RU (495) 989 48 46
Пленка на бампер

АНТИГРАВИЙНАЯ ЗАЩИТА БАМПЕРА

 

Что такое катализатор в химии


Катализатор — Википедия

Схема протекания реакции с катализатором

Катализа́тор — химическое вещество, ускоряющее реакцию, но не расходующееся в процессе реакции.

Ингибитор не является противоположным понятием, так как расходуется в ходе реакции[источник не указан 156 дней].

Катализаторы подразделяются на гомогенные и гетерогенные. Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный — образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества[1]. Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al2O3, TiO2, ThO2, алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaO, BaO, MgO[1].

Гетерогенные катализаторы имеют, как правило, сильно развитую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.).

Для каждого типа реакций эффективны только определённые катализаторы. Кроме уже упомянутых кислотно-основных, существуют катализаторы окисления-восстановления; для них характерно присутствие переходного металла или его соединения (Со+3, V2O5+MoO3). В этом случае катализ осуществляется путём изменения степени окисления переходного металла.

Много реакций осуществлено при помощи катализаторов, которые действуют через координацию реагентов у атома или иона переходного металла (Ti, Rh, Ni). Такой катализ называется координационным.

Если катализатор обладает хиральными свойствами, то из оптически неактивного субстрата получается оптически активный продукт.

В современной науке и технике часто применяют системы из нескольких катализаторов, каждый из которых ускоряет разные стадии реакции[2][3]. Катализатор также может увеличивать скорость одной из стадий каталитического цикла, осуществляемого другим катализатором. Здесь имеет место «катализ катализа», или катализ второго уровня[2].

В биохимических реакциях роль катализаторов играют ферменты.

Катализаторы следует отличать от инициаторов. Например, перекиси распадаются на свободные радикалы, которые могут инициировать радикальные цепные реакции. Инициаторы расходуются в процессе реакции, поэтому их нельзя считать катализаторами.

Ингибиторы иногда ошибочно считают отрицательными катализаторами. Но ингибиторы, например, цепных радикальных реакций, реагируют со свободными радикалами и, в отличие от катализаторов, не сохраняются. Другие ингибиторы (каталитические яды) связываются с катализатором и его дезактивируют, здесь имеет место подавление катализа, а не отрицательный катализ. Отрицательный катализ в принципе невозможен: он обеспечивал бы для реакции более медленный путь, но реакция, естественно, пойдёт по более быстрому, в данном случае, не катализированному, пути.

Задачей автомобильного катализатора является снижение количества вредных веществ в выхлопных газах. Среди них:

  1. 1 2 Химическая энциклопедия. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 335, 337. — ISBN 5-85270-035-5.
  2. 1 2 Имянитов Н. С. Системы из нескольких катализаторов в металлокомплексном катализе. // Координационная химия. 1984. — Т. 10. — № 11 — С. 1443—1454. — ISSN 0132-344X.
  3. Temkin O.N., Braylovskiy S. M. / The mechanism of catalysis in homogeneous polyfunctional catalytic systems. // Fundamental Research in Homogeneous Catalysis. — Ed. by A.E. Shilov. — New York etc: Gordon and Breach Science Publishers, 1986. — Vol. Two. — P.621- 633.
  4. ↑ Автомобильный катализатор и его роль в выхлопной системе (неопр.). AutoRelease.ru. Архивировано 25 августа 2011 года.

ru.wikipedia.org

Катализ — Википедия

Ката́лиз (греч. κατάλυσις от καταλύειν «разрушение») — избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов), который, согласно теории промежуточных соединений, многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий.[1]

Термин «катализ» был введён в 1835 году шведским учёным Йёнсом Якобом Берцелиусом.

Катализа́ция (явление катализа) распространена в природе (большинство процессов, происходящих в живых организмах, являются каталитическими) и широко используется в технике (в нефтепереработке и нефтехимии, в производстве серной кислоты, аммиака, азотной кислоты и др.: большая часть всех промышленных реакций — каталитические).

Случай, когда катализатором является один из продуктов реакции или её исходных веществ, называют автокатализом.

Катализатор изменяет механизм реакции на энергетически более выгодный, то есть снижает энергию активации. Катализатор образует с молекулой одного из реагентов промежуточное соединение, в котором ослаблены химические связи. Это облегчает его реакцию со вторым реагентом. Важно отметить, что катализаторы ускоряют обратимые реакции как в прямом, так и в обратном направлениях. Поэтому они не смещают химическое равновесие[2].

По влиянию на скорость реакции катализ многие источники делят на положительный (скорость реакции растет) и отрицательный (скорость реакции падает). В случае ингибирования цепных реакций, ингибитор расходуется в процессе реакции, поэтому данный случай нельзя считать отрицательным катализом.

Катализ бывает гомогенным и гетерогенным (контактным). В гомогенном катализе катализатор состоит в той же фазе, что и реактивы реакции, в то время как гетерогенные катализаторы отличаются фазой.

Гомогенный катализ[править | править код]

Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода. Реакция протекает в две стадии:

H2О2 + I → H2О + IO H2О2 + IO → H2О + О2 + I

При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации.

При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела — катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель.

Механизм гетерогенного катализа сложнее, чем у гомогенного. Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.

  1. Диффузия реагирующих веществ к поверхности твердого вещества
  2. Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем их хемосорбция
  3. Химическая реакция между реагирующими молекулами
  4. Десорбция продуктов с поверхности катализатора
  5. Диффузия продукта с поверхности катализатора в общий поток

Примером гетерогенного катализа является окисление SO2 в SO3 на катализаторе V2O5 при производстве серной кислоты (контактный метод).

Течение реакции именно на поверхности катализатора можно продемонстрировать на опыте, в котором пластинку из платины нагревают в пламени газовой горелки, затем пламя тушат и пускают на пластинку струю газа из горелки, при этом пластинка снова раскаляется докрасна — окисление метана происходит на поверхности металла[3].

Металлическая платина (показана стрелками), стабилизированная на носителе — оксиде алюминия

Носитель катализатора, иначе подложка (катализатора) (англ. carrier или support) — инертный или малоактивный материал, служащий для стабилизации на его поверхности частиц активной каталитической фазы.

Роль носителя в гетерогенном катализе состоит в предотвращении агломерации или спекания активного компонента, что позволяет поддерживать высокую площадь контакта активного вещества (см. активная каталитическая фаза) и реагентов. Количество носителя, как правило, гораздо больше количества нанесенного на него активного компонента. Основными требованиями к носителям являются большая площадь поверхности и пористость, термическая стабильность, химическая инертность, высокая механическая прочность. В ряде случаев носитель влияет на свойства активной фазы (эффект «сильного взаимодействия металл-носитель»). В качестве носителей применяют как природные (глины, пемза, диатомит, асбест и др.), так и синтетические материалы (активные угли, силикагель, алюмосиликаты, оксиды алюминия, магния, циркония и др.)[4].

Химия катализа изучает вещества, изменяющие скорость химических реакций. Вещества, замедляющие реакции, называются ингибиторами. Ферменты — это биологические катализаторы. Катализатор не находится в стехиометрических отношениях с продуктами и регенерируется после каждого цикла превращения реагентов в продукты. Несмотря на появление новых способов активации молекул (плазмохимия, радиационное и лазерное воздействия и другие), катализ − основа химических производств (относительная доля каталитических процессов составляет 80-90 %).

