RU (495) 989 48 46
Пленка на бампер

АНТИГРАВИЙНАЯ ЗАЩИТА БАМПЕРА

 

Как выбрать конденсатор


Как выбрать конденсатор?

Во время работы над разделом о конденсаторах я подумал, что было бы полезно объяснить, почему один тип конденсаторов может быть заменен другим. Это важный вопрос, так как существует множество факторов (температурные характеристики, тип корпуса и так далее), которые делают тот или иной тип конденсаторов (электролитический, керамический и пр.) наиболее предпочтительным для вашего проекта.

В статье будут рассмотрены популярные типы конденсаторов, их достоинства и особенности, а также области применения. В каждом разделе помещены ссылки на результаты поисковых запросов для некоторых серий наиболее популярных конденсаторов из каталога компании Терраэлектроника.

Например, результат поиска для DIP конденсаторов  c рабочим напряжением 450 В серии HP3 производства компании Hitachi с емкостью 56…680 мкФ приведен на Рис.1.

Рис. 1. Результат поискового запроса для  имеющихся на складе конденсаторов серии HP3 с рабочим напряжением 450 В от Hitachi  с емкостью в диапазоне  56…560 мкФ

Конденсаторы (Рис. 2) представляют собой двухвыводные компоненты, используемые для фильтрации, хранения энергии, подавления импульсов напряжения и других задач. В самом простом случае они состоят из двух параллельных пластин, разделенных изоляционным материалом, называемым диэлектриком.

Рис. 2. Конденсаторы различных типов

Конденсаторы хранят электрический заряд. Единицей емкости является Фарад (Ф). Это название было дано в честь Майкла Фарадея, который в свое время стал пионером в области практического использования конденсаторов.

Конденсаторы могут быть полярными и неполярными. К полярным относятся почти все электролитические и танталовые конденсаторы. Они должны подключаться с учетом полярности напряжения. Если перепутать выводы «-» и «+», то это приведет к короткому замыканию. К неполярным относятся керамические, слюдяные и пленочные конденсаторы. Они могут работать при любой полярности приложенного напряжения, что делает их подходящими для применения в цепях переменного тока.

Несмотря на широкое распространение конденсаторов, выбор конкретной модели бывает достаточно сложным. Вы можете знать емкость и рабочее напряжение, которые требуются в вашем проекте, но у конденсаторов есть и множество других характеристик, таких как полярность, температурный коэффициент, стабильность, последовательное эквивалентное сопротивление (ESR) и так далее. Это делает каждый конкретный тип конденсаторов пригодным для конкретного приложения. Ниже перечислены наиболее популярные типы конденсаторов с кратким описанием их достоинств и особенностей.

Типы конденсаторов

Существует несколько типов конденсаторов, которые отличаются электрическими характеристиками и стоимостью. Ниже приведено описание наиболее популярных типов конденсаторов: алюминиевых электролитических, керамических, танталовых, пленочных, слюдяных и полимерных (твердотельных). Кроме того, для каждого типа представлены наиболее подходящие приложения, а также информация о корпусных исполнениях и примеры конкретных серий.

Рис. 3. Алюминиевый электролитический конденсатор

Описание: алюминиевые электролитические конденсаторы (Рис. 3) являются полярными, поэтому их нельзя использовать в цепях переменного напряжения. Они могут иметь высокую номинальную емкость, но отклонение от номинала обычно составляет до 20%.

Приложения: алюминиевые электролитические конденсаторы оптимальны для приложений, которые не требуют высокой точности и работы с переменными напряжениями. Чаще всего они применяются в качестве развязывающих конденсаторов в источниках питания, то есть для уменьшения пульсаций напряжения. Они также широко используются в импульсных DC/DC-преобразователях напряжения.

Корпусное исполнение: как для монтажа в отверстия, так и для поверхностного монтажа.

Примеры:

Для монтажа в отверстия:

Для поверхностного монтажа:

Рис.4. Керамические конденсаторы

Описание: существует два основных типа керамических конденсаторов (Рис. 4): многослойные чип-конденсаторы (MLCC) и керамические дисковые. MLCC пользуются большой популярностью и широко применяются в электронных устройствах, поскольку обладают высокой стабильностью и малым уровнем потерь. Они отличаются низким последовательным сопротивлением (ESR) и минимальной погрешностью номинала по сравнению с электролитическими или танталовыми конденсаторами. Вместе с тем их максимальная емкость невелика и достигает всего нескольких десятков мкФ. Из-за высокой удельной емкости MLCC имеют очень малые габариты и отлично подходят для размещения на печатных платах.

Приложения: поскольку керамические конденсаторы являются неполярными, то их можно применять в цепях переменного тока. Они широко используются в качестве «универсальных» конденсаторов, например, для высокочастотной развязки, фильтрации, подстройки резонаторов и подавления электромагнитных помех. Как MLCC, так и керамические дисковые конденсаторы подразделяются на два класса:

Керамические конденсаторы I класса – точные (+/- 5%) и стабильные конденсаторы с минимальной зависимостью емкости от температуры. Конденсаторы NP0/C0G отличаются минимальным температурным коэффициентом 30 ppm/K. К сожалению, их максимальная емкость ограничена несколькими нанофарадами (нФ). Поскольку они очень стабильны и точны, то их чаще всего используют в системах с частотным регулированием, например, в резонансных схемах для радиочастотных приложений.

Керамические конденсаторы II класса менее точны, но обеспечивают более высокую удельную емкость (номинальные значения - до десятков мкФ) и, следовательно, подходят для фильтрации и развязки. Среди их недостатков можно отметить большой коэффициент напряжения. Например, даже при приложении напряжения, равного половине рабочего, обычно наблюдается снижение емкости на 50%.

Корпусные исполнения: наиболее распространены корпуса для поверхностного монтажа 0201, 0402, 0603, 0805, 1206 и 1812. Цифры обозначают габаритные размеры в дюймовой системе. Например, 0402 составляет 0,04х0,02", 0603 - 0,06х0,03" и так далее.

Примеры:

Тип NP0/C0G:

Тип X7R:

Для монтажа в отверстия:

Рис. 5. Танталовые конденсаторы

Описание: танталовые конденсаторы (Рис. 5) – это подтип электролитических конденсаторов с высоким уровнем поляризации. При их использовании необходимо проявлять осторожность, поскольку они имеют склонность к катастрофическим отказам даже при воздействии импульсов напряжения с амплитудой, лишь немного превышающей номинальное рабочее напряжение. Танталовые конденсаторы могут иметь высокую номинальную емкость и отличаются высокой временной стабильностью. Они меньше по размеру, чем алюминиевые электролитические конденсаторы той же емкости. Но алюминиевые электролиты могут выдерживать более высокие максимальные напряжения.

Приложения: из-за малого тока утечки, стабильности и высокой емкости танталовые конденсаторы часто используются в схемах выборки-хранения, в которых требуется обеспечивать минимальный ток утечки для продолжительного хранения заряда. Также, благодаря малым размерам и долговременной стабильности, они применяются для фильтрации по цепям питания.

Корпусные исполнения: танталовые конденсаторы выпускаются как для монтажа в отверстия, так и для поверхностного монтажа (SMD). Тем не менее, чаще всего используются именно SMD-компоненты. В дюймовой системе типоразмер А соответствует размеру 1206 (0,12х0,06"), типоразмер В соответствует размеру 1210, типоразмер C соответствует размеру 2312, типоразмер D - размеру 2917.

Примеры:

Рис. 6. Пленочные конденсаторы

Описание: пленочные конденсаторы (Рис. 6) являются неполярными, что позволяет использовать их в цепях переменного напряжения. Они отличаются малыми значениями эквивалентного сопротивления (ESR) и последовательной индуктивности (ESL).

