турбина / под ред. проф. А. В. Квасникова. — Москва: Государственное издательство технико-теоретической литературы, 1957. — С. 25 – 26.

ru.wikipedia.org

Газотурбинная ТЭЦ — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 января 2016; проверки требуют 11 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 января 2016; проверки требуют 11 правок. ГТ ТЭЦ 009М в Рязанской области

Газотурбинная теплоэлектроцентраль (ГТ ТЭЦ или ГТУ-ТЭЦ) — теплосиловая установка, служащая для совместного производства электрической энергии в газотурбинной установке и тепловой энергии в котле-утилизаторе.

Единичный агрегат ГТ ТЭЦ состоит из газотурбинного двигателя, электрогенератора и котла-утилизатора[1]. При работе газовой турбины образующаяся механическая энергия идёт на вращение генератора и выработку электроэнергии, а неиспользованная тепловая — для подогрева теплоносителя в котле. Комплексное использование энергии топлива для электрогенерации и отопления позволяет, как и для всякой ТЭЦ в сравнении с чисто электрической станцией, увеличить суммарный КПД установки примерно с 30 до 90 %.

Оптимальная частота вращения газовой турбины превышает необходимую для непосредственной выработки тока промышленной частоты, поэтому в составе электрогененрирующей части агрегата присутствует либо понижающий механический редуктор, либо статический электронный преобразователь частоты.

В оборудование ГТ ТЭЦ также входят система газоподготовки (осушение, механическая очистка, буферное хранение), электрический распределительный узел, устройства охлаждения генераторов, система автоматического управления и др.

Преимущества[править | править код]

Недостатки[править | править код]

Строительство ГТ ТЭЦ оправдано в случае необходимости быстрого введения локальных генерирующих и отопительных мощностей при минимизации начальных затрат: увеличение мощности или реконструкция сетей масштаба микрорайона, посёлка, небольшого города, основание новых населённых пунктов, особенно в сложных для строительства условиях. Всё, что необходимо для работы станции — лишь наличие стабильного газоснабжения; крайне желателен достаточный спрос на тепловую энергию.

Совершенствование технологии газотурбинных агрегатов удешевляет их производство и эксплуатацию и значительно продляет ресурс. Применение бесконтактных подшипников (магнитных, газодинамических), совершенствование материалов, работающих в пламени, снижение тепловой напряжённости крупных турбин позволяет добиться наработки 60—150 тыс. ч. до замены основных изнашивающихся деталей и межсервисного интервала порядка года. В 2010-е годы были разработаны и начали серийно выпускаться как мощные тихоходные (6 тыс. об./мин.) энергетические турбины для капитальных стационарных ГТ ТЭЦ, так и компактные турбоагрегаты с высокой частотой вращения (около 100 тыс. об./мин.) и высокочастотными генераторами в законченном «контейнерном» исполнении, также в той или иной мере пригодные в качестве основного источника энергоснабжения населённого пункта.

Технологическое совершенство современных газотурбинных агрегатов в известной мере снимает барьер, заставивший на заре электроэнергетики ввести в турбогенератор «лишнюю» паровую ступень. Всё это вместе с увеличением спроса на локальные мощности способствует распространению ГТ ТЭЦ из газоносных районов с суровым климатом и сложными условиями строительства во всё более обширные умеренные области, где при дешёвом газоснабжении ощущается возрастающий недостаток электроэнергии, а наращивание мощности централизованных сетей нецелесообразно по экономическим или организационным соображениям.

РТЭС «Курьяново», «Люблино», «Пенягино», «Переделкино», «Тушино», «Павшино» установлены по 2 газо-турбинные установки (ГТУ) по 6 МВт[2][3][4].

Проект строительства ГТУ-ТЭЦ в центре города Звенигорода был отвергнут как экологически опасный[5].

ru.wikipedia.org

Обсуждение:Газовая турбина — Википедия

Материал из Википедии — свободной энциклопедии

Требуется:

— Эта реплика добавлена участником stskr (о • в) 17:30, 17 февраля 2009 (UTC)

"Типичная большая турбина простого цикла может выдавать от 100 до 300 мегаватт (МВт) мощности и иметь тепловой КПД 35-40 %. КПД лучших турбин достигает 46 %." - автор статьи лукавит: считает мощность, потребляемую компрессором, полезной. Отсюда такой невероятно высокий КПД. КПД газовой турбины (по полезной мощности на валу) не превышает 30%. В промышленной энергетике "турбины простого цикла" применяются в исключительных случаях для покрытия пиковых нагрузок. Применение газовых турбин для генерации электроэнергии целесообразно только в парогазовых циклах.

