RU (495) 989 48 46
Пленка на бампер

АНТИГРАВИЙНАЯ ЗАЩИТА БАМПЕРА

 

Эмулятор лямбда зонда схема


Схема эмулятора лямбда зонда своими руками

Дата публикации: .
Категория: Автотехника.

Лямбда зонд (также называется кислородным контроллером, датчиком O2, ДК) является неотъемлемой частью выхлопной системы автотранспортных средств, отвечающих экологическим стандартам EURO-4 и выше. Это миниатюрное устройство (обычно устанавливается 2 лямбда зонда и более) контролирует содержание O2 в выхлопных смесях автотранспортного средства, благодаря чему значительно снижается выброс ядовитых отходов в атмосферу.

В случае некорректной работы ДК или если произошло отключение лямбда зонда, функционирование силового агрегата может быть нарушено, из-за чего мотор перейдет в аварийный режим (на панели загорится Check Engine). Чтобы такого не случилось, систему автомобиля можно перехитрить, установив обманку.

Механическая обманка лямбда зонда («ввертыш»)

«Ввертыш» – это втулка, изготовленная из бронзы или теплоустойчивой стали. Внутренняя часть такой «проставки» и ее полости заполняются керамической крошкой со специальным каталитическим покрытием. Благодаря этому отработанные газы дожигаются быстрее, что, в свою очередь, приводит к разным показателям импульсов 1 и 2 ДК.

Важно! Любая обманка устанавливается только на исправный лямбда зонд.

Самодельная обманка лямбда зонда, схема которой представлена ниже, проста в изготовлении. Для этого вам потребуется подготовить:

Делается обманка на обрабатывающем токарном станке. Если такового нет, то можно обратиться к специалисту, предоставив ему чертеж.

Полученная деталь совместима с большинством выхлопных систем как отечественных, так и зарубежных автомобилей.

Установка обманки лямбда зонда производится следующим образом:

Полезно! Обычно механическая обманка второго лямбда зонда не выполняется, так как этот ДК защищен катализатором и контролирует только его состояние. Самым чутким является именно первый датчик, который установлен ближе всего к коллектору.

После этого системная ошибка «Check Engine» должна исчезнуть. Если этот способ не сработал, можно воспользоваться более дорогостоящей обманкой.

Электронная обманка

Еще один способ устранения проблем с ДК – это электронная обманка лямбда зонда, схема которой представлена чуть ниже. Так как датчик кислорода передает сигнал контроллеру, то схема-обманка, подключенная к проводке от датчика к разъему, позволит «загрубить» систему. Благодаря этому, в ситуации, если лямбда зонд будет неисправен, силовой агрегат будет продолжать работать корректно.

Полезно! Места установки такой обманки могут отличаться в зависимости от модели АТС. Например, она может быть монтирована в центральный тоннель между сиденьями, в торпеде или моторном отсеке.

Схема-обманка – это однокристальный микропроцессор, который анализирует процессы в катализаторе, получает данные от первого ДК, обрабатывает их, преобразует до показателей второго датчика и выдает на процессор автомобиля соответствующий сигнал.

Чтобы установить обманку этого типа, вам потребуется схема подключения лямбда зонда, которая выглядит следующим образом.

Как видите, бывает разная распиновка лямбда зонда (4 провода, три и два). Цвета проводов могут также отличаться, чаще всего встречаются изделия с 4 пинами (2 черных, белый и синий).

Для изготовления обманного устройства, вам потребуется:

Полезно! Перед установкой, схему лучше всего поместить в пластиковый корпус и залить ее «эпоксидкой».

Дальше электронная обманка на лямбда зонд своими руками монтируется следующим образом:

Ниже представлена схема обманки лямбда зонда своими руками для распиновки на 4 провода.

На заключительном этапе, должно получиться следующее.

Такие манипуляции не стоит выполнять, если у вас нет должного опыта. Сегодня в магазинах представлены готовые схемы-обманки, которые без труда сможет установить даже начинающий водитель.

Перепрошивка контроллера

Некоторые особо искушенные автовладельцы решаются на перепрошивку блока управления, благодаря чему блокируется обработка сигналов второго кислородного датчика. Однако необходимо учитывать, что любые изменения алгоритма работы системы могут привести к необратимым последствиям, так как вернуть заводские настройки будет практически невозможно и затратно. Поэтому выполнять такие манипуляции самостоятельно не рекомендуется. То же самое касается и готовых прошивок, которые продаются в интернете.

Полезно! При перепрошивке лямбда зонды удаляются.

Если вы все-таки хотите произвести перепрошивку системы, то обратитесь к грамотному специалисту, который сможет отключить получение данных ДК с помощью специализированного оборудования.

Также стоит учитывать, что практически любое вмешательство в работу систем, может привести к не самым приятным последствиям.

Какие последствия бывают после установки обманок

Нужно понимать, что любая обманка устанавливается на страх и риск автовладельца. Если монтаж был произведен неправильно, то вы можете столкнуться со следующими проблемами:

Любая неточность приведет к плачевным последствиям, поэтому лучше установить более безопасный готовый эмулятор. В отличие от обманки, он не «обманывает» блок управления, а лишь обеспечивает его корректную работу, преобразуя сигнал ДК. Внутри эмулятора также установлен микропроцессор (как и в самодельной электронной обманке), который способен оценивать выхлопные газы и анализировать ситуацию.

В заключении

Многие автовладельцы устанавливают на свои машины самодельные обманки, чтобы сэкономить на покупке новых кислородных датчиков. Однако в такой погоне за выгодой, вы вполне можете столкнуться с большими денежными затратами, если кустарное устройство повлияет на работу «жизненно-важных» систем. Поэтому устанавливать обманки рекомендуется, только если вы смыслите в работах такого плана.

Эмулятор Лямбда-Зонда — Энциклопедия журнала "За рулем"

Из описания работы Лямбда-зонда ясно, что он, реагируя на количество кислорода в выхлопных газах, выдает напряжение 0,1 – 0,2В (бедная смесь) или 0,8-0,9В (богатая смесь). Электронный Блок Управления (ЭБУ) двигателя постоянно меняет количество впрыскиваемого топлива – бедную смесь обогащает, богатую обедняет. Таким образом поддерживается оптимум, а сигнал на Лямбда-зонде при этом выглядит (можно посмотреть осциллографом) как серия импульсов равной длительности, почти прямоугольной (важно!) формы, размахом от 0,1 – 0,2В до 0,8-0,9В.
Так все и работает, пока замкнута цепь авторегулирования, включающая в себя двигатель с «обвеской», ЭБУ и Лямбда-Зонд. Цепочка начинает плохо работать, если озаботиться экономией и экологией и поставить газобаллонное оборудование (ГБО).
Для двигателя с моновпрыском, вполне достаточно простой эжекторной системы. Только вот желтая лампочка Check Engine начинает гореть постоянно, а при езде на бензине появляется солидный перерасход.