Приложения: пленочные конденсаторы часто применяются в схемах с аналого-цифровыми преобразователями. Кроме того, они способны работать с высоким пиковым током и, таким образом, могут применяться в снабберных цепочках для фильтрации индуктивных выбросов напряжения в DC/DC-преобразователях.

Примеры:

Рис. 7. Слюдяной конденсатор

Описание: слюдяные конденсаторы (Рис. 7) являются неполярными, отличаются малой величиной потерь, высокой стабильностью и обладают отличными характеристиками на высоких частотах.

Приложения: эффективны при работе в составе радиочастотных схем. Они могут стоить несколько долларов за штуку, поэтому в маломощных приложениях чаще используют керамические конденсаторы. Однако слюдяные конденсаторы благодаря высокому напряжению пробоя остаются практически незаменимыми для таких приложений, как  радиопередатчики высокой мощности.

Примеры:

Рис. 8. Полимерные (твердотельные) конденсаторы

Описание: твердотельные конденсаторы являются полярными, так же как и другие электролитические конденсаторы, но имеют ряд преимуществ, например, меньшие потери благодаря низкому последовательному сопротивлению ESR и длительный срок службы. Для обычных алюминиевых электролитов существует риск высыхания электролита при низких температурах, но твердотельные конденсаторы благодаря применению твердого полимерного диэлектрика обладают высокой надежностью даже при очень низких температурах.

Приложения: используются вместо электролитов в высококачественных материнских платах и DC/DC-преобразователях.

Примеры:

Описание: конденсаторная сборка (capacitor array)  - это группа конденсаторов, конструктивно объединенных в одном корпусе, причем любой из конденсаторов может быть отдельно от остальных подключен к внешней цепи. Существует много различных типов сборок, которые отличаются количеством конденсаторов, типом диэлектрика, величиной отклонения емкости конденсатора от номинального значения, максимальным рабочим напряжением, типом корпуса и др.

Приложения: конденсаторные сборки широко применяются в мобильной и носимой аппаратуре, в материнских платах компьютеров и цифровых приставках, в радиочастотных модемах и усилителях, в автомобильных и медицинских приложениях и т.д.

Корпусные исполнения: конденсаторные сборки выпускаются как в DIP корпусах, так и в SMD исполнении. Наиболее популярные типоразмеры сборок для поверхностного монтажа 0508, 0612, 0805 представлены в нашем каталоге.

Примеры:

Подобрать необходимый конденсатор в каталоге Терраэлектроники можно двумя способами:

  1. использовать параметрический поиск в соответствующем разделе каталога, для чего необходимо зайти в раздел конденсаторов, выбрать соответствующий задаче тип конденсатора, а далее заполнить ряд фильтров с параметрами. Фрагмент скриншота поиска MLCC конденсатора с параметрами: номиналом 1 нФ, точностью 10 %, диэлектриком X7R, напряжением  250 В и корпусом 0805 представлен на Рис. 9.
  2. воспользоваться интеллектуальным поиском конденсатора по параметрам. Для этого достаточно скопировать строку из спецификации “Конденсатор 1 нФ, X7R, 10%, 250 В, 0805" или ввести «1n X7R 10% 250V 0805» в строку поиска и получить тот же самый  список подходящих по указанным параметрам компонентов.

Рис. 9. Фрагмент скриншота сервиса поиска конденсатора

Заключение

В данном руководстве были рассмотрены некоторые наиболее популярные типы конденсаторов. Кроме них существуют суперконденсаторы, кремниевые конденсаторы, оксид-ниобиевые и подстрочные конденсаторы, которые обладают уникальными преимуществами по величине емкости, уровню надежности или возможности подстройки. Однако в большинстве электронных схем вы чаще всего увидите один из шести рассмотренных выше типов конденсаторов.

Журнал: https://blog.octopart.com/archives/2016/03/how-to-select-a-capacitor

www.terraelectronica.ru

Конденсаторы для «чайников» / Habr

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости εr использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.


Паразитные индуктивность и сопротивление реального конденсатора

С использованием диэлектриков в конденсаторах есть одна проблемка, наряду с тем, что диэлектрик с нужными характеристиками обладает неприятными побочными эффектами. У всех конденсаторов есть небольшие паразитные сопротивление и индуктивность, которые иногда могут влиять на его работу. Электрические постоянные меняются от температуры и напряжения, пьезоэлектричества или шума. Некоторые конденсаторы стоят слишком дорого, у некоторых существуют состояния отказа. И вот мы подошли к основной части статьи, в которой расскажем о разных типах конденсаторов, и об их свойствах, полезных и вредных. Мы не будем освещать все возможные технологии, хотя большинство обычных мы опишем.

Алюминиевые электролитические

Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические


Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за состоянием отказа, бывает, что они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика

История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через личные сообщения сайта. Спасибо.

habr.com

Как подобрать конденсатор для однофазного электродвигателя или трехфазного

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.


www.szemo.ru

F.A.Q. Про конденсаторы для пищалок. — Сообщество «Автозвук» на DRIVE2

Всем привет! В этой записи, я решил поднять насущную и актуальную для многих новичков тему. Попробуем в ней разобраться, вникнуть в нее, сделать выводы и сформулировать советы. Поехали!

Речь идет о выборе конденсаторов для рупорных пищалок. Именно так ставят вопрос все новички. Мы с вами шаристые перцы и тертые калачи :D по этому перефразируем это грамотнее. Подбор пассивного фильтра высоких частот первого порядка для рупорных пищалок.

Сперва давайте вспомним, чо это за фигня, для чего нужна и как работает?
Кроссоверы (фильтры) нам нужны для того, чтобы отрезать лишние диапазоны частот звука от динамика, отдав ему необходимую для его нормальной работы полосу.
С сабами в этом плане страшного ничего нет. Даже если дать сабу всю полосу, то с ним ничего не случится. Зато когда мы говорим о пищалках любой конструкции, то для них кроссовер определит их жизнь, звук и долговечность.

Второй момент, который важно понимать: любой кроссовер НЕ ОБРЕЗАЕТ частоты резко. Если ваш фильтр высоких частот настроен, допустим, на 3килогерца это не значит, что динамик резко замолчит ниже трех. Динамик будет петь и 2 и 1кгц и 500гц и даже 20!
Весь вопрос в том, какой мощности сигнал придет к динамику на этих частотах и насколько сильно и быстро будет падать уровень громкости за пределами настройки кроссовера.
Этот момент определяется порядком среза кроссовера. 1й, порядок (6дб/окт), 2й (12дб/окт) и т.д. Что значат эти дБ/окт?
Ну с Дб ваопросов не возникает. Дб-децибелы определяют уровень громкости (точнее уровень звукового давления, но пофиг :D суть не в этом) а окт. – это октава. Октава это…(бэллллин как бы попроще завернуть :D) Октава это диапазон частот располагающийся либо до вдвое большей частоты от текущей либо вдвое меньшей. Не понятно кароче один хрен. :D:D
Объясню на примере:
Допустим у нас есть фильтр высоких частот 1го порядка на 1килогерц(1000гц). Такой фильтр пропускает к пищалке высокие частоты и режет низы. Так вот фильтр первого порядка (6дб/окт) это значит, что ниже 1килогерца звук не пропадет, но громкость звука станет падать.
Если допустим у нас динамик пел с громкостью 100децибелл на 1килогерце, то ниже настройки фильтра на одну октаву (1000гц/2=500гц) на 500герцах динамик будет петь на 6 децибел тише. А еще на октаву ниже (500/2=250гц) уже на 12 децибелл тише, на 125гц на 18 дб тише и на 63гц на 24 дб тише и так далее.
Если бы мы резали динамик на той же частоте но 2м порядком (12дб/окт) то на 500гц мы бы потеряли 12дб, на 250гц 24 дб, на 125гц 36дб а на 63гц 48дб.
Таким макаром можно просчитать любой порядок фильтра на разных частотах.