Реакция, накормившая человечество (решение проблемы связанного азота) — цикл Габера-Боша. Аммиак получают с катализатором — пористым железом. Протекает при Р = 30 МПа и Т = 420—500 °C

2 + N2 = 2NH3

Водород для синтеза NH3 получают путём двух последовательных каталитических процессов: конверсии СН4(СН4 + Н2О → СО + 3Н2) на Niкатализаторах и конверсии образующегося оксида углерода (СО + Н2О → СО2 + Н2). Для достижения высоких степеней превращения последнюю реакцию осуществляют в две стадии: высокотемпературная (315—480 °C) — на FeCrоксидных катализаторах и низкотемпературная (200—350 °C) — на CuZnоксидных катализаторах. Из аммиака получают азотную кислоту и другие соединения азота — от лекарств и удобрений до взрывчатых веществ.

Различают катализы ''гомогенный, гетерогенный, межфазный, мицеллярный, ферментативный.

Энергия активации E каталитических реакций значительно меньше, чем для той же реакций в отсутствие катализатора. Например, для некаталитического разложения NH3 на N2 + Н2E ~ 320 кДж/моль, для того же разложения в присутствии платины Е ~ 150 кДж/моль. Благодаря снижению E обеспечивается ускорение каталитических реакций по сравнению с некаталитическими.

Применение катализа в промышленности[править | править код]

Гидрирование[править | править код]

Большое число каталитических реакций связано с активацией атома водорода и какой-либо другой молекулы, приводящей к их химическому взаимодействию. Этот процесс называется гидрированием и лежит в основе многих этапов переработки нефти и получения жидкого топлива из угля (процесс Бергиуса). Производство авиационного бензина и моторного топлива из угля было развито в Германии во время Второй мировой войны, поскольку в этой стране нет нефтяных месторождений. Процесс Бергиуса заключается в непосредственном присоединении водорода к углю. Уголь нагревают под давлением в присутствии водорода и получают жидкий продукт, который затем перерабатывают в авиационный бензин и моторное топливо. В качестве катализатора используют оксид железа, а также катализаторы на основе олова и молибдена. Во время войны на 12 заводах Германии с помощью процесса Бергиуса получали примерно 1400 т жидкого топлива в сутки. Другой процесс, Фишера — Тропша, состоит из двух стадий. Вначале уголь газифицируют, то есть проводят реакцию его с водяным паром и кислородом и получают смесь водорода и оксидов углерода. Эту смесь превращают в жидкое топливо с помощью катализаторов, содержащих железо или кобальт. С окончанием войны производство синтетического топлива из угля в Германии было прекращено. В результате повышения цен на нефть, последовавшего за нефтяным эмбарго в 1973—1974, были предприняты энергичные усилия по разработке экономически выгодного способа получения бензина из угля. Так, прямое ожижение угля можно проводить более эффективно, используя двухстадийный процесс, в котором сначала уголь контактирует с алюмокобальтомолибденовым катализатором при относительно низкой, а затем при более высокой температуре. Стоимость такого синтетического бензина выше, чем получаемого из нефти.

Кислотный катализ[править | править код]

Каталитическая активность большого класса катализаторов обусловливается их кислотными свойствами. Согласно Й. Брёнстеду и Т. Лоури, кислота — это соединение, способное отдавать протон. Сильные кислоты легко отдают свои протоны основаниям. Концепция кислотности получила дальнейшее развитие в работах Г. Льюиса, который дал определение кислоты как вещества, способного принимать электронную пару от вещества-донора с образованием ковалентной связи за счет обобществления этой электронной пары. Эти идеи вместе с представлениями о реакциях с образованием карбений-ионов помогли понять механизм разнообразных каталитических реакций, особенно тех, в которых участвуют углеводороды.

Силу кислоты можно определить с помощью набора оснований, изменяющих цвет при присоединении протона. Оказывается, некоторые промышленно важные катализаторы ведут себя как очень сильные кислоты. К ним относится катализатор процесса Фриделя — Крафтса, такой, как HCl-AlCl2O3 (или HAlCl4), и алюмосиликаты. Сила кислоты — это очень важная характеристика, поскольку от неё зависит скорость протонирования — ключевого этапа процесса кислотного катализа.

Активность таких катализаторов, как алюмосиликаты, применяющихся при крекинге нефти, определяется присутствием на их поверхности кислот Брёнстеда и Льюиса. Их структура аналогична структуре кремнезема (диоксида кремния), в котором часть атомов Si4+ замещена атомами Al3+. Лишний отрицательный заряд, возникающий при этом, может быть нейтрализован соответствующими катионами.

Активность кислотных катализаторов обусловливается их способностью реагировать с углеводородами с образованием в качестве промежуточного продукта карбений-иона. Алкилкарбений-ионы содержат положительно заряженный углеродный атом, связанный с тремя алкильными группами и/или атомами водорода. Они играют важную роль как промежуточные продукты, образующиеся во многих реакциях с участием органических соединений. Механизм действия кислотных катализаторов можно проиллюстрировать на примере реакции изомеризации н-бутана в изобутан в присутствии HCl-AlCl3 или Pt-Cl-Al2O3. Сначала малое количество олефина С4Н8 присоединяет положительно заряженный ион водорода кислотного катализатора с образованием третичного карбений-иона. Затем отрицательно заряженный гидрид-ион Н- отщепляется от н-бутана с образованием изобутана и вторичного бутилкарбений-иона. Последний в результате перегруппировки превращается в третичный карбений-ион. Эта цепочка может продолжаться с отщеплением гидрид-иона от следующей молекулы н-бутана и т. д.

Существенно, что третичные карбений-ионы более стабильны, чем первичные или вторичные. Вследствие этого на поверхности катализатора присутствуют в основном именно они, а потому основным продуктом изомеризации бутана является изобутан.

Кислотные катализаторы широко применяются при переработке нефти — крекинге, алкилировании, полимеризации и изомеризации углеводородов. Установлен механизм действия карбений-ионов, играющих роль катализаторов в этих процессах. При этом они участвуют в целом ряде реакций, включая образование малых молекул путём расщепления больших, соединение молекул (олефина с олефином или олефина с изопарафином), структурную перегруппировку путём изомеризации, образование парафинов и ароматических углеводородов путём переноса водорода.

Одно из последних применений кислотного катализа в промышленности — получение этилированных топлив присоединением спиртов к изобутилену или изоамилену. Добавление кислородсодержащих соединений в бензин уменьшает концентрацию оксида углерода в выхлопных газах. Метил-трет-бутиловый эфир (МТБЭ) с октановым числом смешения 109 тоже позволяет получить высокооктановое топливо, необходимое для работы автомобильного двигателя с высокой степенью сжатия, не прибегая к введению в бензин тетраэтилсвинца. Организовано также производство топлив с октановыми числами 102 и 111.

Гидрирование растительного масла[править | править код]

Одна из важнейших в практическом отношении реакций гидрирования — неполное гидрирование растительных масел до маргарина, кулинарного жира и других пищевых продуктов. Растительные масла получают из соевых бобов, семян хлопчатника и других культур. В их состав входят эфиры, а именно триглицериды жирных кислот с разной степенью ненасыщенности. Олеиновая кислота СН3(СН2)7СН=СН(СН2)7СООН имеет одну двойную связь С=С, линолевая кислота — две и линоленовая — три. Присоединение водорода с разрывом этой связи предотвращает окисление масел (прогоркание). При этом повышается их температура плавления. Твердость большинства получаемых продуктов зависит от степени гидрирования. Гидрирование проводят в присутствии мелкодисперсного порошка никеля, нанесенного на подложку, или никелевого катализатора Ренея в атмосфере водорода высокой степени очистки.