Бытует мнение, что это виноват газ. Якобы Лямбда-Зонд «приучен» к бензину, а «на газу он сходит с ума».
На самом деле всё гораздо проще. Лямбда-Зонду не важно, какое топливо сгорает. Он продолжает так же исправно реагировать на количество кислорода в выхлопе. Вот только его реакция никак не сказывается на работе двигателя – ведь цепь авторегулирования разорвана. Если раньше, в ответ на сигнал о богатой смеси, ЭБУ сокращало подачу бензина (на меньшее время включая форсунку) , а на сигнал о бедной – обогащало, поддерживая стехиометрическую смесь, то при работе с газом ЭБУ никак не может повлиять на эжекторную систему ГБО.
Видя, что реакции нет ЭБУ зажигает лампочку Check Engine и переходит на режим «аварийной» работы. При езде на газе это никак не влияет на его расход, поскольку он определяется настройкой ГБО. Но при переключении на бензин расход резко возрастет потому, что «аварийный режим» остается в памяти ЭБУ.
Для нормальной работы двигателя на газе как раз и нужен Эмулятор Лямбда-Зонда. Его задача - обмануть ЭБУ, при работе на газе показать, что всё в порядке. Делает это он очень просто: выдает сигнал, похожий на реакцию реального Лямбда-зонда при нормальной работе.
Эмулятор выдаст 0,1В, ЭБУ начнёт обогащать смесь, эмулятор выдаст 0,9В. ЭБУ начнет обеднять смесь, как это и бывает, при работе на бензине. Таким образом, лампочка Check Engine не загорается, а ЭБУ в аварийный режим не переходит.
Можно купить готовый эмулятор, можно изготовить самому по простой схеме, главное – правильно подключить.

Простая схема Эмулятора Лямбда-Зонда

Эмулятор лямбда-зонда собран на самой популярной микросхеме. Резистор R1 устанавливает частоту импульсов (1-2 в секунду), светодиод индицирует работу устройства. При нормальной работе напряжение на нем не превышает 1,8В. На резисторе R6 будет ровно половина, т.е 0,9В или 0В.

Схема получает питание от выключателя ГБО, реле срабатывает и соединяет выход устройства (К2) со входом ЭБУ(К3).
При выключении ГБО реле отпускает и вход ЭБУ соединяется с лямбда зондом (К1), т.е устройство включается в разрыв провода от Лямбда-зонда на ЭБУ.
В продаже имеется множество вариантов. Некоторое производители внедряют дополнительно два-три светодиода, сигнализирующие о качестве смеси.
Сделать это не сложно, ведь Лямбда-зонд продолжает выполнять свои функции в части выдачи сигнала. Значит если подключить к Лямбда-зонду два пороговых устройства — одно на 0,1В, другое на 0,9В то они будут в соответствующие моменты зажигать соответствующие светодиоды.
Таким образом можно в первом приближении определить качество смеси при работе на газе.
Итак, если вы решили поставить эжекторное ГБО на двигатель с «моновпрыском» без Эмулятора Лямбда-Зонда вам не обойтись.
Во всех остальных случаях (замена неисправного Л-З или что-то подобное) он абсолютно бесполезен.

Материал подготовлен при участии Бориса Салостей

Как сделать обманку лямбда-зонда

Жёсткий экологический контроль заставляет автопроизводителей делать всё возможное, чтобы соответствовать стандартам Евро, контролирующим состав и структуру выхлопа. Подавляющее большинство современных моделей комплектуются лямбда-зондом (альтернативные названия – кислородный контроллер, датчик кислорода, датчик О2). Его назначение и заключается в контроле содержания выхлопа посредством анализа содержания в нём кислорода. Владельцам автомобилей, не оснащённых такой контролирующей выхлоп системой (как правило, устаревших или очень бюджетных), в этом плане повезло. Во всяком случае, часть проблем, связанных с неисправностями системы выхлопа, для них отпадает.

Между тем подобные неисправности случаются, и не так уж редко. Нарушение нормальной работы лямбда-зонда приводит к проблемам с обменом информацией между кислородным датчиком и ЭБУ, который воспринимает это как серьёзную неисправность, сигнализируя об этом загоранием индикатора «Check Engine». Обойти эту ситуацию без замены кислородного контроллера на исправный (стоимость которого достаточно велика) можно, используя так называемую обманку лямбда-зонда. Это позволит бортовому контроллеру перейти на работать из аварийного в штатный режим.


Что собой представляет обманка лямбда-зона

В целом, лямбда-зонд – действительно полезное устройство, позволяющее существенно уменьшить вредность выхлопа (в соответствии с жёсткими стандартами Евро-4/5), одновременно снизив расход горючего.

Конструктивно такое устройство представляет собой два кислородных датчика, между которыми устанавливается каталитический нейтрализатор. Последний отвечает за преобразование вре

Эмулятор лямбда-зонда своими руками | Audi Club Russia

У меня накрылась лямбда, долго искал схему эмулятора на разных сайтах, все хотят денег, но я нашёл немного хорошей инф. хочу поделиться может кому пригодится.WirSim1 Отличительной особенностью данного варианта является возможность независимой регулировки скважности генерируемых импульсов напряжения, что достигается разделением с помощью диодов цепей заряда и разряда времязадающего конденсатора С.

ИНДИКАТОР РАБОТЫ ДАТЧИКА СОДЕРЖАНИЯ КИСЛОРОДА В ВЫХЛОПНЫХ ГАЗАХ.
Многие автолюбители сетуют на отсутствие в их автомобиле индикатора работы датчика содержания кислорода в выхлопных газах (О2). Если Вы имеете радиолюбительский опыт, то можете самостоятельно изготовить и установить такой индикатор. На Рис.1 представлена принципиальная схема светодиодного индикатора построенного на микросхеме LM3914.