Пример, конечно, чрезвычайно упрощенный и грубый. Скорость и равномерность затухания будет зависеть еще от 100500 факторов, но в принципе пример нужную нам суть отражает. Именно потому, что пищалка всегда будет петь и ниже частоты среза, крайне не рекомендуется делать срез вблизи их резонансной частоты ниже которой им работать становится крайне трудно. Это в лучшем случае снизит ее громкость в разы (вы просто не сможете навалить громкость на всю без искажений). В худшем пищалка умрет. Усвоили этот факт и поехали дальше. Там еще все муторнее и непонятнее :D.

Следующий важный аспект этого дела напроч разровняли в умах новичков таблички вот такого рода в интернете:

Собственно таблички верные.были бы… если б не один нюанс. не бывает динамиков 4ом, или 2 ом, или 8 ом. И не было никогда. ))

То что указано на динамике это не его сопротивление, это импеданс во первых, во вторых это МИНИМАЛЬНЫЙ импеданс который может иметь динамик при работе.
Этот критерий очень важен для стабильной работы усилителя без перегрузки. Но это вовсе не значит, что импеданс не может быть выше при работе динамика. Я больше скажу, он выше практически всегда, весь вопрос на сколько выше и когда. (кстати можете померять мультиметром ваши 4х омные динамики. Там всегда будет меньше чуть 4х Ом. 3.7-3.8ом именно потому что указан импеданс а вы измеряете сопротивление)) ). Так вот импеданс динамика при воспроизведении звука зависит от кучи факторов, начиная от конструкции самого дина и заканчивая оформлением динамиков ( а ведь рупорная пищалка это пищалка в офромлении РУПОР) и частоты. Вот последний фактор нам особенно интересен, когда мы говорим о вч.
Если, допустим, взять две четырехомные пищалки и измерить их импеданс скажем на 5 килогерцах то запросто может получиться что у одной пищалки на этой частоте импеданс 5ом а у другой 7. Потом согласно таблице выше, пытаемся их порезать на 5 килогерц кондером на 8 микрофарад. В итоге у нас первая порежется на 4килогерца, а вторая с этим же кондером порежется уже на 3килогерцах! Соответственно первая просто будет валить говнозвук, вторая начнет подгорать.
Для примера вот вам график зависимости импеданса системы от частоты (Z характеристика) для компонентной акустики:

И вот табличка экспериментальных замеров нашего одноклубника:

А ВОТ и сама тема с замерами.

Какой вывод можно из этого сделать? А вот такой:
Если читать все таблички подряд и не пользоваться головой то говнозвук и паленое железо это ваше уверенное будущее.

Реально узнать частоту среза конденсатором и грамотно осуществить его подбор можно только имея на руках график зависимости импеданса от частоты для ваших динамиков либо сделать его самому в ваших условиях методом измерения.

Другой вопрос, что никому это нафиг не надо и всем гораздо проще не думая вкрячить кондер чтоб долбило по громче. Подавляющее большинство сторонники именно такого подхода, по этому давайте разберемся как в этом случае не накосячить и не запороть все.

Во первых нам нужны НЕПОЛЯРНЫЕ конденсаторы. Обычно они имеют вот такой вид или похожий:

Вот такие электролитические кондеры использовать крайне не рекомендуется.

Их отличие от первых в том, что они имеют полярность и работают адекватно в постоянном токе. Те что выше работают одинаково хорошо как в переменном так и в постоянном ( а мы имеем дело именно с переменным)) ). Китайцы очень любят ставить электролиты в дешевых системах отрезая ими пищалку. Отсюда вам бесплатный совет: просто заменив в своей дешевой акустике электролит на неполярный конденсатор той же емкости, вы можете сделать звук приятнее и инетреснее )).

Стоят неполярные кондеры копейки. И тут снова вам совет. Барыги щас часто предлагают купить у них вместе с рупорными пищалками кондеры «спецом для звука и для этих пищей». У некоторых продавцов они стоят также копейки а у некоторых цена кондера подрастает в разы! Возможно есть смысл воспользоваться их советом и услугами если вы не заморачиваетесь на таких тонкостях.
Остальным очень рекомендую заглянуть в радиомагазины и закупиться конденсаторами там. За те деньги, что вы у некоторых барыг бы отдали за пару, сможете набрать несколько пар кондеров в магазине. Более того, скажу, что именно так и нужно поступать в любом случае при постройке системы.
Очень рекомендую вам выписать из таблички выше номиналы всех рекомендуемых кондеров и купить каждого по паре.
Когда дело дойдет до настройке пищалок, вы подбором сможете на слух добиться нужного звука и при этом пищалки не будут перегружаться на высокой громкости.
Их перегруз, кстати, хорошо слышен. Пищалки начинают сильно песочить в уши, похрипывать и делать голоса неестественными. Я думаю многие читатели уже слышали такое у чотких пацанчиков с района.

Начинать подбор нужно ОТ МЕНЬШЕГО НОМИНАЛА КОНДЕСАТОРОВ К БОЛЬШЕМУ. Чем больше емкость конденсатора тем ниже он порежет вашу пищалку.

Номинал емкости конденсатора указан всегда на его корпусе, но иногда это сделано мудреным алгоритмом. Описывать я его не буду, он вам нафиг не нужен. Просто порекомендую попросить продавца в магазине разложить кондеры по разным кулечкам и подписать каждый.

Касаемо допустимого напряжения работы конденсаторов, то тут можно не париться. У неполярных кондеров напряжение допустимое измеряется порядкоми сотен вольт, и в вашей пищалке он будет работать с конским запасом по напряжению. )

Вот собственно и все что я хотел рассказать о конденсаторах для пищалок.
Остается упомянуть, что конденсатор необходимо устанавливать как можно ближе к пищалке. В идеале прям к кдемме подпаивать. При этом абсолютно не важно на какой из клемм будет висеть кондер. Хотя если начали вешать кондер на плюсовую клемму то вешайте на плюсовые и на всех остальных пищах.

На этом пока все. ВСЕМ УДАЧИ И ПРАВИЛЬНЫХ СРЕЗОВ))

З.Ы. готовимся к соревам )) Воскресенье близко)

www.drive2.ru

Как выбрать конденсатор 🚩 для чего конденсатор 🚩 Электроника

Радиолюбители используют алюминиевые, танталовые, керамические конденсаторы и многие другие. От правильного выбора конденсатора зависит его надежность при эксплуатации, так как использовать его надо в таких режимах работы, которые не превышают заданные условия. Для этого нужно определить значения номинальных параметров и допустимые их изменения в процессе работы, возможные режимы и электрические нагрузки, конструкцию, показатели надежности и долговечности, варианты монтажа, размеры и массу.

Практика работы показывает, что разрешенное напряжение, обозначенное на его корпусе, не должно быть меньше, чем на электрической схеме. Можно выбрать больше на 20-30%. Емкость может быть использована в пределах +-10%, но лучше брать ее не меньше, чем на электрической схеме.

Если конденсаторы должны находиться в цепи питания, шунтировать ВЧ (высокие частоты), тогда лучше использовать керамические. Если они должны быть установлены в частотозадающем каскаде, тогда лучше брать их с малым ТКЕ (температурный коэффициент емкости), чтобы не было дрейфа частоты. Во всех случаях конденсаторы следует использовать при меньших нагрузках и облегченных режимах (по сравнению с максимально допустимыми).

Выполненный монтаж и крепление должны обеспечивать нужную механическую прочность, отличный электрический контакт и отсутствие резонансных явлений. Их приспособления (для крепления) не должны повредить корпус и защитные покрытия, а также ухудшать условия отвода тепла. Никогда не надо применять конденсаторы сомнительного происхождения (например, электролитические, выполненные некачественно могут взрываться). Надо обращать внимание на удобство установки и наличие защиты выводных контактов от случайного замыкания.