Дегидрирование[править | править код]

Дегидрирование — это тоже важная в промышленном отношении каталитическая реакция, хотя масштабы её применения несравнимо меньше. С её помощью получают, например, стирол — важный мономер. Для этого дегидрируют этилбензол в присутствии катализатора, содержащего оксид железа; протеканию реакции способствуют также калий и какой-нибудь структурный стабилизатор. В промышленных масштабах осуществляют дегидрирование пропана, бутана и других алканов. Дегидрированием бутана в присутствии алюмохромового катализатора получают бутены и бутадиен.

Аммиак[править | править код]

Один из самых простых с химической точки зрения процессов гидрирования — синтез аммиака из водорода и азота. Азот весьма инертное вещество. Для разрыва связи N-N в его молекуле необходима энергия порядка 200 ккал/моль. Однако азот связывается с поверхностью железного катализатора в атомарном состоянии, и для этого нужно всего 20 ккал/моль. Водород связывается с железом ещё более охотно.

Основный катализ[править | править код]

Активность катализаторов обуславливается их основными свойствами. Давним и хорошо известным примером таких катализаторов является гидроксид натрия, применяющийся для гидролиза или омыления жиров при получении мыла, а один из последних примеров — катализаторы, используемые при производстве полиуретановых пластиков и пенопластов. Уретан образуется при взаимодействии спирта с изоцианатом, а ускоряется эта реакция в присутствии оснóвных аминов. В ходе реакции происходит присоединение основания к атому углерода в молекуле изоцианата, в результате чего на атоме азота появляется отрицательный заряд и его активность по отношению к спирту повышается. Особенно эффективным катализатором является триэтилендиамин. Полиуретановые пластики получают при взаимодействии диизоцианатов с полиолами (полиспиртами). Когда изоцианат реагирует с водой, ранее образовавшийся уретан разлагается с выделением CO2. При взаимодействии смеси полиспиртов и воды с диизоцианатами образующийся пенополиуретан вспенивается газообразным CO2.

Катализаторы двойного действия[править | править код]

Эти катализаторы ускоряют реакции двух типов и дают лучшие результаты, чем при пропускании реагентов последовательно через два реактора, каждый из которых содержит только один тип катализатора. Это связано с тем, что активные центры катализатора двойного действия находятся очень близко друг к другу, и промежуточный продукт, образующийся на одном из них, тут же превращается в конечный продукт на другом. Хороший результат дает объединение катализатора, активирующего водород, с катализатором, способствующим изомеризации углеводородов. Активацию водорода осуществляют некоторые металлы, а изомеризацию углеводородов — кислоты. Эффективным катализатором двойного действия, который применяется при переработке нефти для превращения нафты в бензин, является мелкодисперсная платина, нанесенная на кислый глинозем. Конверсия таких составляющих нафты, как метилциклопентан метилциклопентан (МЦП), в бензол повышает октановое число бензина. Сначала МЦП дегидрируется на платиновой части катализатора в олефин с тем же углеродным остовом; затем олефин переходит на кислотную часть катализатора, где изомеризуется до циклогексена. Последний переходит на платиновую часть и дегидрируется до бензола и водорода. Катализаторы двойного действия существенно ускоряют риформинг нефти. Их используют для изомеризации нормальных парафинов в изопарафины. Последние, кипящие при тех же температурах, что и бензиновые фракции, ценны тем, что обладают более высоким октановым числом по сравнению с неразветвлёнными углеводородами. Кроме того, превращение н-бутана в изобутан сопровождается дегидрированием, способствуя получению МТБЭ.

Стереоспецифическая полимеризация[править | править код]

Важной вехой в истории катализа явилось открытие каталитической полимеризации-олефинов с образованием стереорегулярных полимеров. Катализаторы стереоспецифической полимеризации были открыты К.Циглером, когда он пытался объяснить необычные свойства полученных им полимеров. Другой химик, Дж. Натта, предположил, что уникальность полимеров Циглера определяется их стереорегулярностью. Эксперименты по дифракции рентгеновских лучей показали, что полимеры, полученные из пропилена в присутствии катализаторов Циглера, высококристалличны и действительно имеют стереорегулярную структуру. Для описания таких упорядоченных структур Натта ввел термины «изотактический» и «синдиотактический». В том случае, когда упорядоченность отсутствует, используется термин «атактический».

Стереоспецифическая реакция протекает на поверхности твердых катализаторов, содержащих переходные металлы групп IVA-VIII (такие, как Ti, V, Cr, Zr), находящиеся в неполностью окисленном состоянии, и какое-либо соединение, содержащее углерод или водород, который связан с металлом из групп I—III. Классическим примером такого катализатора является осадок, образующийся при взаимодействии TiCl4 и Al(C2H5)3 в гептане, где титан восстановлен до трехвалентного состояния. Эта исключительно активная система катализирует полимеризацию пропилена при обычных температуре и давлении.

Каталитическое окисление[править | править код]

Применение катализаторов для управления химизмом процессов окисления имеет большое научное и практическое значение. В некоторых случаях окисление должно быть полным, например при нейтрализации СО и углеводородных загрязнений в выхлопных газах автомобилей. Однако чаще нужно, чтобы окисление было неполным, например во многих широко применяемых в промышленности процессах превращения углеводородов в ценные промежуточные продукты, содержащие такие функциональные группы, как -СНО, -СООН, -С-СО, -СN. При этом применяются как гомогенные, так и гетерогенные катализаторы. Примером гомогенного катализатора является комплекс переходного металла, который используется для окисления пара-ксилола до терефталевой кислоты, эфиры которой служат основой производства полиэфирных волокон.

Получение этилена путём дегидродимеризации метана[править | править код]

Синтез этилена посредством дегидродимеризации позволяет превращать природный газ в более легко транспортируемые углеводороды. Реакцию 2CH4 + 2O2 → C2H4 + 2H2O проводят при 850 °С с использованием различных катализаторов; наилучшие результаты получены с катализатором Li-MgO. Предположительно реакция протекает через образование метильного радикала путём отщепления атома водорода от молекулы метана. Отщепление осуществляется неполностью восстановленным кислородом, например О2−
2. Метильные радикалы в газовой фазе рекомбинируют с образованием молекулы этана и в ходе последующего дегидрирования превращаются в этилен. Ещё один пример неполного окисления — превращение метанола в формальдегид в присутствии серебряного или железомолибденового катализатора.

Катализаторы гетерогенного окисления[править | править код]

Эти катализаторы обычно являются сложными твердыми оксидами. Каталитическое окисление проходит в два этапа. Сначала кислород оксида захватывается адсорбированной на поверхности оксида молекулой углеводорода. Углеводород при этом окисляется, а оксид восстанавливается. Восстановленный оксид взаимодействует с кислородом и возвращается в исходное состояние. Используя ванадиевый катализатор, неполным окислением нафталина или бутана получают фталевый ангидрид.

ru.wikipedia.org

Катализаторы - это... Что такое Катализаторы?

Катализа́тор — вещество, ускоряющее реакцию, но не входящее в состав продуктов реакции (Химическая энциклопедия). Количество катализатора, в отличие от других реагентов, при реакции не изменяется. Обеспечивая более быстрый путь для реакции, катализатор реагирует с исходным веществом, получившееся промежуточное соединение подвергается превращениям и в конце расщепляется на продукт и катализатор. Затем катализатор снова реагирует с исходным веществом, и этот каталитический цикл многократно (сотни, миллионы раз) повторяется.