Прибор предназначен для работы от бортовой сети автомобиля. Диод VD1 выполняет роль защиты от неправильной полярности подключения к шине питания (+12в.). Конденсатор С1 установлен для снижения возможных пульсаций в бортовой сети. Потенциометром R2 можно откалибровать шкалу измерения на верхнем уровне (1в.), а с помощью R3 отрегулировать яркость свечения светодиодов.
Прибор некритичен к конструктиву и позволяет использовать практически любые комплектующие. Однако следует учитывать, что LM3914 имеет мощность рассеивания около 1,3W. Это накладывает определенное ограничение при выборе яркости свечения светодиодов (VD2-VD11). Кроме того, соединение входа прибора с сигнальным выводом лямбда-зонда лучше выполнить экранированным проводом, а его экран соответственно заземлить. Светодиоды желательно использовать красный (нижний уровень), желтые (2 и 3 нижние уровни), зеленые (4 средних уровня), желтые (два верхних уровня) и красный (максимальный уровень).
Пример:
VD2, VD3-VD4, VD5-VD8, VD9-VD10, VD11
Для калибровки индикатора лучше воспользоваться осциллографом, а после настройки потенциометры заменить на постоянные резисторы соответствующего сопротивления. Перед началом калибровки движки потенциометров следует установить в среднее положение.
Возможная комплектация:
D1 - LM3914
VD1 - КД209А
VD2-VD11 - АЛ307
C1 - K50-16 50мкф/50в.
R1 - МЛТ 0,25 1мОм
R2,R3 - СП3-38а 4,7кОм
P.S.
Следует учитывать, что данный прибор является лишь индикатором усредненных значений, а не измерительным прибором какого-то класса точности. Для точных измерений пользуйтесь соответствующими измерительными приборами промышленного производства.

Кто что имеет выкладывайте.

 

Радиосхемы. - Эмулятор лямбда зонда

категория

Самодельная электроника для автомобиля

материалы в категории

Данное устройство представляет эмулятор лямбда-зонда для автомобилей с инжекторным двигателем и установленным газовым оборудованием. Использование этого устройства позволит избежать увеличения расхода топлива при переключении на бензин. Такой перерасход обусловлен тем фактом, что при работе на газу цепь авторегулирования количества впрыскиваемого топлива (т.е. бензина) становится разомкнутой и Электронный Блок Управления (ЭБУ) двигателя, не получая сигнала от лямбда-зонда, переходит на режим «аварийной» работы, при этом зажигается лампочка "Check Engine". Если в этот момент переключить оборудование на бензин, то аварийный режим работы сохранится в памяти ЭБУ и расход бензина увеличится. Чтобы такое не случалось, во время работы на газу следует эмулировать работу лямбда-зонда.
  Предлагаемый эмулятор сигнализирует о качестве смеси тремя светодиодами и никак не влияет на саму смесь, поскольку её расход определяется настройками газобаллонного оборудования. А при обратном переключении на бензин он позволит вашему автомобилю избежать повышенного расхода топлива.

 Светодиодная индикация отображает состояние топливно-воздушной смеси:
  • Зелёный - Бедная смесь;
  • Жёлтый - Оптимальная смесь;
  • Красный - Богатая смесь.

Характеристики:
  • Напряжение питания: 12 В;
  • Ток потребления: 20 мА;
  • Сигнал выхода: 1 В.

Схема, внешний вид и печатная плата эмулятора

  Контакты Эмулятора подключаются в разрыв провода от Лямбда-зонда на ЭБУ двигателя следующим образом:
  • Контакт 1 - К переключателю топлива;
  • Контакт 2 - К корпусу автомобиля;
  • Контакт 3 - К блоку управления инжектором;
  • Контакт 4 - К Лямбда зонду.

Примечание: данное устройство можно приобрести в виде набора (печатная плата и комплект деталей) здесь

 

Обманка лямбда зонда (датчика кислорода) своими руками

Человеческая цивилизация на протяжении последних столетий живет в явной дисгармонии с природой. Технический прогресс не только сделал повседневную жизнь людей проще, но и одновременно вызвал доселе неизвестные проблемы. Загрязнение земли различными отходами жизнедеятельности Homo sapiens достигли своего апогея в XXI веке, поэтому современные разработки ученых, практически во всех областях, нацелены на получение максимально безопасных для окружающей среды технологий. Учитывая вышеизложенное, «экологически безопасный» вид человека представлен на иллюстрации ниже.

Например, выбросы двигателя внутреннего сгорания в автомобилях последнего поколения являются менее токсичными, благодаря установке электронных систем впрыска топлива. Для обеспечения обратной связи, позволяющей проконтролировать эффективность работы такой установки, в выхлопную трубу монтируется небольшой датчик, который называется лямбда зонд или кислородный анализатор.

Когда возникает необходимость в установке обманки лямбда зонда

Обманка кислородного лямбда зонда устанавливается многими автомобилистами, как правило, исходя из экономических соображений. Цена нового катализатора или датчика может быть достаточно велика, поэтому при неисправности этих деталей может быть установлено устройство, эмулирующее наличие оригинального изделия. Желание повысить мощность двигателя также может являться причиной подобной «махинации». Для увеличения тяги вырезают нейтрализатор. Услуги по удалению катализатора предоставляются специализированными мастерскими, в которых можно заказать и установку устройства, посылающего ложный сигнал о наличии исправной детали этого типа.

Эмулятор «обманка лямбда зонда» монтируется также при неисправности катализатора. Эта деталь стоит довольно дорого, поэтому при незапланированном выходе её из строя, иногда требуется какое-то время эксплуатировать автомобиль в аварийном режиме. Постоянно включенный «CHECK» может нервировать водителя, а также маскировать более серьезные поломки, поэтому и принимается решение временно установить обманку лямбда зонда.

Виды обманок лямбда зонда

На практике обманку датчика кислорода можно реализовать 2 способами. Первый — установка электронного прибора, который модулирует определенный электрический сигнал. Второй способ представляет собой механическую очистку токсичных выхлопных газов, подводимых к чувствительным элементам лямбда зонда.

Электронная обманка лямбда зонда

Электронная обманка лямбда зонда изготавливается своими руками. Для этой цели достаточно использовать резистор и конденсатор, которые устанавливаются в разрыв контактов кислородного датчика. Оптимальным значением емкости для обхода многих моделей этого типа является 4,7 мкФ, сопротивления — 200 кОм при мощности 0,25 Вт. Схема такого устройства очень проста, поэтому сделать обманку может даже начинающий радиолюбитель. Ниже представлен чертеж, в котором наглядно указано, как сделать обход сигнала лямбда зонда для устройств фирм Bosch и Mitsubishi.