Радиолюбители выбирают конденсаторы по их емкостям и рабочим напряжениям. Но есть и другие характеристики, на которые нужно обращать внимание. Конденсаторы еще не имеют идеальных параметров, поэтому они обладают такими свойствами, как ESR (Effective Series Resistance) - эквивалентное последовательное сопротивление и ESI (Effective Series Inductance) - эквивалентная последовательная индуктивность. На их емкость влияет температура, напряжение, механические воздействия. При неправильном выборе конденсатора может появиться повышенное потребление тока и увеличенный уровень шумов, нестабильная работа всей конструкции.

www.kakprosto.ru

принцип работы и алгоритм выбора

Все чаще в составе современных электронных устройств можно встретить суперконденсаторы. Суперконденсаторы способны выступать как в качестве основных элементов питания, так и в качестве буферных элементов для сглаживания провалов напряжения аккумуляторов при работе с импульсной нагрузкой.

Наравне с термином «суперконденсатор» в литературе часто применяют альтернативные названия, например, «ультраконденсатор» или «ионистор». Все эти именования используются для обозначения одного и того же компонента – конденсатора с двойным электронным слоем. Впервые суперконденсатор был создан в далеком 1957 году компанией General Electric. Позднее аналогичные компоненты выпускались различными производителями по всему миру, в том числе и в СССР (например, ионисторы КИ1-1).

Принцип работы суперконденсатора

Структура и принцип работы суперконденсатора поясняются на рис. 1. Суперконденсатор состоит из электродов, графитового сепаратора и электролита. При приложении внешнего напряжения носители заряда образуют два электронных слоя на границе сепаратора и электролита. Чем больше площадь поверхности сепаратора, тем больше будет накапливаемый заряд. Из рисунка видно, что в отличие от аккумуляторов в суперконденсаторе отсутствуют химические реакции, а энергия накапливается в виде статического заряда, как и в обычных конденсаторах.

Рис. 1. Структура и принцип действия суперконденсатора

Основные характеристики суперконденсаторов

По своим характеристикам суперконденсаторы занимают промежуточное положение между аккумуляторами и обычными конденсаторами. В последнее время, благодаря большой емкости, суперконденсаторы становятся отличной альтернативой для аккумуляторов в широком спектре малопотребляющих устройств. Сравнение некоторых параметров суперконденсаторов и аккумуляторов приведено в таблице 1.

Таблица 1. Сравнение параметров суперконденсаторов и аккумуляторов

Параметр

Суперконденсатор

Литий-ионный аккумулятор

Время заряда

1–10 с

10–60 мин

Срок службы (циклов)

1 миллион циклов
или 30 000ч

500 и более

Напряжение

2,3…2,75 В (тип)

3,6 В (ном)

Удельная энергия (Вт·ч/кг)

5 (тип)

120–240

Удельная мощность (Вт/кг)

До 10 000

1 000…3 000

Стоимость кВт·ч

$10,000 (тип)

$250–$1,000

Время наработки на отказ)

10-15 лет

5-10 лет

Диапазон температур заряда

–40…65 °C

0…45 °C

Диапазон температур разряда

–40 to 65 °C

–20…60 °C

Емкость – один из важнейших параметров для любого накопителя энергии. По величине удельной емкости на единицу массы суперконденсаторы значительно превосходят обычные конденсаторы (в том числе, электролитические), но в свою очередь так же сильно уступают аккумуляторам (рис. 2). По этой же причине стоимость единицы емкости для суперконденсаторов оказывается существенно выше, чем для аккумуляторов.

Рис. 2. Сравнение удельной емкости накопителей энергии

Вторым по важности параметром накопителя энергии является разрядный ток. По этому показателю лидируют обычные конденсаторы, которые из-за низкого собственного сопротивления способны выдерживать огромные импульсы тока. Аккумуляторы наоборот отличаются высоким сопротивлением и чрезвычайно чувствительны к большим разрядным токам. Например, литий-ионные аккумуляторы склонны к перегреву и разрушению при быстром разряде. Суперконденсаторы характеризуются более высоким последовательным сопротивлением, чем простые конденсаторы, однако существуют модели, способные выдерживать разрядные токи до сотен ампер.

Высокое сопротивление создает проблемы не только с точки зрения разогрева, но и с точки зрения просадки напряжения при импульсной нагрузке. Импульсное потребление характерно для большинства современных систем, но особенно ярко оно проявляется в устройствах с беспроводными радиопередатчиками. На рис. 3 представлен пример преждевременного отключения системы с аккумуляторным питанием из-за просадки напряжения. При передаче данных по беспроводному каналу потребление системы существенно возрастает, однако аккумулятор не способен выдать требуемую мощность мгновенно. Из-за этого напряжение на нагрузке проседает и может опуститься ниже порогового значения. Пороговое значение ограничивает минимально допустимое напряжение питания, ниже которого происходит отключение устройства. На рис. 3 пороговое значение составляет 1 В. В результате просадки напряжения устройство отключается, несмотря на то, что уровень заряда аккумулятора на самом деле остается высоким. Во многих случаях с данной проблемой не могут справиться даже развязывающие конденсаторы.

Рис. 3. Провалы напряжения из-за высокого внутреннего сопротивления аккумулятора

Суперконденсаторы способны выдавать достаточно высокую импульсную мощность и позволяют решить проблему просадки напряжения (рисунок 4). Для этого суперконденсатор включается параллельно с аккумулятором. В данном случае ультраконденсатор не только предотвращает ложные выключения системы, но и защищает аккумулятор от пиковых токов, которые негативно влияют на срок его службы и могут в некоторых случаях банально вызвать его перегрев и разрушение. Таким образом, режим буферного элемента является одним из основных вариантов использования суперконденсаторов. Подробнее об этом вопросе рассказывается в статье «Расстояние не помеха. Эффективный радиус действия суперконденсаторов CAP-XX».

Рис. 4. Суперконденсатор не только предотвращает ложные выключения, но и защищает аккумулятор от пиковых токов

В последнее время наблюдается бурное развитие малопотребляющей электроники. Современные электронные системы могут потреблять всего лишь сотни мкА в активном режиме и доли мкА в режиме ожидания. Очень часто для питания таких устройств используют различные маломощные харвестеры энергии: солнечные батареи, виброхарвестеры, термогенераторы и т.д. Для накопления энергии этих преобразователей не всегда можно использовать конденсаторы. Например, устройство может накапливать энергию несколько часов, после чего выполнять быструю отправку данных по радиоканалу и снова засыпать. Высокий саморазряд конденсаторов не позволит работать в таком режиме. В то же время суперконденсатор окажется вполне приемлемым вариантом на роль накопителя энергии. Пример такого режима работы рассматривается в статье «Использование суперконденсаторов CAP-XX в устройствах с питанием от солнечных батарей».

Однако при использовании суперконденсатора в качестве основного элемента питания необходимо учитывать две важные особенности. Во-первых, суперконденсаторы обладают низким рабочим напряжением 2,3…2,75 В (хотя на рынке присутствуют модели с напряжением 3 В, например, суперконденсаторы от VINATech). Этого не всегда достаточно, а значит, может потребоваться последовательное включение нескольких элементов, что приведет к уменьшению суммарной емкости. В то же время у литий-ионных аккумуляторов номинальное напряжение составляет 3,6 В, что является оптимальным значением для большинства современных микросхем.

Во-вторых, еще одним недостатком суперконденсаторов становится линейный характер разряда. Разумеется, предсказуемая форма разряда это хорошо, но не всегда. На рис. 5 представлен пример, в котором система достигает граничного напряжения (минимально допустимое напряжение питания) в тот момент, когда суперконденсатор разряжен всего лишь на 50%. По этой причине для нормальной работы устройства может потребоваться дополнительный повышающий регулятор. В то же время аккумуляторы характеризуются относительно небольшим уменьшением напряжения в рабочем диапазоне.