Катализаторы в химии

Катализаторы подразделяются на гомогенные и гетерогенные. Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный – образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества (Химическая энциклопедия). Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al2O3, TiO2, ThO2, алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaO, BaO, MgO (Химическая энциклопедия).

Гетерогенные катализаторы имеют, как правило, сильно развитую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.).

Для каждого типа реакций эффективны только определённые катализаторы. Кроме уже упомянутых кислотно-основных, существуют катализаторы окисления-востановления; для них характерно присутствие переходного металла или его соединения (Со+3, V2O5+MoO3). В этом случае катализ осуществляется путём изменения степени окисления переходного металла.

Много реакций осуществлено при помощи катализаторов, которые действуют через координацию реагентов у атома или иона переходного металла (Ti, Rh, Ni). Такой катализ называется координационным.

Если катализатор обладает хиральными свойствами, то из оптически неактивного субстрата получается оптически активный продукт.

В современной науке и технике часто применяют системы из нескольких катализаторов, каждый из которых ускоряет разные стадии реакции (Имянитов, Temkin). Катализатор также может увеличивать скорость одной из стадий каталитического цикла, осуществляемого другим катализатором. Здесь имеет место «катализ катализа», или катализ второго уровня (Имянитов).

В биохимических реакциях роль катализаторов играют ферменты.

Катализаторы следует отличать от инициаторов. Например, перекиси распадаются на свободные радикалы, которые могут инициировать радикальные цепные реакции. Инициаторы расходуются в процессе реакции, поэтому их нельзя считать катализаторами.

Ингибиторы иногда ошибочно считают отрицательными катализаторами. Но ингибиторы, например, цепных радикальных реакций, реагируют со свободными радикалами и, в отличие от катализаторов, не сохраняются. Другие ингибиторы (каталитические яды) связываются с катализатором и его дезактивируют, здесь имеет место подавление катализа, а не отрицательный катализ. Отрицательный катализ в принципе невозможен: он обеспечивал бы для реакции более медленный путь, но реакция, естественно, пойдёт по более быстрому, в данном случае, не катализированному, пути.

Катализаторы в автомобилях

На дороги ежедневно выезжают миллионы автомобилей, и каждый из них - источник загрязнения воздуха. Особенно это чувствуется в крупных городах, где выхлопные газы автомобилей могут создавать большие проблемы.

В современных автомашинах присутствует каталитический преобразователь или автомобильный катализатор. Задачей автомобильного катализатора является снижение количества вредных веществ в выхлопных газах. Среди них:

Источники

  1. Автомобильный катализатор и его роль в выхлопной системе. AutoRelease.ru.

Литература

  1. Химическая энциклопедия. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 335, 337. — ISBN 5-85270-035-5.
  2. Имянитов Н. С. Системы из нескольких катализаторов в металлокомплексном катализе. // Координационная химия. 1984. — Т. 10. — № 11 — С. 1443 — 1454. — 0132-344X.
  3. Temkin O.N., Braylovskiy S. M. / The mechanism of catalysis in homogeneous polyfunctional catalytic systems. // Fundamental Research in Homogeneous Catalysis. — Ed. by A.E. Shilov. — New York etc: Gordon and Breach Science Publishers, 1986. — Vol. Two. — P.621- 633.

Ссылки

См. также

Wikimedia Foundation. 2010.

dic.academic.ru

Катализ и катализаторы - Энциклопедия wiki.MPlast.by

Катализ – это процесс изменения скорости химической реакции при помощи катализатороввеществ, принимающих участие в химической реакции, но в состав конечных продуктов не входящих и в результате реакции не расходующихся.

Одни катализаторы ускоряют реакцию (положительный катализ), другие – замедляют (отрицательный катализ). Отрицательный катализ называют ингибированием, а катализаторы, понижающие скорость химической реакции – ингибиторами.

Различают гомогенный и гетерогенный катализ.

Гомогенный катализ.

При гомогенном (однородном) катализе реагирующие вещества и катализатор находятся в одинаковом агрегатном состоянии и между ними отсутствует поверхность раздела. Пример гомогенного катализа – реакция окисления SO2 и SO3 в присутствии катализатора NO (реагирующие вещества и катализатор являются газами).

Гетерогенный катализ.

В случае гетерогенного (неоднородного) катализа реагирующие вещества и катализатор находятся в различных агрегатных состояниях и между ними существует поверхность (граница) раздела. Обычно катализатор – твердое вещество, а реагирующие вещества – жидкости или газы. Пример гетерогенного катализа – окисление NN3 до NO в присутствии Pt (катализатор – твердое вещество).

Механизм действия катализаторов

Действие положительных катализаторов сводится к понижению энергии активации реакции Еа(исх), действие ингибиторов – противоположное.

Так, для реакции 2HI = H2+I2 Еа(исх)=184 кДж/моль. Когда же эта реакция протекает в присутствии катализатора Au или Pt, то Еа(исх)=104 кДж/моль, соответственно.

Механизм действия катализатора при гомогенном катализе объясняется образованием промежуточных соединений между катализатором и одним из реагирующих веществ. Далее промежуточное соединение реагирует со вторым исходным веществом, в результате чего образуется продукт реакции и катализатор в первоначальном виде. Так как скорость обоих промежуточных процессов значительно больше скорости прямого процесса, то реакция с участием катализатора протекает значительно быстрее, чем без него.

Например, реакция:

SO2 +1/2 O2 = SO3 протекает очень медленно, а если использовать катализатор NO

то реакции NO +1/2О2 = NO2 и NO2 +SO2 = SO3 +NO протекают быстро.

Механизм действия катализатора при гетерогенном катализе иной. В этом случае реакция протекает вследствие адсорбции молекул реагирующих веществ поверхностью катализатора (поверхность катализатора неоднородна: на ней имеются так называемые активные центры, на которых и адсорбируются частицы реагирующих веществ.). Увеличение скорости химической реакции достигается, в основном, за счет понижения энергии активации адсорбированных молекул, а также, отчасти, за счет увеличения концентрации реагирующих веществ в местах, где произошла адсорбция.

Каталитические яды и промоторы.

Некоторые вещества снижают или полностью уничтожают активность катализатора, такие вещества называют каталитическими ядами. Например, небольшие примеси серы (0,1%) полностью прекращает каталитическое действие металлического катализатора (губчатого железа), использующегося при синтезе аммиака. Вещества, повышающие активность катализатора, называют промоторами. Например, каталитическая активность губчатого железа значительно возрастает при добавлении примерно 2% метаалюмината калия KAlO2.

Применение катализаторов

Действие катализатора избирательно и специфично. Это означает, что, применяя различные катализаторы, из одних и тех же веществ можно получить различные продукты. Это особенно характерно для реакций органических веществ. Например, в присутствии катализатора AlO3 происходит дегидратация этилового спирта, в присутствии Cu – дегидрирование:

Биологические катализаторы, принимающие участие в сложных химических превращениях, протекающих в организме, называются ферментами.

Катализаторы широко используются в производстве серной кислоты, аммиака, каучука, пластмасс и др. веществ.


 

Автор: Метельский А.В
Источник: Метельский А.В., Химия в Экзаменационных вопросах и ответах, Минск, изд. «Беларуская энцыклапедыя», 1999 год
Дата в источнике: 1999 год

mplast.by

Катализатор - это... Что такое Катализатор?