Радиальные газовые турбины. В 1963 в Норвегии Жан Мовиль предложил эту разработку на фабрике Кениксберга. - Не особо понятно, о чем идет речь, в частности интересует последнее слово предложения. Если речь идет о городе, именуемом в современное время - Калининград, требуется исправление Кениксберг на Кенигсберг.  — Эта реплика добавлена участником 94.181.36.186 (о · в)

Ерунда какая-то вышла вместо статьи. Турбина есть турбина, а тут про ГТД вместо турбины рассказали...  — Эта реплика добавлена участником 93.183.243.197 (о · в)

Спам ли раздел про микротурбины?

Промышленные газовые турбины[править код]

В разделе "Промышленные газовые турбины для производства электричества" смешаны промышленные турбины (турбины для производства электроэнергии малой мощности, около 40 МВт) и энергетические турбины (турбины большой мощности). Заголовок говорит о промышленных турбинах, а описаны и промышленные, и энергетические. На рисунке изображена энергетическая. Надо исправить 188.134.35.84 16:10, 25 мая 2011 (UTC)D

Нужно разобраться происходит ли преобразование химической энергии топлива в тепловую в самой турбине или это происходит в камере сгорания перед впускными соплами. Нужны источники, авторитетные. Аргументы типа "я знаю" не нужны. Ink 12:01, 11 ноября 2011 (UTC)

Вы, вероятно, хотите знать, сгорает ли топливо полностью в камере сгорания или оно продолжает гореть и в самой турбине? — Monedula 12:20, 11 ноября 2011 (UTC)
Спасибо за ссылку. Да, но это только частный случай. Меня интересует именно турбины не авиационные. Но даже из вашей ссылки явно видно, что газ нагретый, а не горит! К сожалению я не могу выделить достаточно времени на поиск и анализ источников, но самое елементарное, что мне пришло в голову и, что я смог сделать быстрое — это проконсультироваться с специалистом, который закончил ХАИ. Так вот он заверил меня, что газавой турбиной считается любая турбина, даже которая работает на «холодном» сжатом газе. Я понимаю, что это ничего не меняет и источники нужны все равно. Прошу прощения, что гружу, но когда-то придется расставить все точки на «и». Ink 18:47, 11 ноября 2011 (UTC)
  • Вот нашел [1] — газовые турбины с впрыском пара как дополнительно рабочего тела, но к сожалению это не АИ. Ink
  • Вот еще [2], по моему это тот же ГОСТ Р 51852-2001:

Система впрыска пара (воды) steam and/or water injection system

Система, обеспечивающая впрыск пара (воды) в рабочее тело для увеличения мощности ГТД и/или уменьшения содержания оксидов азота (NOx) в отработавших газах

Спасибо, этого пока достаточно. Ink 19:35, 11 ноября 2011 (UTC)

Паровые турбины[править код]

А вот если классифицировать по виду преобразования энергии, то тогда газовые и паровые будут относиться к машинам, предназначенным для преобразования тепловой энергии в механическую, а гидравлическая - к машинам, предназначенным для преобразования энергии падающей воды (гравитационной) в механическую. --Freezeman 16:28, 13 ноября 2011 (UTC)
Пара моментов для понимания. В паровых турбинах используется водяной пар, но никак не воздух с каплями воды (это уже туман получается). Гидравлические турбины преобразуют потенциальную и/или кинетическую энергию потока воды. --IGW 17:05, 13 ноября 2011 (UTC)
  • Это понятно. Упоминания о разных режимах работы есть в любом учебнике, включая тот, что я привел выше. Ink 19:09, 13 ноября 2011 (UTC)

"Газовая турбина и паровая турбина по сути не различаются".Господи, в чём тут затруднения? Не следует обобщать. В паровой и в газовой турбинах происходят разные процессы. В паровой турбине это расширение газа(пара) на входе вещество-h3O плюс антикоррозионные добавки, на выходе - в основном также h3O, плюс частицы покрытия проточной части и лопаточного аппарата(провзаимодействовавшие или нет с h3O, водородом, кислородом и т.д.)Происходит физический процесс отбора энергии от нагретого вещества за счёт его расширения, плюс нзначительная добавка за счёт термолиза воды на водород и кислород(с последующим окислением водорода в кислороде). В газовой турбине на входе природный газ или что-либо другое(генераторный, водород, чистый метан, биогаз, сланцевый и т.д.), а на выходе в основном СО2 и Н2О (в случае природного газа и метана). СН4 + 2О2 = СО2 + 2Н2О (при полном сгорании) + куча всего в реальности, но основная часть компонентов на выходе представляет собой вещество с другим молекулярным строением, чем на входе. В этом и состоит принципиальное отличие паровой от газовой установок. — Эта реплика добавлена с IP 178.71.125.8 (о) 15 декабря 2011 (UTC)

Крупнейшие: General Electric, Siemens, «Зоря — Машпроект»[1].

В России: ОДК — Газовые турбины , Силовые машины - ГТД-110М

  1. ↑ Порошенко рассказал, что Украина конкурирует в газотурбостроении только с General Electric, Siemens // Segodnya.ua, 27 августа 2018

ru.wikipedia.org


Смотрите также