От качества используемых деталей и правильно подобранных параметров будет зависеть долговечность самодельной обманки лямбда зонда, но при подобных вмешательствах в электронику автомобиля следует всегда быть готовым к нарушениям в работе двигателя внутреннего сгорания.

Более продвинутые в техническом плане эмуляторы кислородного датчика представляют собой сложные изделия, изготовленные на основе микроконтроллера. Такое устройство способно полностью заменить оригинальное изделие, но обойдется владельцу автомобиля в кругленькую сумму.

Несмотря на это, подобный вариант восстановления работоспособности машины может являться экономически выгодным. Работа двигателя с электронной обманкой будет более стабильна, чем при использовании изделий, в которых блок управления «вводится в заблуждение» с использованием вышеуказанной схемы.

Механическая обманка лямбда зонда

Механическая обманка лямбда зонда основана на реальной работе катализатора в миниатюре. То есть, во внутреннюю часть датчика вводятся элементы, очищающие выхлопные газы от загрязнений, но этот процесс осуществляется исключительно для чувствительных элементов, которые отвечают за генерацию определенного электрического сигнала.

Механическую обманку на лямбда можно установить практически на любой автомобиль, но для обеспечения совместимости следует учитывать Евро-класс машины. Другими словами, датчик-обманка на Ладу Приора будет отличаться от эмулятора, устанавливаемого на Фольксваген, Тойоту или Мерседес.

Для отечественных автомобилей, выпущенных до 2011 года можно также использовать «пустышку». Такая обманка представляет собой обычный датчик с небольшим отверстием диаметром 2–3 мм.

Альтернативные варианты

Если не учитывать возможность ремонта катализатора или датчика кислорода, то устранить проблемы в работе лямбда зонда можно методом перепрограммирования электронного блока управления (ЭБУ).

Такой способ применяется, как правило, только на автомобилях экологического класса Евро-2. Основным недостатком перепрошивки является тот факт, что самому подобную операцию практически не выполнить, а работа специалиста будет стоить довольно дорого. Квалификация работника СТО, осуществляющего работу по изменению настроек ЭБУ очень важна, ведь при допущении серьезных ошибок прошивка системы может слететь во время эксплуатации машины.

Экономически оправдана такая манипуляция с настройками только в случае, когда кроме отключения лямбда зонда выполняется перепрошивка системы с целью увеличения мощности двигателя.

Установка обманки лямбда зонда

Обманку лямбда зонда необходимо не только правильно подобрать, но и установить. Механические устройства потребуется монтировать на штатное место, поэтому понадобиться наличие смотровой ямы или подъемника. Работы по замене оригинального устройства на «модернизированный» датчик осуществляется в такой последовательности:

  1. Установить автомобиль над смотровой ямой или расположить на уровне человеческого роста, используя специальный подъемник.
  2. Вывернуть датчик.
  3. Установить обманку.

Перед выполнением этой операции необходимо отключить зажигание, но лучше полностью обесточить автомобиль, сняв с аккумулятора минусовую клемму. Электронные обманки устанавливаются в разрыв электропроводки датчика в любом подходящем месте.

Заключение

Если возникла необходимость в корректировке работы топливной системы автомобиля, то вышеприведенные советы позволят определиться с тем, какую обманку лямбда зонда лучше выбрать для установки. Простой вариант обхода системы контроля состава выхлопных газов можно изготовить самостоятельно, но только при условии полного понимания процесса и крайней аккуратности при выполнении монтажных операций.

Видео по теме

Хорошая реклама

 

Замена лямбда-зондов | Bimmerprofs.com | Эмулятор NOx NOXEM 129 | 130

В этой записи я отмечу некоторые специфические нюансы, которые необходимо учитывать при замене лямбда-зондов (также датчиков NOx). Ты правда, если я пересчитаю их перед объяснением, ты подумаешь, что эти требования не только преувеличены, но и нелогичны. Поэтому начнем с моего собственного опыта!

Мой опыт работы с лямбда-зондами.

В своей практике я часто использую лямбда-зонды.Скорее всего, это чаще всего встречается деталь от автомобильных инструментов. Однажды я обнаружил, что провод моего «повседневного» щупа загрязнен. Он был испачкан песком, маслом. Для чистки я использовала первое доступное чистящее средство - Cillit. Я почистил провод за несколько минут, просушил, включил датчик, чтобы проверить, и… он больше не работает!

При измерении воздуха в атмосфере зонд показывал не лямбда 15 ... 25 (в зависимости от концентрации кислорода / CO в воздухе), а значение лямбда около 2.. 3! Ситуация не стала лучше после многократного охлаждения и нагрева, в том числе - вдувания в него горячего воздуха. Зонд потерял способность «ощущать» кислород. Но я все делал очень аккуратно. На корпус зонда (не говоря уже о попадании внутрь) не попадает ни вода, ни чистящее средство!

Проверил управляющую электронику, подключил другой зонд - не было сомнений, что мой тестовый зонд поврежден.

Самое интересное началось на следующий день - мой тестовый зонд потихоньку «поправлялся»!

Я уже забыл этот странный случай, но через некоторое время то же самое случилось с другим датчиком.А потом еще один, который «заболел», после того как я смыла бумажную этикетку с его провода жидкостью для снятия лака. Да, после снятия этикетки воняло все помещение, зонд «прожил» в этой среде несколько часов. На следующий день он был полностью поврежден: вместо Lambda 15..25 он показывал около 1.5! В течение 10 ... 15 минут при рабочей температуре (около 800 oC) лямбда увеличилась до 3. Нагрев зонд еще на час, лямбда достигла 5. Через полчаса: достигла 7. Еще через два моторных часа зонд восстановился. возможность измерения богатой смеси.Очень медленно зонд ожил. К сожалению, у Лямбды на 8 процесс «исцеления» остановился. Чтобы настроить датчик для правильной работы, его калибровочный резистор пришлось увеличить с 95 Ом до 140 Ом.

Да, зонд все еще находился в пределах технических параметров, указанных производителем, но несомненно - такое отравление нанесло непоправимый ущерб! Кроме того, мы должны принять во внимание - такая повторная подстройка датчика невозможна, если он используется в «стандартных» приложениях (то есть без специальной системы управления, которая позволяет повторно калибровать датчик). Использование датчика в таком состоянии (поврежден: с измененной чувствительностью) - DME запишет сообщение об ошибке относительно своего сигнала, возможно - отключит замкнутую систему регулирования подачи топлива, и очень скоро появятся проблемы с работой двигателя .