Схема протекания реакции с катализатором

Катализа́тор — химическое вещество, ускоряющее реакцию, но не входящее в состав продуктов реакции[1]. Количество катализатора, в отличие от реагентов, после реакции не изменяется. Важно понимать, что катализатор не участвует в реакции. Они обеспечивают более быстрый путь для реакции, катализатор реагирует с исходным веществом, получившееся промежуточное соединение подвергается превращениям и в конце расщепляется на продукт и катализатор. Затем катализатор снова реагирует с исходным веществом, и этот каталитический цикл многократно повторяется.

Катализаторы в химии

Катализаторы подразделяются на гомогенные и гетерогенные. Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный — образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества [1]. Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al2O3, TiO2, ThO2, алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaO, BaO, MgO [1].

Гетерогенные катализаторы имеют, как правило, сильно развитую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.).

Для каждого типа реакций эффективны только определённые катализаторы. Кроме уже упомянутых кислотно-основных, существуют катализаторы окисления-восстановления; для них характерно присутствие переходного металла или его соединения (Со+3, V2O5+MoO3). В этом случае катализ осуществляется путём изменения степени окисления переходного металла.

Много реакций осуществлено при помощи катализаторов, которые действуют через координацию реагентов у атома или иона переходного металла (Ti, Rh, Ni). Такой катализ называется координационным.

Если катализатор обладает хиральными свойствами, то из оптически неактивного субстрата получается оптически активный продукт.

В современной науке и технике часто применяют системы из нескольких катализаторов, каждый из которых ускоряет разные стадии реакции [2][3]. Катализатор также может увеличивать скорость одной из стадий каталитического цикла, осуществляемого другим катализатором. Здесь имеет место «катализ катализа», или катализ второго уровня (Имянитов).

В биохимических реакциях роль катализаторов играют ферменты.

Катализаторы следует отличать от инициаторов. Например, перекиси распадаются на свободные радикалы, которые могут инициировать радикальные цепные реакции. Инициаторы расходуются в процессе реакции, поэтому их нельзя считать катализаторами.

Ингибиторы иногда ошибочно считают отрицательными катализаторами. Но ингибиторы, например, цепных радикальных реакций, реагируют со свободными радикалами и, в отличие от катализаторов, не сохраняются. Другие ингибиторы (каталитические яды) связываются с катализатором и его дезактивируют, здесь имеет место подавление катализа, а не отрицательный катализ. Отрицательный катализ в принципе невозможен: он обеспечивал бы для реакции более медленный путь, но реакция, естественно, пойдёт по более быстрому, в данном случае, не катализированному, пути.

Катализаторы в автомобилях

Задачей автомобильного катализатора является снижение количества вредных веществ в выхлопных газах. Среди них:

Источники

  1. 1 2 3 Химическая энциклопедия. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 335, 337. — ISBN 5-85270-035-5.
  2. Имянитов Н. С. Системы из нескольких катализаторов в металлокомплексном катализе. // Координационная химия. 1984. — Т. 10. — № 11 — С. 1443—1454. — ISSN 0132-344X.
  3. Temkin O.N., Braylovskiy S. M. / The mechanism of catalysis in homogeneous polyfunctional catalytic systems. // Fundamental Research in Homogeneous Catalysis. — Ed. by A.E. Shilov. — New York etc: Gordon and Breach Science Publishers, 1986. — Vol. Two. — P.621- 633.
  4. Автомобильный катализатор и его роль в выхлопной системе. AutoRelease.ru. Архивировано из первоисточника 25 августа 2011.

См. также

Ссылки

dic.academic.ru

Что такое катализатор и как это работает — DRIVE2

На протяжении многих лет авто производители создают много усовершенствований в автомобильных двигателях и топливных системах, чтобы идти в ногу со временем и, безусловно, с законами, направленными на улучшение экологической ситуации на фоне выбросов автомобилей. Одно из кардинальных таких усовершенствований произошло в 1975 году с интересным устройством под названием катализатор. По сути работа катализатора заключается в преобразовании вредных веществ в менее вредные выбросы, прежде чем они покинут выхлопную систему автомобиля.
howcarworks.ru/sites/defa…_203815.jpg?itok=kxrMp1JZ

Катализатор — это удивительно простое устройство, однако, оно оказывает невероятно большое влияние на экологию нашей планеты. В этой статье Вы узнаете, какие загрязняющие вещества производятся двигателем, что такое катализатор и как катализатор работает, имея дело с каждым из этих загрязняющих веществ, чтобы помочь уменьшить выбросы из транспортных средств.

Какие загрязнения производит автомобиль?

В целях сокращения выбросов, современные автомобильные двигатели тщательно контролируют количество сгораемого в нём топлива. Они пытаются сохранить соотношение воздух-топливо очень близким к стехиометрической точке, которая является идеальным соотношением воздуха к топливу. Теоретически, при таком соотношении, всё топливо будет сожжено, используя весь кислород из поглощаемого воздуха. Для бензина стехиометрическая точка составляет около 14.7:1 — это означает, что на каждый литр бензина будет сожжено 14,7 граммов воздуха. Смесь топлива на самом деле колеблется от идеального соотношения совсем немного во время работы двигателя. Иногда смесь может быть бедной (соотношение воздух-топливо выше, чем 14,7), а в других случаях смесь может быть обогащённой (соотношение воздух-топливо ниже, чем 14,7).

Основными веществами в выхлопных газах двигателя автомобиля являются:

Азот (N2) — воздух на 78 процентов состоит из газообразного азота, и большая часть этого азота проходит прямо через двигателя автомобиля и выходит, не вступив ни с чем в химическую реакцию.
Углекислый газ (CO2) — это один из продуктов сгорания бензина.
Водяной пар (h3O) — и ещё один продукт сгорания.
Эти выбросы, в основном, доброкачественные и не вредят атмосфере и экологии, хотя выбросы углекислого газа, как полагают, способствуют глобальному потеплению. Поскольку процесс сгорания никогда не совершенен, также в автомобильных двигателях производятся некоторые меньшие количества более вредных выбросов. Катализаторы предназначены как раз для снижения содержания именно этих выбросов, а, точнее, трёх самых объёмных и самых вредных:

Окиси углерода (СО) — это ядовитый газ без цвета и запаха.
Углеводородов (HC) и летучих органических соединений (ЛОС) — они являются одними из основных компонентов видимого нами дыма, который выходит при работе двигателя из выхлопной трубы автомобиля и производятся в основном из испарившегося, несгоревшего топлива.
Оксидов азота (NO и NO2, вместе называемые NOx) — они являются также "соавторами" белого дыма, а ещё оксиды азота нередко провоцируют кислотные дожди, которые вызывают раздражение слизистых оболочек человека.
Кстати, знаете ли Вы, что, согласно исследованиям, даже новые модели двигателей газонокосилок выбрасывают в воздух в 93 ​​раза больше образующих смог выхлопов, нежели новые модели автомобилей в случае аналогично производимой работы? Это не удивительно, ведь законов, регулирующих выхлопы газонокосилок, не существует ни в России, ни во многих других странах. Тем не менее, введение таких законов только в США (именно там проводилось исследование) может снизить выбросы на эквивалент до 800 000 автомобилей в день, и это впечатляющие цифры.

Как работает катализатор?

Понятие "катализатор" пришло к нам ещё из химии школьной программы, давайте вспомним — катализатор представляет собой вещество, которое вызывает ускорение химической реакции, и при этом сам катализатор в этой реакции не участвует. Точнее, катализаторы прямо участвуют в реакции и влияют на время её течения, но не являются ни реагентом, ни продуктом реакции, которую они катализируют. В человеческом организме ферменты являются по аналогии естественным катализатором, отвечающим за многие необходимые биохимические реакции.