Рис. 5. Разрядные характеристики аккумуляторов и суперконденсаторов

Еще одним преимуществом суперконденсаторов перед аккумуляторами является широкий диапазон рабочих температур. Это касается как процесса заряда, так и процесса разряда. На рынке присутствуют модели суперконденсаторов, которые способны работать при отрицательных температурах до -40°С и при положительных до +125 °С. В качестве примера можно привести ультраконденсторы от компания FastCAP (рис. 6). Разумеется, на рынке присутствуют и аккумуляторы с широким диапазоном рабочих температур, однако речь идет о специализированных решениях.

Рис. 6. Существуют модели ультарконденсаторов, способные работать в широком диапазоне температур, например, ультраконденсторы от компания FastCAP

Примеры суперконденсаторов

В заключение краткого экскурса по суперконденсатором приведем некоторые конкретные примеры.

Широкий спектр суперконденсаторов выпускает компания LS Mtron, которая была создана на базе одного из подразделений LG Electronics. В номенклатуре LS Mtron можно найти модели с традиционной рулонной и прямоугольной конструкцией, а также суперконденсаторные батареи и модули (рис. 7).

Рис. 7. Суперконденсаторы FastCAP отличаются широким диапазоном рабочих температур -40…+125 °С

Еще одним известным производителем суперконденсаторов является компания SPSCAP, которая предлагает несколько серий одноячеечных суперконденсаторов с диапазоном выходных токов 0,9…250 А (рис. 8). SPSCAP также выпускает ультраконденсаторные батареи.

Рис. 8. Суперконденсаторы от компании SPSCAP

Интересный модельный ряд суперконденсаторов предлагает корейская компания VINATech. Кроме того, это один из немногих производителей, который выпускает суперконденсаторы с рабочим напряжением 3,0 В.

Рис. 9. Суперконденсаторы и суперконденсаторные батареи от VINATech с рабочим напряжением до 3 В

На портале УНИТЕРа мы также неоднократно рассказывали и о некоторых уникальных решениях, к числу которых можно отнести и сверхтонкие суперконденсаторы DMHA14R5V353M4ATA0 от компании Murata. Эти суперконденсаторы имеют толщину всего 0,4 мм (рис. 10).

Рис. 10. Сверхтонкие суперконденсаторы DMHA14R5V353M4ATA0 имеют толщину всего 0,4 мм

В одной из статей мы также рассказывали о суперконденсаторах от компании FastCAP , которые отличаются широким диапазоном рабочих температур -40…+125 °С (рис. 11).

Рис. 11. Суперконденсаторы от компании FastCAP с широким диапазоном рабочих температур

Алгоритм выбора суперконденсаторов

Как уже отмечалось выше, суперконденсаторы могут использоваться либо в качестве основного накопителя энергии, либо в качестве буферного элемента при работе в связке с основным аккумулятором. Разумеется, алгоритм выбора суперконденсатора в этих случаях будет отличаться, однако основные шаги будут примерно одинаковыми.

Для начала следует определиться с основными параметрами суперконденсатора – с рабочим напряжением и с максимальным выходным током.

Суперконденсаторы не любят перенапряжений, по этой причине при выборе подходящего накопителя следует позаботиться о согласовании рабочего напряжения. Для увеличения рабочего напряжения можно использовать последовательное включение суперконденсаторов, однако не стоит забывать, что в таком случае емкость будет уменьшаться. Кроме того, при необходимости следует предусмотреть защитные цепи для ограничения напряжения.

Далее следует рассчитать величину емкости. Рассмотрим алгоритм расчета, предложенный компанией SPSCAP. Для начала необходимо выбрать сценарий разряда суперконденсатора. Разряд может происходить либо с постоянным током, либо с постоянным напряжением.

Разряд с постоянным током. При таком сценарии ток разряда имеет фиксированное значение, а емкость будет рассчитываться по формуле:

C = It / (Vwork -Vmin),

где Vwork – номинальное рабочее напряжение, Vmin – минимально допустимое напряжение, I – ток разряда (постоянная величина в данном случае), t – время разряда.

Например, если Vwork=5 В, Vmin=4,2 В, t = 10 с, I =100 мА = 0,1 А, тогда:

C = 0,1 * 10 / (5 -4,2) = 1,25 Ф.

При выборе конкретной модели суперконденсатора необходимо предусмотреть некоторый запас по емкости. Кроме того, следует учесть температурную зависимость емкости. После выбора конкретной модели суперконденсатора следует свериться с температурной характеристикой, чтобы убедиться в том, что емкость превышает рассчитанное значение во всем диапазоне рабочих температур.

Разряд с постоянной мощностью. В таком случае мощность разряда остается фиксированной, а  емкость будет рассчитываться по формуле:

C = 2Pt/ (Vwork2 -Vmin2)

где Vwork – номинальное рабочее напряжение, Vmin – минимально допустимое напряжение, P – мощность разряда (постоянная величина в данном случае), t – время разряда.

Например, если предполагается разряд суперконденсатора в течение 10 секунд при постоянной мощности 200 кВт, а диапазон рабочего напряжения составляет 450 В - 750 В, тогда требуемая емкость составит:

С = 2 * 200 кВт * 10 / (7502-4502) = 11 Ф

В данном случае вновь следует предусмотреть некоторый запас и температурную зависимость емкости.

Источник:

www.terraelectronica.ru

Расчет емкости конденсатора для трехфазного двигателя

При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов - рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи.

Как подключить асинхронный двигатель?

Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В).

На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете.

Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.

Пусковой конденсатор

Ознакомьтесь также с этими статьями

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз - рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Как подобрать конденсатор для трехфазного двигателя?

Конденсатор используется неполярный, на напряжение не менее 400 В. Либо современный, специально на это рассчитанный (3-й рисунок), либо советский типа МБГЧ, МБГО и т.п. (рис.4).

Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно.

Онлайн калькулятор расчета емкости конденсатора

Советуем к прочтению другие наши статьи

Расчет емкости конденсатора22:

 

evmaster.net

Какие бывают конденсаторы? Типы конденсаторов, их характеристики

Высокий уровень прочности этого материала дает возможность использовать тонкие заготовки. В итоге емкость конденсатора, пропорциональная показателю объема, резко возрастает.

Устройства КМ отличаются высокой стоимостью. Объясняется это тем, что при их изготовлении используются драгоценные металлы и их сплавы: Ag, Pl, Pd. Палладий присутствует во всех моделях.

Конденсаторы на основе керамики.

Дисковая модель обладает высоким уровнем емкости. Ее показатель колеблется от 1 pF до 220 nF, а самое высокое рабочее напряжение не должно быть выше 50 V.

К плюсам данного типа можно отнести:

- малые потери тока;
- небольшой размер;
- низкий показатель индукции;
- способность функционировать при высоких частотах;
- высокий уровень температурной стабильности емкости;
- возможность работы в цепях с постоянным, переменным и пульсирующим током.

Основу многослойного устройства составляют чередующиеся тонкие слои из керамики и металла.

Этот вид похож на однослойный дисковый. Но такие устройства обладают высоким показателем емкости. Максимальное рабочее напряжение на корпусе этих приборов не указывается. Так же как и на однослойной модели, напряжение не должно быть выше 50 V.

Устройства функционируют в цепях с постоянным, переменным и пульсирующим током.

Плюсом высоковольтных керамических конденсаторов является их способность функционировать под высоким уровнем напряжения. Диапазон рабочего напряжения колеблется от 50 до 15000 V, а показатель емкости может составлять от 68 до 150 pF.

Могут функционировать в цепях с постоянным, переменным и пульсирующим током.

Танталовые устройства.

Современные танталовые устройства являются самостоятельным подвидом электролитического вида из алюминия. Основу конденсаторов составляет пентаоксид тантала.