Подсчитав минимум 3 случая, когда зонды «отравились» и в последнее время хотя бы частично «поправились», я не сомневался, что это не мистическое совпадение. Точная химия / физика этого процесса мне неизвестна, но первое / более простое объяснение, которое приходит на ум - если в эти чистящие средства включены окислители, их молекулы, оказавшись в активной среде зонда, могут « ловить »ионы кислорода, которые должен измерять зонд.

Чтобы убедиться, что мое предположение верно, я провел эксперимент. Я вылил две капли жидкости для снятия лака на ватный тампон и поднес его к лямбда-зонду.

Как только ватный тампон был поднесен к лямбда-зонду, показания сразу же показали гораздо более низкое содержание кислорода. В течение нескольких секунд лямбда-зонд показывал богатую смесь! В тот момент я не сомневался, что причина «повреждений» ясна.

Этим явлением также объясняется неоднократно полученная информация о случаях, когда сразу после установки показания лямбда-зондов были некорректными, но в последнее время зонды «восстановились».

К сожалению, при сильном «отравлении» зонд необратимо повреждается!

Примечание: датчики NOx даже более чувствительны, чем лямбда-зонды к любым химическим и механическим воздействиям, их нужно устанавливать еще более осторожно!

Думаю, пора упомянуть некоторые нюансы по замене лямбда-зондов.

Не соблюдая меры безопасности, предотвращающие статический заряд, мы можем сэкономить несколько десятков секунд, но получить серьезные неприятности. Если чипсет последовательного интерфейса DDE / DME поврежден, вам придется вскрывать блок, ремонт не будет быстрым и дешевым (а выполнить его смогут только несколько компаний). Если последовательный интерфейс датчика NOx будет поврежден, к сожалению, датчик придется заменить (это довольно дорого - как мы знаем, датчик NOx BMW OEM стоит около 400.. 500 евро).

Если будет повреждена входная цепь / набор микросхем лямбда-зонда DDE / DME, ремонт может обернуться заменой блока. К сожалению, CJ110, CJ120, CJ125 и аналогичные наборы микросхем, которые используются в этих блоках, недоступны на открытом рынке, кроме того, например, CJ120, CJ125 имеют много выпусков (с разным размещением регистров управления и их содержанием), которые делает практически невозможной замену этих чипсетов.

Недаром каждый лямбда-зонд в упаковке закрывается специальной герметичной крышкой.

Упаковка датчика NOx еще серьезнее!

При вскрытии упаковки - датчик NOx упакован в герметичный антистатический чехол.

И напоследок - датчик NOx закрыт герметичной крышкой.

Вот записка от Денсо, чего делать не надо.

.

Старение лямбда-зонда | Bimmerprofs.com | Эмулятор NOx NOXEM 129 | 130

Если лямбда-зонд поврежден или забит настолько, что его сигнал неверен - скорее всего, будут записаны сообщения об ошибке, касающиеся этой проблемы.

В этой записи - об одном симптоме, который позволяет заметить старение лямбда-зондов до того, как будет записано какое-либо сообщение об ошибке.
Что указывает на старение лямбда-зонда? Увеличил ШИМ своего нагрева!

Вот пример:

и сопротивление Нернсту (химическая эффективность) зонда:

Как видим, сопротивление Нернста правильное (правильные значения: 0/256 Ом), но ШИМ нагрева датчика, чтобы достичь этого значения Нернста на 20% (как минимум) выше, чем для второго контрольного датчика.

На что указывает такая повышенная ШИМ? Очевидно, зонд с правильной ШИМ не может достичь необходимой химической эффективности, поэтому ДМЭ увеличил свой нагрев. Страшная новость - лямбда-зонд не выдержит такой термической перегрузки. Поэтому рекомендуется вовремя приобрести новый лямбда-зонд и подготовиться к его замене.

Примечание: DME измеряет сопротивление Нернсту (химическую эффективность) каждого зонда примерно раз в секунду. Через источник I (ток) сигнал выходного сигнала подключается к напряжению +5.0 В, и измеряется изменение U (напряжения). Оптимальные значения сопротивления Нернста: 80 .. 300 Ом (согласно Паспорту датчиков). Шаг значений, отображаемых INPA, составляет 256 Ом. Соответственно правильные значения меню INPA: 0/256 Ом (разрешено 512 Ом на короткое время). ШИМ обогрева управляется согласно карте управления (с учетом смоделированной температуры выхлопных газов и скорости / давления выхлопа), которая дополняется адаптацией Offset, учитывающей отличия измеренного сопротивления Нернстса от идеального значения.

.

лямбда-зондов. Широкополосный | Bimmerprofs.com | Эмулятор NOx NOXEM 129 | 130

Для проверки выхлопных газов используются кислородные датчики. Давным-давно появились циркониевые узкополосные лямбда-зонды (вначале - без подогрева, затем - с дополнительным подогревом, что позволяет быстрее готовить датчики, а также обеспечивает более точные данные), начиная с двигателя BMW N серии, их заменяют на циркониевые широкополосные (для регулирования топливной смеси) датчики.

В отличие от узкополосных датчиков, линейный диапазон которых равен 0.99 .. 1.01, широкополосные датчики могут измерять коэффициент от 0,65 до состава атмосферного воздуха.

Основы работы широкополосных циркониевых зондов вы можете найти в Интернете, в этом посте я уделю больше внимания некоторым конкретным нюансам.

Первое поколение пробников Bosch, известных под названием LSU 4.2, отличалось необходимостью их повторной калибровки, поскольку в качестве эталонного источника тока использовался атмосферный воздух. С следующего поколения - СМЛ 4.9 - эта проблема была решена: полупроводниковый переход используется в качестве источника тока опорного.

LSU 4.2

LSU 4.9

Основная техническая информация:

Bosch LSU4.2 против LSU4.9

LSU 4.9 обеспечивает более точные измерения лямбда: контрольные данные определены в 30 точках в таблице лямбда / Ipump (LSU 4.2 определил только 10 точек).

Вместе с датчиками Bosch OEM предлагал также наборы микросхем управления для датчиков: CJ110, CJ120, CJ125. CJ110 и CJ120 были предназначены для работы с LSU 4.2 зонда, CJ125 - также с датчиком кислорода типа LSU 4.9.