Вообще, каталитический нейтрализатор состоит из двух различных типов катализаторов в своей работе: катализатора восстановления и катализатора окисления. Оба типа состоят из керамической структуры, покрытой металлическим каталитиком, обычно платиной, родием и/или палладием. Идея заключается в том, чтобы создать структуру, которая предоставляет максимальную площадь поверхности катализатора в потоке выхлопных газов, а также свести к минимуму требуемое количество катализатора, поскольку материалы для него чрезвычайно дороги. Некоторые из новейших преобразователей даже начали использовать золото, смешанное с более традиционными катализаторами. Золото, кстати, стоит даже дешевле, чем другие перечисленные материалы, но может привести к увеличению окисления.

Большинство современных автомобилей оснащено трёхкомпонентными каталитическими нейтрализаторами. Это означает, что они помогают уменьшить количество выбросов трёх самых вредных веществ, перечисленных немного выше в содержимом выхлопов.

Катализатор восстановления является первым этапом каталитического нейтрализатора. Он использует платину и родий, чтобы помочь уменьшить выбросы NOx (оксидов азота). Когда молекулы NO или NO2 вступают в контакт с катализатором, то последний расщепляет его на два компонента, отщепляя атом азота из молекулы и освобождая кислород в известной нам формуле O2. Атомы азота, в свою очередь, вступают в связь с другими атомами азота, которые также производятся катализатором, образуя химический элемент N2 (абсолютно безвредная молекула азота). В виде химической формулы это можно проиллюстрировать таким образом:

2NO => N2 + О2 или 2NO2 => N2 + 2*O2
Катализатор окисления является вторым этапом каталитического нейтрализатора. Он уменьшает количество несгоревших углеводородов и окиси углерода при окислении их в катализаторе за счёт платины и палладия. Этот катализатор способствует реакции СО и углеводородов с кислородом в выхлопных газах. Например:

2CO + O 2 => 2CO 2

Как работает катализатор?

howcarworks.ru/sites/defa…/files/img/CN_working.gif

Есть два основных типа конструкций, используемых в каталитических нейтрализаторах — сотовые и керамические. Большинство автомобилей сегодня используют сотовую структуру.

Третий этап работы катализатора заключается в системе управления, которая контролирует поток выхлопных газов и использует эту информацию для управления системой впрыска топлива в двигатель. Существует кислородный датчик, установленный выше по потоку до катализатора (то есть он ближе к двигателю, чем катализатор). Этот датчик сообщает бортовому компьютеру двигателя, сколько кислорода содержится в выхлопе. Компьютер может увеличить или уменьшить количество кислорода в выхлопных газах, регулируя соотношение воздух-топливо, поступаемое в цилиндры двигателя. Эта схема управления позволяет компьютеру двигателя убедиться, что двигатель работает на близкой к стехиометрической точке, а также что в выхлопе остаётся достаточное количество кислорода, чтобы окисление катализатора позволяло сжигать несгоревшие углеводороды и окись углерода.

Каталитический нейтрализатор делает большую работу по снижению загрязнения, но он всё ещё может быть значительно улучшен. Тем не менее, одним из самых больших его недостатков является то, что он работает только при достаточно высокой температуре. Когда Вы только начинаете прогревать свой автомобиль в холодную или тёплую погоду, каталитический нейтрализатор практически ничего не делает, чтобы уменьшить загрязнение в выхлопных газах.

Есть простое решение этой проблемы, которое состоит в перемещении катализатора ближе к двигателю. Это означает, что более горячие выхлопные газы достигнут катализатора, и он нагреется быстрее, но это также может уменьшить срок службы нейтрализатора, подвергая его воздействию очень высоких температур. Большинство автопроизводителей позиционируют каталитический преобразователь под передним пассажирским сиденьем — достаточно далеко от двигателя, чтобы поддерживать температуру такого уровня, который не будет вредить ему.
howcarworks.ru/sites/defa…04221_0.jpg?itok=glWtuO0U

Также хорошим способом для сокращения выбросов является предварительный нагрев каталитического нейтрализатора. Самый простой способ для достижения такой цели заключается в использовании электрических нагревателей сопротивления. К сожалению, 12-вольтовые электрические системы на большинстве автомобилей не обеспечивают достаточно энергии или мощности для нагрева каталитического нейтрализатора достаточно быстро. Большинство людей не будут ждать несколько минут, пока каталитический нейтрализатор нагреется. А вот гибридные автомобили, которые имеют в наличии большие высоковольтные блоки батарей, могут обеспечить достаточно энергии, чтобы разогреть каталитический нейтрализатор очень быстро.

Катализаторы в дизельном двигателе работают гораздо хуже в сокращении выбросов NOx. Одной из причин этого является то, что дизельные двигатели имеют более низкую рабочую температуру, чем бензиновые двигатели, и катализатор в целом в дизельном двигателе работает хуже, поскольку он меньше нагревается. Некоторые из ведущих экспертов экологических авто придумали новую систему, которая помогает бороться с этим. Они используют мочевину в решении этой проблемы: прежде чем оксиды азота уходят в катализатор, их принудительно испаряют и смешивают с в

www.drive2.ru

Активность катализатора — Википедия

Активность катализатора, или каталитическая активность, — характеристика катализатора, выражающая его свойство ускорять химическую реакцию.[1] Чем выше активность катализатора, тем большей скорости химической реакции можно с помощью данного катализатора добиться.

Высокая активность катализатора — главное требование, предъявляемое к нему[2]. Однако активность катализатора может изменяться в результате действия множества факторов, что имеет большое практическое значение. Ниже перечислены некоторые факторы, способные влиять на каталитическую активность.

Активность зависит от количества активных компонентов в составе катализатора. Увеличение их содержания повышает количество активных центров, что влечет за собой возрастание общей активности катализатора при том, что активность каждого отдельного центра остается неизменной[3].

Активность катализаторов при гетерогенном катализе сильно зависит от размера и состояния их поверхности, поэтому во многих случаях важен способ изготовления катализатора. Так, например, медный катализатор, приготовленный путём термического разложения медных солей в неравновесных условиях, обладает существенной каталитической активностью в реакции гидратации спирта. В противоположность этому электролитическая и химически осажденная медь каталитических свойств в той же самой реакции практически не проявляет[4].

Активность катализатора может также изменяться вследствие десорбции вещества. К примеру, наблюдалось увеличение каталитической активности цеолита при десорбции аммиака с поверхности катализатора в реакции крекинга кумола[5].

Значительный вклад в изменение каталитической активности может внести также и температура. К примеру, катализатор может быть активным в определенном температурном диапазоне и гораздо менее активным вне данных температурных пределов. Например, оптимальная активность никелевого катализатора достигается при 320°С, а при температуре более 450°С никель существенно теряет свои каталитические свойства[6]. Платиново-фторовый катализатор с добавкой оксида алюминия в реакции изомеризации н-пентана оптимально активен при температуре 450°С, а при снижении или повышении температуры каталитическая активность снижается[7].