Конденсаторы обладают небольшим показателем напряжения и применяются в случае необходимости использования прибора с большим показателем емкости, но в корпусе малого размера. У данного типа есть свои особенности:

- небольшой размер;
- показатель максимального рабочего напряжения составляет до 100 V;
- повышенный уровень надежности при долгом употреблении;
- низкий показатель утечки тока; широкий спектр рабочих температур;
- показатель емкости может колебаться от 47 nF до 1000 uF;
- устройства обладают более низким уровнем индуктивности и применяются в высокочастотных конфигурациях.

Минус этого вида заключен в высокой чувствительности к повышению рабочего напряжения.

Следует отметить, что, в отличие от электролитического вида, линией на корпусе помечается плюсовой вывод.

Разновидности корпусов.

Какие разновидности имеют танталовые конденсаторы? Типы конденсаторов из тантала выделяются в зависимости от материала корпуса.

1. SMD-корпус. Для изготовления корпусных устройств, которые используются при поверхностном монтаже, катод соединяется с терминалом посредством эпоксидной смолы с содержанием серебряного наполнителя. Анод приваривается к электроду, а стрингер отрезается. После формирования устройства на него наносится печатная маркировка. Она содержит показатель номинальной емкости напряжения.

2. При формировании этого типа корпусного устройства анодный проводник должен быть приварен к самому выводу анода, а затем отрезается от стрингера. В этом случае терминал катода припаивается к основе конденсатора. Далее конденсатор заполняется эпоксидом и высушивается. Как и в первом случае, на него наносится маркировка.

Конденсаторы первого типа отличаются большей степенью надежности. Но все типы танталовых конденсаторов применятся:

- в машиностроении;
- компьютерах и вычислительной технике;
- оборудовании для телевизионного вещания;
- электрических приборах бытового назначения;
- разнообразных блоках питания для материнских плат, процессоров и т.д.

fishki.net

Диодный мост, как правильно подобрать номинал конденсаторов ??? — Хабр Q&A

На самом деле вам стоило бы почитать какую-нибудь книжку по электротехнике.

Если вкратце, то переменное напряжение в среднем в сети переменного тока равно нулю, потому что оно постоянно меняет знак, и меняется от одного амплитудного значения до другого. Поэтому в сети переменного тока принято измерять действующее значение напряжения, которое есть , потому что такое значение согласуется по энергетическим характеристикам с постоянным напряжением той же величины.

Однако после выпрямления тока, на выходе получается пульсирующее напряжение с амплитудой . Если таким напряжение заряжать конденсатор, не подключая нагрузку, то конденсатор зарядится до этого самого амплитудного значения. В вашем случае , что вы и наблюдаете.

Расчет емкости конденсатора фильтра зависит от величины нагрузки и допустимого уровня пульсации. Ваш выпрямленный ток грубо можно представить как сумму постоянного и переменного тока. Переменная составляющая может проходить через конденсатор, который представляет для нее некоторое сопротивление. Для того, чтобы эффективно давить переменную составляющую, необходимо, чтобы сопротивление конденсатора для переменного тока было значительно меньше сопротивления нагрузки, которую создают потребители.

Тут можно посчитать емкостное сопротивление, нужно иметь в виду, что после диодного моста частота переменной составляющей тока будет 100Гц

---

Без детального описания схемы дальше сказать что-то будет сложно. Если вы не разбираетесь в схемотехнике, лучше купить готовый блок питания.

qna.habr.com

Электрический конденсатор — Википедия

Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик Слева — конденсаторы для поверхностного монтажа; справа — конденсаторы для объёмного монтажа; сверху — керамические; снизу — электролитические. На танталовых конденсаторах (слева) полоской обозначен «+», на алюминиевых (справа) маркируют «-». SMD-конденсатор на плате, макрофотография Различные конденсаторы для объёмного монтажа

Конденса́тор (от лат. condensare — «уплотнять», «сгущать» или от лат. condensatio — «накопление») — двухполюсник с постоянным или переменным значением ёмкости[1] и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

Конденсатор является пассивным электронным компонентом. Ёмкость конденсатора измеряется в фарадах.

В 1745 году в Лейдене немецкий каноник Эвальд Юрген фон Клейст и независимо от него голландский физик Питер ван Мушенбрук изобрели конструкцию-прототип электрического конденсатора — «лейденскую банку»[2]. Первые конденсаторы, состоящие из двух проводников, разделенных непроводником (диэлектриком), упоминаемые обычно как конденсатор Эпинуса или электрический лист, были созданы ещё раньше[3].

Конденсатор является пассивным электронным компонентом[4]. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок (см. рис.). Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки).

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит зарядка или перезарядка конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

В методе гидравлических аналогий конденсатор — это гибкая мембрана, вставленная в трубу. Анимация демонстрирует мембрану, которая растягивается и сокращается под действием потока воды, что аналогично заряду и разряду конденсатора под действием электрического тока

С точки зрения метода комплексных амплитуд конденсатор обладает комплексным импедансом

Z^C=1jωC=−jωC=−j2πfC,{\displaystyle {\hat {Z}}_{C}={\frac {1}{j\omega C}}=-{\frac {j}{\omega C}}=-{\frac {j}{2\pi fC}},}

где j{\displaystyle j} — мнимая единица, ω{\displaystyle \omega } — циклическая частота (радиан/с) протекающего синусоидального тока, f{\displaystyle f} — частота в герцах, C{\displaystyle C} — ёмкость конденсатора (фарад). Отсюда также следует, что реактивное сопротивление конденсатора равно XC=1ωC.{\displaystyle \scriptstyle X_{C}={\tfrac {1}{\omega C}}.} Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью C{\displaystyle C}, собственной индуктивностью Lc{\displaystyle L_{c}} и сопротивлением потерь Rn{\displaystyle R_{n}}.

Резонансная частота конденсатора равна

fp=12πLcC{\displaystyle f_{p}={\frac {1}{2\pi {\sqrt {L_{c}C}}}}}

При f>fp{\displaystyle f>f_{p}} конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f<fp{\displaystyle f<f_{p}}, на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.

Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

W=CU22=qU2=q22C{\displaystyle W={CU^{2} \over 2}={qU \over 2}={q^{2} \over 2C}}

где U{\displaystyle U} — напряжение (разность потенциалов), до которого заряжен конденсатор, q{\displaystyle q} — электрический заряд на одной из обкладок.

Обозначение конденсаторов на схемах[править | править код]

В России для условных графических обозначений конденсаторов на схемах рекомендуется использовать ГОСТ 2.728-74[5] либо стандарт международной ассоциации IEEE 315—1975:

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 1·106 пФ = 1·10−6 Ф) и пикофарадах (1 пФ = 1·10−12 Ф), но нередко и в нанофарадах (1 нФ = 1·10−9 Ф). При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, то есть постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения. Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мкФ × 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10—180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24, то есть на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.

Характеристики[править | править код]

Ёмкость[править | править код]

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга, в системе СИ выражается формулой C=εε0Sd{\displaystyle C={\tfrac {\varepsilon \varepsilon _{0}S}{d}}}, где ε{\displaystyle \varepsilon } — диэлектрическая проницаемость среды, заполняющая пространство между пластинами (в вакууме равна единице), ε0{\displaystyle \varepsilon _{0}} — электрическая постоянная, численно равная 8,854187817⋅10−12 Ф/м. Эта формула справедлива, лишь когда d намного меньше линейных размеров пластин.