В отличие от CJ110, CJ120 включает также динамический контроль сопротивления ячейки Нернста, который использовался для контроля температуры кислородного датчика. Оптимальное сопротивление ячейки Нернста для LSU 4.2, измеренное на частоте 1..4 кГц: 80 Ом.

CJ125 дополнен некоторыми специфическими нюансами по работе с кислородным датчиком LSU 4.9. Динамическое сопротивление ячейки Нернста для LSU 4.9: 300 Ом (при достижении оптимальной рабочей температуры).

CJ125 лист данных

Позже чипсет CJ125 был заменен на контроллер CJ135 со встроенным АЦП, кислородный датчик LSU 4.9 был заменен на LSU 5.2.

Общими недостатками для CJ110, CJ120, CJ125 было повышенное потребление энергии (которое было выше 30 мА / 150 мВт, и чипсет был вынужден работать в жестких тепловых условиях), большое напряжение смещения для усилителя измерения тока ячейки накачки (CJ110, CJ120, CJ125 ): даже до +/- 10 мВ, хотя для точных измерений необходимо напряжение смещения не более нескольких сотен мкВ.Такая же нехватка актуальна и для модуля измерения температуры, используемого в CJ120, CJ125. Чтобы решить эти проблемы, все упомянутые ранее наборы микросхем используют процесс прерывания для компенсации напряжения смещения и сравнения измеренных значений с эталонными. К сожалению, ключи MOSFET, используемые для прерывателей (коммутации), имеют повышенный ток утечки, что очень сильно влияет на точность измерения, а также увеличивает количество паразитных помех. Функциональное управление для CJ120 и CJ125 предусмотрено через последовательный интерфейс SPI, управление нагревом - внешнее.

В двигателях

N52, N53 и аналогичных используются широкополосные кислородные датчики типа LSU 4.2 для контроля топливной смеси. Для калибровки контрольной точки (лямбда = 1,00) используются узкополосные датчики кислорода. Этот нюанс необходимо учитывать, когда один из банков показывает сбалансированное (интегратор топливной коррекции стабильный и находится в нужном диапазоне значений) значение лямбда, отличное от 1,00.

Технические параметры, общие для CJ110, CJ120 и CJ125:

Напряжение ячейки Нернста: 450 мВ

опорное напряжение, Ipump: 1.500 В

Сопротивление шунтирующего резистора Ipump: 62 Ом

Коэффициент усилителя Ipump: 8/17 (богатый / обедненный режим)

Примечание: двигатели серии N имеют напряжения опорного значения: 2,00 В (напряжение штифта Нернста ячейки, как представляется, сообщается) и различный коэффициент усилителя из наборов микросхем управления серии CJ.

PS: Используя контроллеры управления датчиками CJ120, CJ125, имейте в виду, что Bosch предлагает (не юридически) несколько выпусков контроллеров, которые имеют некоторые различия в управлении SPI (регистры управления SPI и необходимые данные НЕ СООТВЕТСТВУЮТ таблице данных), это означает , что, например, когда вам нужно заменить контроллер, вы можете столкнуться с некоторыми неопределенными проблемами, которые приведут к ухудшению измерений лямбда - решения с прерыванием не будут работать и т. д.

Связанные записи:

Управление лямбда-зондами

N52 диагностика двигателя

STFT и LTFT

.

AliExpress'te ücretsiz gönderimle emulator лямбда-зонд satın alın версия

Ярдым Алиджи Корумасы белый гриб Gönderin

Дил

Para birimi

Кайдет

Сепет İstek Listesi Hesap

Tekrar hoşgeldiniz

С возвращением

ıkış Yap

Katıl Giriş yap

  • Siparişlerim
  • Месай Меркези
  • Истек Листеси
  • Benim sevdiğim Maazaları
  • Беним Купонум
  • Давет Эдип 175 TL kazandırın
a> span> img {width: auto! important;}} ]]>

КАТЕГОРИИ

.

23 Лучшее бесплатное программное обеспечение для моделирования цепей для Windows

Вот список лучших бесплатных программ для моделирования цепей для Windows . Эти бесплатные программы позволяют проектировать и моделировать электрические цепи на вашем ПК. Используя это программное обеспечение, вы можете проверить, как будет вести себя схема, а также узнать дополнительную информацию, включая форму волны. Если вы специально ищете программное обеспечение для проектирования схем, посмотрите здесь.

В следующем списке упоминаются различные типы программного обеспечения для моделирования схем.Некоторые из них - имитатор электрических цепей, некоторые - имитаторы электронных цепей, некоторые - имитаторы цепей специй, а некоторые - имитаторы силовых электронных цепей. Перечисленный здесь простой имитатор схем позволяет выполнять только один тип проектирования и моделирования схем, в то время как расширенные модели могут выполнять моделирование схем для нескольких типов схем. Например, idealCircuits и QUCS ; Это программное обеспечение позволяет проектировать и моделировать электрические и электронные схемы на вашем ПК.

Вам просто нужно добавить компоненты из списка компонентов, которые предоставляет это бесплатное ПО для моделирования схем, и запустить моделирование.

Просмотрите список, и вы подробно узнаете об упомянутом программном обеспечении. Я описал это программное обеспечение таким образом, чтобы вам было легко выбрать то, что вам действительно нужно.

Моя любимая программа для моделирования схем:

На мой взгляд, почти все упомянутые программы являются хорошим выбором, и то, что я буду использовать, будет полностью зависеть от моих потребностей.Если бы мне пришлось делать выбор, я бы выбрал idealCircuit . В нем есть почти все компоненты, необходимые для проектирования электрических и электронных схем. Если бы мне нужно было проектировать и моделировать только электрические цепи, я бы выбрал Tina-Ti .

Вы также можете просмотреть список лучших бесплатных программ для осциллографов и генераторов сигналов.

Тина-ТИ

Tina-TI - это бесплатное программное обеспечение для моделирования схем, которое можно использовать для проектирования и моделирования схем.Вы также можете проверить схему на наличие ошибок, прежде чем моделировать ее. Выполните анализ постоянного тока, анализ переменного тока, анализ переходных процессов, анализ Фурье, анализ шума и т. Д. После проектирования схемы. Tina-TI - это симулятор электрических цепей, который также позволяет моделировать цепи Spice.