Активность катализатора снижается в результате процесса, который принято называть старением катализатора. Этот процесс, наиболее вероятно, идет как химически и термически, так и механически, и связан с перекристаллизацией поверхности катализатора, покрытием её пылью, оседанием на ней посторонних веществ и т. д.[8]

Также каталитическая активность изменяется при использовании промоторов и каталитических ядов (см. ниже)

Определение активности катализатора[править | править код]

Количественно активность определяют, как разницу между скоростью реакции в данных условиях и скоростью той же реакции при отсутствии катализатора. Значение активности используют для сравнительной оценки катализаторов при их подборе, а также для характеристики качества катализатора. В зависимости от вида катализа активность обычно выражают через скорость реакции, отнесенную к единице концентрации, объёма или массы катализатора.[1]

Гомогенный катализ[править | править код]

Гомогенным принято называть катализ, при котором катализатор и реагирующие вещества находятся в одной фазе. При гомогенном катализе для сравнения и характеристики катализатора используют скорость реакции, отнесенную к единице концентрации катализатора.[1]

Гетерогенный катализ[править | править код]

При гетерогенном катализе катализатор и реагенты находятся в разных фазах. Обычно катализатором в этом случае служит твёрдое вещество, и все реакции протекают на поверхности катализатора. В этом случае каталитическую активность считают к единице поверхности катализатора, и называют удельной активностью катализатора. На практике обычно стараются наносить катализатор на пористую поверхность, что способствует увеличению площади активной поверхности катализатора и повышает эффективность катализатора при неизменности его линейных размеров.

Активность единицы объема[править | править код]

Каталитическую активность единицы объёма катализатора можно выразить следующей формулой[9]:

W=A×S×η,

где

W — каталитическая активность единицы объёма катализатора; A — удельная активность катализатора, S — полная поверхность катализатора в единице объёма; η — степень использования катализатора.

Поверхность единицы объёма катализатора можно определить размером частиц, составляющих единичное зерно катализатора, и плотностью их размещения. Если размер частиц уменьшается, то активность единицы объёма катализатора растет только в области относительно крупных частиц. При дальнейшем уменьшении их размера на активность начинает влиять внутренняя диффузия, которая осуществляется вначале по молекулярному закону, а далее описывается законами диффузии Кнудсена.

Дальнейшее увеличение активности возможно при переходе к т. н. бидисперсным структурам, состоящим из мелких плотных частиц, соединенных в более крупные пористые частицы. Переход к бидисперсным структурам позволяет увеличить каталитическую активность в 5-8 раз[10].

Число оборотов[править | править код]

Активность катализаторов также можно охарактеризовать числом оборотов (англ. Turnover number) катализатора, который принято считать равным числу молекул реагентов, превращенных одной молекулой катализатора в секунду[11]. Для нуклеофильных и основных катализаторов при нормальных условиях это число составляет 10−7 — 10−2 с− 1, для кислотных и электрофильных — 10−4 — 10−1 с−1, для ферментов — до 106 с−1[12], а в случае каталитически совершенных ферментов — и до 4×107, как в случае с каталазой[13].

Значения констант[править | править код]

Для сравнения ряда катализаторов используют также значения констант скорости реакции (при неизменности её порядка при использовании различных катализаторов) или энергию активации реакции при сохранении множителя А (характеризующего частоту соударений молекул) в уравнении Аррениуса[1].

Основная статья: Катал

Согласно Международной системе единиц (СИ) единицей измерения активности катализатора является катал. 1 катал равен активности катализатора, при которой скорость химической реакции увеличивается на 1 моль в секунду.

Основная статья: Промоторы

Основная статья: Каталитические яды

Вещество, повышающее каталитическую активность, называют промотором. Например, каталитическая активность оксида ванадия (V) по отношению к реакции окисления диоксида серы повышается при добавлении небольших количеств сульфатов щелочных металлов[14].

Посторонние вещества, резко снижающие активность катализатора, называют каталитическими ядами. Как правило, это вода или вредные примеси, от которых реагенты перед каталитической реакцией стремятся очистить.

  1. 1 2 3 4 Активность // Химик.ру — химическая энциклопедия.
  2. ↑ Краткая химическая энциклопедия / Кнунянц И. Л.(гл. редактор) — М: Советская Энциклопедия, 1961—1967 гг. — Т.2, С.483
  3. ↑ Гидрообессеривание остаточного нефтяного сырья. — Коллектив авторов. — Выпуск 17. — М.: ЦНИИТЭнефтехим.— 1978 г. — С.150.
  4. Голиков Г. А.— Руководство по физической химии. — М.: Высшая школа, 1983. — С.350
  5. Топчиева К. В., Логинов A.M., Костиков С. В. // Современные проблемы физической химии. М.: Изд-во МГУ.— Т.8 — C.24
  6. Вульфсон Н. С. (ред.) Препаративная органическая химия. — Перевод с польского. — М.: ГХИ, 1959.
  7. Бурсиан Н. Р. — Технология изомеризации парафиновых углеводородов. — Ленинград, Химия, 1985. — C.51
  8. ↑ Старение катализаторов // Катализ в промышленности. / Под ред. Б. Лича. — М.: Мир, 1986. — Т. 2 — C. 264—265.
  9. ↑ Катализаторы и каталитические процессы. — Сборник научных трудов. — Новосибирск, 1977.— С. 29—56
  10. Боресков Г. К. — Пористая структура катализаторов и процессы переноса в гетерогенном катализе. — Новосибирск: Наука, 1970. — с. 5-15.
  11. ↑ Гетерогенный катализ / Химик.ру — химическая энциклопедия.
  12. Швец В. Ф. — Введение в химию каталитических реакций. — Российский химико-технологический университет имени Д. И. Менделеева. — 1996.
  13. Reginald Garrett,Charles Grisham — Biochemistry. 5th edition — Brooks/Cole Cengage Learning. — 2009. — С.419, 444.
  14. ↑ Краткая химическая энциклопедия / Кнунянц И. Л.(гл. редактор) — М: Советская Энциклопедия, 1961—1967 гг. — Т.2, С.459

ru.wikipedia.org

Катализатор — Википедия. Что такое Катализатор

Схема протекания реакции с катализатором

Катализа́тор — химическое вещество, ускоряющее реакцию, но не расходующееся в процессе реакции.

Противоположное понятие — ингибитор.

Катализаторы в химии

Катализаторы подразделяются на гомогенные и гетерогенные. Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный — образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества[1]. Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al2O3, TiO2, ThO2, алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaO, BaO, MgO[1].

Гетерогенные катализаторы имеют, как правило, сильно развитую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.).

Для каждого типа реакций эффективны только определённые катализаторы. Кроме уже упомянутых кислотно-основных, существуют катализаторы окисления-восстановления; для них характерно присутствие переходного металла или его соединения (Со+3, V2O5+MoO3). В этом случае катализ осуществляется путём изменения степени окисления переходного металла.

Много реакций осуществлено при помощи катализаторов, которые действуют через координацию реагентов у атома или иона переходного металла (Ti, Rh, Ni). Такой катализ называется координационным.

Если катализатор обладает хиральными свойствами, то из оптически неактивного субстрата получается оптически активный продукт.

В современной науке и технике часто применяют системы из нескольких катализаторов, каждый из которых ускоряет разные стадии реакции[2][3]. Катализатор также может увеличивать скорость одной из стадий каталитического цикла, осуществляемого другим катализатором. Здесь имеет место «катализ катализа», или катализ второго уровня[2].

В биохимических реакциях роль катализаторов играют ферменты.

Катализаторы следует отличать от инициаторов. Например, перекиси распадаются на свободные радикалы, которые могут инициировать радикальные цепные реакции. Инициаторы расходуются в процессе реакции, поэтому их нельзя считать катализаторами.

Ингибиторы иногда ошибочно считают отрицательными катализаторами. Но ингибиторы, например, цепных радикальных реакций, реагируют со свободными радикалами и, в отличие от катализаторов, не сохраняются. Другие ингибиторы (каталитические яды) связываются с катализатором и его дезактивируют, здесь имеет место подавление катализа, а не отрицательный катализ. Отрицательный катализ в принципе невозможен: он обеспечивал бы для реакции более медленный путь, но реакция, естественно, пойдёт по более быстрому, в данном случае, не катализированному, пути.