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

C=∑i=1nCi{\displaystyle C=\sum _{i=1}^{n}C_{i}} или C=C1+C2+…+Cn.{\displaystyle C=C_{1}+C_{2}+\ldots +C_{n}.}

Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы, так как от источника питания они поступают только на внешние электроды, а на внутренних электродах они получаются только за счёт разделения зарядов, ранее нейтрализовавших друг друга. Общая ёмкость батареи последовательно соединённых конденсаторов равна

1C=∑i=1n1Ci⇒C=(∑i=1n1Ci)−1{\displaystyle {\tfrac {1}{C}}=\sum _{i=1}^{n}{\tfrac {1}{C_{i}}}\Rightarrow C={\begin{pmatrix}\sum _{i=1}^{n}{\tfrac {1}{C_{i}}}\end{pmatrix}}^{-1}} или 1C=1C1+1C2+…+1Cn.{\displaystyle {\tfrac {1}{C}}={\tfrac {1}{C_{1}}}+{\tfrac {1}{C_{2}}}+\ldots +{\tfrac {1}{C_{n}}}.}

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

Удельная ёмкость[править | править код]

Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

Плотность энергии[править | править код]

Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита. Например, у конденсатора EPCOS B4345 с ёмкостью 12 000 мкФ, максимально допустимым напряжением 450 В и массой 1,9 кг плотность энергии при максимальном напряжении составляет 639 Дж/кг или 845 Дж/л. Особенно важен этот параметр при использовании конденсатора в качестве накопителя энергии, с последующим мгновенным её высвобождением, например, в пушке Гаусса.

Номинальное напряжение[править | править код]

Другой не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. Эксплуатационное напряжение на конденсаторе должно быть не выше номинального.

Полярность[править | править код]
Современные конденсаторы, разрушившиеся без взрыва благодаря специальной разрывающейся конструкции верхней крышки. Разрушение возможно из-за нарушения режима эксплуатации (температуры, напряжения, полярности) или старения. Конденсаторы с разорванной крышкой практически неработоспособны и требуют замены, а если она просто вздувшаяся, но ещё не разорвана, то, скорее всего, скоро он выйдет из строя или сильно изменятся параметры, что сделает его использование невозможным.

Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Опасность разрушения (взрыва)[править | править код]

Взрывы электролитических конденсаторов — довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). В современных компьютерах перегрев конденсаторов — частая причина выхода их из строя вследствие близкого расположения с источниками тепла, например, рядом с радиатором охлаждения.

Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают вышибной предохранительный клапан или выполняют надсечку корпуса (часто её можно заметить в виде креста или в форме букв X, K или Т на торце цилиндрического корпуса, иногда, на больших конденсаторах, она покрыта пластиком). При повышении внутреннего давления вышибается пробка клапана или корпус разрушается по насечке, пары электролита выходят в виде едкого газа и, даже, брызг жидкости. При этом разрушение корпуса конденсатора происходит без взрыва, разбрасывания обкладок и сепаратора.

Взорвавшийся электролитический конденсатор на печатной плате жидкокристаллического монитора. Видны волокна бумажного сепаратора обкладок и развернувшиеся фольговые алюминиевые обкладки.

Старые электролитические конденсаторы выпускались в герметичных корпусах и в конструкции их корпусов не предусматривалась взрывобезопасность. Скорость разлёта осколков при взрыве корпуса устаревших конденсаторов может быть достаточной для того, чтобы травмировать человека.

В отличие от электролитических, взрывоопасность оксиднополупроводниковых (танталовых) конденсаторов связана с тем, что такой конденсатор фактически представляет собой взрывчатую смесь: в качестве горючего служит тантал, а в качестве окислителя — двуокись марганца, и оба этих компонента в конструкции конденсатора перемешаны в виде тонкого порошка. При пробое конденсатора или при его случайной переполюсовке выделившееся при протекании тока тепло инициирует реакцию между данными компонентами, протекающую в виде сильной вспышки с хлопком, что сопровождается разбрасыванием искр и осколков корпуса. Сила такого взрыва довольно велика, особенно у крупных конденсаторов, и способна повредить не только соседние радиоэлементы, но и плату. При тесном расположении нескольких конденсаторов возможен прожог корпусов соседних конденсаторов, что приводит к одновременному взрыву всей группы.

Паразитные параметры[править | править код]

Реальные конденсаторы, помимо ёмкости, обладают также собственными последовательным и параллельным сопротивлением и индуктивностью. С достаточной для практики точностью эквивалентную схему реального конденсатора можно представить как показано на рисунке, где все двухполюсники подразумеваются идеальными.

Эквивалентная схема реального конденсатора и некоторые формулы.
C0 — собственная ёмкость конденсатора;
Rd — сопротивление изоляции конденсатора;
Rs — эквивалентное последовательное сопротивление;
Li — эквивалентная последовательная индуктивность. Зависимость модуля импеданса реального конденсатора от частоты и формула импеданса.
Электрическое сопротивление изоляции диэлектрика конденсатора, поверхностные утечки и саморазряд[править | править код]

Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением Rd = U / Iут, где U — напряжение, приложенное к конденсатору, Iут — ток утечки.

Из-за тока утечки, протекающего через слой диэлектрика между обкладками и по поверхности диэлектрика, предварительно заряженный конденсатор с течением времени теряет заряд (саморазряд конденсатора). Часто в спецификациях на конденсаторы сопротивление утечки определяют через постоянную времени T саморазряда конденсатора, которая численно равна произведению ёмкости на сопротивление утечки:

T=RdC0{\displaystyle T=R_{d}C_{0}}

T — время, за которое начальное напряжение на конденсаторе, неподключенном ко внешней цепи, уменьшится в e раз.

Хорошие конденсаторы с полимерными и керамическими диэлектриками имеют постоянные времени саморазряда, достигающие многих сотен тысяч часов.

Эквивалентное последовательное сопротивление — Rs[править | править код]

Эквивалентное последовательное сопротивление (англ. Equivalent series resistance; ESR, ЭПС, внутреннее сопротивление) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контактов между ними, а также учитывает потери в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор, вследствие поверхностного эффекта.

В большинстве практических случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение существенно для надёжности и устойчивости работы устройства. В электролитических конденсаторах, где один из электродов является электролитом, этот параметр при эксплуатации со временем деградирует вследствие испарения растворителя из жидкого электролита и изменения его химического состава, вызванного взаимодействием с металлическими обкладками, что происходит относительно быстро в низкокачественных изделиях («конденсаторная чума»).

Некоторые схемы (например, стабилизаторы напряжения) критичны к диапазону изменения ЭПС конденсаторов в своих цепях. Это связано с тем, что при проектировании таких устройств инженеры учитывают этот параметр в фазочастотной характеристике (ФЧХ) обратной связи стабилизатора. Существенное изменение со временем ЭПС применённых конденсаторов изменяет ФЧХ, что может привести к снижению запаса устойчивости контуров авторегулирования и даже к самовозбуждению.

Существуют специальные приборы (ESR-метр (англ.)) для измерения этого достаточно важного параметра конденсатора, по которому можно часто определить пригодность его дальнейшего использования в определённых целях. Этот параметр, кроме собственно ёмкости (ёмкость — это основной параметр), часто имеет решающее значение в исследовании состояния старого конденсатора и принятия решения, стоит ли использовать его в определённой схеме или он прогнозируемо выйдет за пределы допустимых отклонений.

Эквивалентная последовательная индуктивность — Li[править | править код]

Эквивалентная последовательная индуктивность обусловлена в основном собственной индуктивностью обкладок и выводов конденсатора. Результатом этой распределенной паразитной индуктивности является превращение конденсатора в колебательный контур с характерной собственной частотой резонанса. Эта частота может быть измерена и обычно указывается в параметрах конденсатора либо в явном виде, либо в виде рекомендованной максимальной рабочей частоты.

Саморазряд[править | править код]

Предварительно заряженный конденсатор с течением времени теряет запасённую энергию за счёт тока утечки, протекающего через слой диэлектрика между обкладками. Часто в справочниках на конденсаторы приводится постоянная времени саморазряда конденсатора, численно равная произведению ёмкости на сопротивление утечки. Это время, за которое начальное напряжение на отключенном конденсаторе уменьшится в e раз.