Здесь вы найдете почти все компоненты, необходимые для разработки схемы. Кроме того, вы можете изменить значения компонентов по вашему выбору. Например, если вы берете источник напряжения, вы можете настроить его уровень напряжения, форму волны напряжения и т. Д.Вы найдете не только основные электрические и электронные компоненты, но и продвинутые. Доступны следующие основные компоненты: источник напряжения , батарея, вольтметр, амперметр, резистор, конденсатор, индуктор, трансформатор, переключатель, перемычка и т. Д. К усовершенствованным устройствам относятся реле , счетчики, генераторы данных, полупроводники (операционные усилители, диоды и т. Д.). Транзисторы) и макросы Spice (усилители, компараторы, SMPS, преобразователи, буфер и т. Д.) .

Что касается схемотехники и моделирования схем, это программное обеспечение позволяет вам делать это с легкостью.Список компонентов удобен и помещен наверху печатной платы. Это упрощает пользователям разработку схемы. Кроме того, чтобы изменить значения компонентов, достаточно дважды щелкнуть по нему.

Запустите проверку электрических правил из меню Analysis , чтобы узнать, есть ли какие-либо ошибки в разработанной цепи. Так что, если что-то не так, вы должны знать заранее. Для схемы, которую я разработал (рисунок выше), мне предложили добавить заземление к вольтметру и источнику напряжения.

Чтобы смоделировать схему, перейдите в меню «Анализ» и выполните требуемый тип моделирования и анализа. Я уже упоминал варианты анализа, доступные в первом абзаце.

Если вам необходимо дополнительно проанализировать схему и ее выход, вы можете использовать мультиметр, осциллограф, XY-самописец и анализатор сигналов.

Разработанную схему можно сохранить на вашем ПК как файл схемы или экспортировать как изображение, XML или список цепей.

Это одно из лучших программ для моделирования схем, которое настоятельно рекомендуется.

ideal Схема

idealCircuit - замечательная программа для моделирования схем. Он позволяет выполнять моделирование электрических цепей, а также моделирование электронных цепей. Большая часть перечисленного здесь программного обеспечения предоставляет любой из вариантов моделирования, поэтому это может быть ваш выбор, если вам нужно программное обеспечение для моделирования электронных и электрических цепей.Еще одной впечатляющей особенностью этого программного обеспечения является то, что здесь доступны 3 вкладки для схемотехники , для моделирования и просмотра результирующей формы сигнала , а для для просмотра параметров переменного тока моделируемой схемы .

Вы получаете хороший список компонентов для разработки схемы. Вы также можете загрузить схему в формате .ic для ее моделирования. Рассмотрим перечень комплектующих:

  • Пробники : вольтметр, амперметр и источник переменного тока.
  • RCL : резистор, конденсатор, индуктор и связанный индуктор.
  • Диоды : диод, стабилитрон, двунаправленный стабилитрон и мостовой выпрямитель.
  • Транзисторы : NPN, PNP, N-FET и P-FET.
  • Усилители : буфер, компаратор, дифференциальный усилитель, дифференциальный компаратор и суммирующий усилитель.
  • Источники : Источники напряжения и источники тока.
  • Переключатели : переключатель Normat, переключатель с управлением логикой / током / напряжением, переключатели SPDT и т. Д.
  • Трансформаторы : Обмотка или трансформатор.
  • Логический : Логические элементы, такие как AND, OR, NOR. XOR и т. Д., Триггеры, триггеры, триггеры Шмитта и т. Д.

После разработки схемы просто перейдите на вкладку «Переходный процесс» и щелкните на опции « Start Transient », чтобы просмотреть смоделированный сигнал. На вкладке AC отображаются параметры выходного переменного тока схемы.

Чтобы увидеть, как моделировать схему с помощью этого бесплатного программного обеспечения, вы можете загрузить доступные предварительно загруженные проекты и смоделировать их.

CircuitMod

CircuitMod - еще одно бесплатное программное обеспечение для моделирования электрических цепей, которое позволяет легко проектировать и моделировать цепи.Он обеспечивает минималистичную среду реального времени для моделирования схем. По мере добавления компонентов и создания схемы выходные значения и форма сигнала отображаются в реальном времени.

Здесь легко выполнить схемотехническое проектирование. Список компонентов недоступен в интерфейсе и может быть доступен через контекстное меню, щелкнув правой кнопкой мыши на печатной плате. Здесь вы найдете варианты добавления провода, резистора, конденсатора, заземления, устройств ввода / вывода, пассивных компонентов (катушки индуктивности, переключателя, трансформатора, потенциометра и т. Д.), Активные компоненты (диоды, транзисторы, усилители, полевые транзисторы и т. Д.), Логические элементы, микросхемы, устройства отображения и многое другое. Таким образом, это не только позволяет вам проектировать электрические схемы, но и использовать его в качестве имитатора электронных схем.

По мере того, как моделирование происходит в реальном времени, вы можете изменять скорость моделирования и текущую скорость, чтобы соответствующим образом просмотреть форму сигнала. Напряжение на компоненте отображается рядом с осциллограммой. Просто наведите курсор мыши на компонент, чтобы просмотреть соответствующие значения.

Вы можете сохранить схему в формате CMF, чтобы просмотреть или изменить ее позже.

Для вашего удобства здесь предварительно загружены различные схемы схем, такие как: LCR, делитель напряжения, схемы фильтров, схемы операционных усилителей, схемы таймеров, схемы линий передачи и многое другое.

CircuitMod - это удивительное программное обеспечение для моделирования схем, которое может быть очень полезно при использовании в учебных целях, поскольку оно имеет предварительно загруженные схемы.

Имитатор логического затвора

Logic Gate Simulator - это программное обеспечение для моделирования схем с открытым исходным кодом.Он позволяет проектировать логические схемы, моделировать их и просматривать выходные данные на осциллографе.

Вы можете загрузить схему в формате .gcg или создать ее с нуля. Для проектирования логической схемы доступны различные компоненты. Интерфейс устроен очень хорошо, что упрощает разработку схемы. Вы найдете списки основных ворот, составных ворот и входных / выходных ворот . Вы также можете создать собственный IC, присоединившись к группе компонентов и сохранив его для использования в дальнейшем.

Дизайн можно сохранить в формате.gcg формат, или вы можете экспортировать свой дизайн как изображение. Вы также можете сделать распечатку своего дизайна.

Logic Gate Simulator разработан специально для создания и моделирования логических схем.

Симулятор логики CEDAR

CEDAR Logic Simulator - еще одно программное обеспечение для проектирования схем с открытым исходным кодом и программное обеспечение для моделирования схем.Вы можете использовать его для проектирования и моделирования как простых, так и сложных логических схем. Форму выходного сигнала моделируемых цепей можно просмотреть на встроенном осциллографе.

Вы можете выбрать из хорошего списка электронных и логических компонентов для разработки схем. В списке компонентов вы найдете базовых логических вентилей, устройства ввода и вывода, мультиплексоры и декодеры, триггеры, регистры, RAM и ROM, а также микросхемы .

Одна из лучших особенностей этого симулятора электронных схем заключается в том, что вы можете создавать здесь несколько схем на разных вкладках.

Вы можете загрузить или сохранить файл схемы в его рабочем пространстве. Он поддерживает формат .cdl .

Цифровой логический дизайн

Digital Logic Design - еще один простой симулятор логических схем. Это программное обеспечение для моделирования схем с открытым исходным кодом для Windows, Mac и Linux .Он позволяет проектировать и моделировать логические схемы со списком логических компонентов на борту.

Компоненты, которые вы найдете здесь, это базовые логические вентили, производные логические вентили, триггеры, части ввода / вывода и т. Д. Доступны еще несколько компонентов, которые вы можете добавить в схему, например: сумматор, вычитатель, компаратор, преобразователь. , кодировщик, декодер, мультиплексор / де-мультиплексор, счетчик, регистр, память, ALU и т. д. Также доступны пробник и осциллограф для анализа выходных данных после моделирования.

Это еще одно простое и удобное программное обеспечение для моделирования электронных схем.

Логизим

Logisim - это программное обеспечение для моделирования схем с открытым исходным кодом и Java. Он многоплатформенный и может использоваться в Windows, Mac и Linux. Я работаю так же, как упомянутый выше программный симулятор логической схемы. Добавьте компоненты на печатную плату, чтобы сформировать схему, затем смоделируйте и исследуйте ее.

Список компонентов доступен в правой части интерфейса. Здесь вы найдете следующие компоненты: логические вентили, вентили четности, буфер, плексеры, ALU, триггеры, регистр, счетчик, светодиоды, 7-сегментный дисплей и многое другое. Для некоторых компонентов вы также можете изменить их параметры. Например, для шлепанцев можно выбрать тип фронта триггера.

Моделирование в реальном времени представлено здесь. Выходные данные можно проанализировать, применив к схеме осциллографы и щупы.

QUCS

QUCS или Quite Universal Circuit Simulator , как следует из названия, может моделировать практически любой тип схемы. Это симулятор схем с открытым исходным кодом.

Вы разрабатываете электрическую схему или электронную схему, в этом программном обеспечении есть компоненты для обоих.Будь то резистор, конденсатор, источник напряжения, источник тока, пробники, линии передачи, транзисторы, усилители, диоды, компаратор, триггеры или симуляторы, вы найдете все это здесь. Разработайте схему и смоделируйте ее. Если есть ошибка, она появится. Если ошибки нет, схема моделируется и отображаются параметры схемы.

QUCS - очень хорошая альтернатива вышеупомянутому программному обеспечению, такому как: TINA-Ti, idealCircuit и т. Д.

MultiMedia Logic

MultiMedia Logic может быть еще одним хорошим вариантом для проектирования и моделирования логических схем.Большой список компонентов поможет вам разработать обширные схемы. А с помощью инструментов осциллографа вы можете анализировать выходные данные смоделированной схемы.

Компоненты для проектирования схемы доступны на плавающей панели инструментов , а некоторые дополнительные компоненты доступны в меню Draw . Компоненты включают логические элементы, триггеры, счетчики, ALU, мультиплексор, светодиоды, переключатели и многое другое. Вы даже можете присоединить встроенный осциллограф к разработанной схеме для просмотра формы выходного сигнала после моделирования.

Этот симулятор логической схемы ничем не отличается от вышеупомянутого программного обеспечения, за исключением немного другой компоновки.

Логическая схема

Logical Circuit - еще одно программное обеспечение для моделирования логических схем с открытым исходным кодом, которое может вам понравиться.Как и другие, он позволяет проектировать и моделировать схемы. Но что мне понравилось в этом программном обеспечении, так это то, что оно позволяет добавлять параметры к компонентам перед добавлением их на плату. Раз уж мы говорим о компонентах, позвольте мне сообщить вам, что здесь доступны довольно простые, но обширные логические компоненты. Среди них логических ворот, устройства ввода, устройства вывода, датчик, часы, светодиод, 7-сегментный дисплей, светодиодная матрица, зуммер, датчик и т. Д.

Чтобы смоделировать схему, просто нажмите кнопку питания.Опция позволяет просматривать таблицу истинности разработанной схемы . Осциллограф также можно добавить для просмотра формы выходного сигнала.

Схема может быть сохранена как файл CircuitProject для настройки или просмотра позже.

PECS

PECS - это бесплатное программное обеспечение Power Electronics Circuit Simulator .Его можно использовать для моделирования схем силовой электроники с электрическими и электронными компонентами. В этом инструменте моделирования цепей доступен широкий список компонентов. После разработки схемы вы можете не только моделировать ее, но и просматривать форму выходного сигнала. Если у вас есть схема, сохраненная на вашем компьютере в формате .ckt, вы можете открыть и смоделировать ее здесь.

Компоненты здесь известны как Элементы. В списке элементов:

  • Различные типы источников напряжения : VDC, VAC, IDC, VCVS, VCIS, ICIS и т. Д.
  • Основные элементы схемы : R, L, C, трансформатор, провод, заземление и т. Д.
  • Переключатель Элементы управления : часы, модулятор, верхний ограничитель, нижний ограничитель, порог и VCO.
  • Другие компоненты : переключатель, диод, операционный усилитель и умножитель.

Это еще один хороший вариант, если вы ищете имитатор электронных схем.

Цифровые работы

Digital Works - это программное обеспечение для моделирования электронных схем, позволяющее проектировать и моделировать простые и сложные логические схемы.Основные компоненты, такие как логические вентили , триггеры, устройства ввода / вывода и инструменты подключения , доступны в интерфейсе. Чтобы добавить сложные компоненты, посетите Центр запчастей. В центре запчастей вы найдете следующие компоненты: ИС, макросы, шину, регистры, трехстороннее состояние, DIN и т. Д.

Моделируйте схему после ее проектирования. Для моделирования схем определены горячие клавиши. Вы даже можете сохранить схему в формате .dwm для последующего изменения или моделирования.

Deeds (имитатор цифровых схем)

Deeds (Digital Circuit Simulator) - еще одно передовое программное обеспечение для моделирования электронных схем для Windows.Это почти как Digital Works

.

Смотрите также