Тангенс угла диэлектрических потерь[править | править код]

Тангенс угла диэлектрических потерь — отношение мнимой и вещественной части комплексной диэлектрической проницаемости. tgδ=εimεre=σωεa.{\displaystyle {\rm {{tg}\,\delta ={\frac {\varepsilon _{im}}{\varepsilon _{re}}}={\frac {\sigma }{\omega \varepsilon _{a}}}.}}}

Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол φ=π2−δ,{\displaystyle \scriptstyle \varphi ={\tfrac {\pi }{2}}-\delta ,} где δ — угол диэлектрических потерь. При отсутствии потерь δ = 0. Тангенс угла потерь определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, обратная tg δ, называется добротностью конденсатора. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов.

Температурный коэффициент ёмкости (ТКЕ)[править | править код]

ТКЕ — относительное изменение ёмкости при изменении температуры окружающей среды на один градус Цельсия (кельвин). ТКЕ определяется так:

TKE=ΔCCΔT{\displaystyle TKE={\frac {\Delta C}{C\Delta T}}}.

где ΔC{\displaystyle \Delta C} — изменение ёмкости, вызванное изменением температуры на ΔT{\displaystyle \Delta T}.
Таким образом, изменение ёмкости от температуры (при не слишком больших изменениях температуры) выражается линейной функцией:

C(T)=CH.y.+TKE⋅CH.y.⋅ΔT,{\displaystyle \scriptstyle C(T)=C_{H.y.}+TKE\cdot C_{H.y.}\cdot \Delta T,},

где ΔT{\displaystyle \Delta T} — изменение температуры в °C или К относительно нормальных условий, при которых специфицировано значение ёмкости, CH.y.{\displaystyle C_{H.y.}} — ёмкость при нормальных условиях. TKE применяется для характеристики конденсаторов с практически линейной зависимостью ёмкости от температуры. Однако ТКЕ указывается в спецификациях не для всех типов конденсаторов.

Для конденсаторов, имеющих существенно нелинейную зависимость ёмкости от температуры и для конденсаторов с большими изменениями ёмкости от воздействия температуры окружающей среды в спецификациях нормируются относительное изменение ёмкости в рабочем диапазоне температур или в виде графика зависимости ёмкости от температуры.

Диэлектрическая абсорбция[править | править код]

Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение на обкладках снова появится как если бы мы разрядили конденсатор не до нуля. Это явление получило название диэлектрическая абсорбция (диэлектрическое поглощение). Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора.

Подобный эффект можно наблюдать практически на всех типах диэлектриков. В электролитических конденсаторах он особенно ярок и является следствием химических реакций между электролитом и обкладками. У конденсаторов с твердым диэлектриком (например, керамических и слюдяных) эффект связан с остаточной поляризацией диэлектрика. Наименьшим диэлектрическим поглощением обладают конденсаторы с неполярными диэлектриками: тефлон (фторопласт), полистирол, полипропилен и т. п.

Эффект зависит от времени зарядки конденсатора, времени закорочения, иногда от температуры. Количественное значение абсорбции принято характеризовать коэффициентом абсорбции, который определяется в стандартных условиях.

Особое внимание в связи с эффектом следует уделять измерительным цепям постоянного тока: прецизионным интегрирующим усилителям, устройствам выборки-хранения, некоторым схемам на переключаемых конденсаторах.

Паразитный пьезоэффект[править | править код]

Многие керамические материалы, используемые в качестве диэлектрика в конденсаторах (например, титанат бария, обладающий очень высокой диэлектрической проницаемостью в не слишком сильных электрических полях) проявляют пьезоэффект — способность генерировать напряжение на обкладках при механических деформациях. Это характерно для конденсаторов с пьезоэлектрическими диэлектриками. Пьезоэффект ведёт к возникновению электрических помех в устройствах, где использованы такие конденсаторы, при воздействии акустического шума или вибрации на конденсатор. Это нежелательное явление иногда называют «микрофонным эффектом».

Также подобные диэлектрики проявляют и обратный пьезоэффект — при работе в цепи переменного напряжения происходит знакопеременная деформация диэлектрика, генерирующая акустические колебания, порождающие дополнительные электрические потери в конденсаторе.

Самовосстановление[править | править код]

Конденсаторы с металлизированным электродом (бумажный и пленочный диэлектрик) обладают важным свойством самовосстановления (англ. self-healing, cleaning) электрической прочности после пробоя диэлектрика. Механизм самовосстановления заключается в отгорании металлизации электрода после локального пробоя диэлектрика посредством микродугового электрического разряда.

Слюдяной герметичный конденсатор в металлостеклянном корпусе типа «СГМ» для навесного монтажа

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

Керамический подстроечный конденсатор


Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие конденсаторы.

Также различают конденсаторы по форме обкладок: плоские, цилиндрические, сферические и другие.

Название Ёмкость Электрическое поле Схема
Плоский конденсатор C=ε0εr⋅Ad{\displaystyle C=\varepsilon _{0}\varepsilon _{\mathrm {r} }\cdot {\frac {A}{d}}}

ru.wikipedia.org

Подбор рабочего конденсатора к трехфазному электродвигателю


Для ответа на вопрос, как подобрать конденсатор для асинхронных двигателей и чем конденсаторы отличаются друг от друга, соберем стенд из обычного трехфазного двигателя мощностью 250 Вт. В качестве нагрузки используем стандартный генератор от автомобиля ВАЗ.

Подключим через автоматы три разных конденсатора. Включение/отключение автоматов даст возможность проверить возможности конденсаторов.

Подбираем конденсатор


Для эксперимента выберем три конденсатора емкостью 10, 20 и 50 микрофарад. Наша задача заключается в попытке запуска электродвигателя с каждого конденсатора по очереди.

Конденсатор на 10 мкФ


При подключении к сети 220 В и включения первого конденсатора емкостью 10 микрофарад электродвигатель включается только после толчка рукой. Автоматического запуска не происходит.

Вывод: для электродвигателя мощностью 250 Вт емкости конденсатора в 10 микрофарад недостаточно.

Конденсатор на 20 мкФ


При попытке запустить электродвигатель от конденсатора емкостью 20 МкФ включение двигателя в работу происходит автоматически.

Вывод: при емкости конденсатора 20 микрофарад электродвигатель запустился без проблем.

Конденсатор на 50 мкФ



При продолжении эксперимента с конденсатором емкостью 50 микрофарад электродвигатель запускается автоматически, однако работает с высоким уровнем шума и просто трясется.
Вывод: емкость последнего испытанного конденсатора велика для установленного электродвигателя.
Подбирая конденсатор для маломощного трехфазного электродвигателя, отдавайте предпочтение устройству с номинальной емкостью (как в нашем эксперименте), соответствующей мощности двигателя. Конденсатор малой емкости электродвигатель не запускает, слишком большой емкости – вызывает нагрев двигателя и большой шум в работе. Оптимально себя в эксперименте зарекомендовал конденсатор емкостью 20 МкФ, который сразу запустил двигатель и не вызвал его перегрева.

Заключение


Для запуска трехфазного электродвигателя в сети 220 В рабочий конденсатор подбирается исходя из мощности двигателя. При возрастании мощности на каждые 100 Вт емкость должна возрастать на 7-10 микрофарад. Например, для двигателя мощностью 0,5 КВт можно подобрать конденсатор емкостью в пределах 35-50 МкФ.
Также нужно учитывать такой параметр, как номинальное напряжение устройства (то есть то напряжение, которое способен выдержать конденсатор). В работе рекомендуется применять конденсаторы с параметрами, на 100% превышающими реальное напряжение, прилагаемое к устройству. Для данного примера это 450 В.

Смотрите подробное видео


sdelaysam-svoimirukami.ru


Смотрите также