Катализаторы в автомобилях

Задачей автомобильного катализатора является снижение количества вредных веществ в выхлопных газах. Среди них:

См. также

Примечания

  1. 1 2 Химическая энциклопедия. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 335, 337. — ISBN 5-85270-035-5.
  2. 1 2 Имянитов Н. С. Системы из нескольких катализаторов в металлокомплексном катализе. // Координационная химия. 1984. — Т. 10. — № 11 — С. 1443—1454. — ISSN 0132-344X.
  3. Temkin O.N., Braylovskiy S. M. / The mechanism of catalysis in homogeneous polyfunctional catalytic systems. // Fundamental Research in Homogeneous Catalysis. — Ed. by A.E. Shilov. — New York etc: Gordon and Breach Science Publishers, 1986. — Vol. Two. — P.621- 633.
  4. ↑ Автомобильный катализатор и его роль в выхлопной системе. AutoRelease.ru. Архивировано 25 августа 2011 года.

Ссылки

wiki.sc

КАТАЛИЗ | Энциклопедия Кругосвет

Содержание статьи

КАТАЛИЗ, ускорение химических реакций под действием малых количеств веществ (катализаторов), которые сами в ходе реакции не изменяются. Каталитические процессы играют огромную роль в нашей жизни. Биологические катализаторы, называемые ферментами, участвуют в регуляции биохимических процессов. Без катализаторов не могли бы протекать многие промышленные процессы.

Важнейшее свойство катализаторов – селективность, т.е. способность увеличивать скорость лишь определенных химических реакций из многих возможных. Это позволяет осуществлять реакции, протекающие в обычных условиях слишком медленно, чтобы им можно было найти практическое применение, и обеспечивает образование нужных продуктов.

Применение катализаторов способствовало бурному развитию химической промышленности. Они широко используются при переработке нефти, получении различных продуктов, создании новых материалов (например, пластмасс), нередко более дешевых, чем применявшиеся прежде. Примерно 90% объема современного химического производства основано на каталитических процессах. Особую роль играют каталитические процессы в охране окружающей среды.

В 1835 шведский химик Й.Берцелиус установил, что в присутствии определенных веществ скорость некоторых химических реакций существенно возрастает. Для таких веществ он ввел термин «катализатор» (от греч. katalysis – расслабление). Как считал Берцелиус, катализаторы обладают особой способностью ослаблять связи между атомами в молекулах, участвующих в реакции, облегчая таким образом их взаимодействие. Большой вклад в развитие представлений о работе катализаторов внес немецкий физикохимик В.Оствальд, который в 1880 дал определение катализатора как вещества, которое изменяет скорость реакции.

Согласно современным представлениям, катализатор образует комплекс с реагирующими молекулами, стабилизируемый химическими связями. После перегруппировки этот комплекс диссоциирует с высвобождением продуктов и катализатора. Для мономолекулярной реакции превращения молекулы X в Y весь этот процесс можно представить в виде

X + Кат. ® X-Кат. ® Y-Кат. ® Y + Кат.

Высвободившийся катализатор вновь связывается с X, и весь цикл многократно повторяется, обеспечивая образование больших количеств продукта – вещества Y.

Многие вещества при обычных условиях не вступают в химическую реакцию друг с другом. Так, водород и оксид углерода при комнатной температуре не взаимодействуют между собой, поскольку связь между атомами в молекуле H2 достаточно прочная и не разрывается при атаке молекулой CO. Катализатор сближает молекулы H2 и CO, образуя с ними связи. После перегруппировки комплекс катализатор – реагенты диссоциирует с образованием продукта, содержащего атомы C, H и O.

Нередко при взаимодействии одних и тех же веществ образуются разные продукты. Катализатор может направить процесс по пути, наиболее благоприятному для образования определенного продукта. Рассмотрим реакцию между CO и H2. В присутствии медьсодержащего катализатора практически единственным продуктом реакции является метанол:

Вначале молекулы СО и Н2 адсорбируются на поверхности катализатора. Затем молекулы СО образуют с катализатором химические связи (происходит хемосорбция), оставаясь в недиссоциированной форме. Молекулы водорода также хемосорбируются на поверхности катализатора, но при этом диссоциируют. В результате перегруппировки образуется переходный комплекс Н-Кат.-CH2OH. После присоединения атома H комплекс распадается с высвобождением CH3OH и катализатора.

В присутствии никелевого катализатора как СО, так и Н2 хемосорбируются на поверхности в диссоциированной форме, и образуется комплекс Кат.-СН3. Конечными продуктами реакции являются СН4 и Н2О:

Большинство каталитических реакций проводят при определенных давлении и температуре, пропуская реакционную смесь, находящуюся в газообразном или жидком состоянии, через реактор, заполненный частицами катализатора. Для описания условий проведения реакции и характеристики продуктов используются следующие понятия. Объемная скорость – объем газа или жидкости, проходящий через единицу объема катализатора в единицу времени. Каталитическая активность – количество реагентов, превращенных катализатором в продукты в единицу времени. Конверсия – доля вещества, превращенного в данной реакции. Селективность – отношение количества определенного продукта к суммарному количеству продуктов (обычно выражается в процентах). Выход – отношение количества данного продукта к количеству исходного материала (обычно выражается в процентах). Производительность – количество продуктов реакции, образующихся в единице объема в единицу времени.

ТИПЫ КАТАЛИЗАТОРОВ

Катализаторы классифицируют исходя из природы реакции, которую они ускоряют, их химического состава или физических свойств. Каталитическими свойствами обладают в той или иной степени практически все химические элементы и вещества – сами по себе или, чаще, в различных сочетаниях. По своим физическим свойствам катализаторы делятся на гомогенные и гетерогенные. Гетерогенные катализаторы – это твердые вещества, гомогенные диспергированы в той же газовой или жидкой среде, что и реагирующие вещества.

Многие гетерогенные катализаторы содержат металлы. Некоторые металлы, особенно относящиеся к VIII группе периодической системы элементов, обладают каталитической активностью сами по себе; типичный пример – платина. Но большинство металлов проявляют каталитические свойства, находясь в составе соединений; пример – глинозем (оксид алюминия Al2O3).

Необычным свойством многих гетерогенных катализаторов является большая площадь их поверхности. Они пронизаны многочисленными порами, суммарная площадь которых иногда достигает 500 м2 на 1 г катализатора. Во многих случаях оксиды с большой площадью поверхности служат подложкой, на которой в виде небольших кластеров осаждаются частички металлического катализатора. Это обеспечивает эффективное взаимодействие реагентов в газовой или жидкой фазе с каталитически активным металлом. Особый класс гетерогенных катализаторов составляют цеолиты – кристаллические минералы группы алюмосиликатов (соединений кремния и алюминия). Хотя многие гетерогенные катализаторы обладают большой площадью поверхности, обычно они имеют лишь небольшое число активных центров, на долю которых приходится малая часть суммарной поверхности. Катализаторы могут утрачивать свою активность в присутствии небольших количеств химических соединений, называемых каталитическими ядами. Эти вещества связываются с активными центрами, блокируя их. Определение структуры активных центров является предметом интенсивных исследований.

Гомогенные катализаторы имеют различную химическую природу – кислоты (Н2SO4 или Н3РО4), основания (NaOH), органические амины, металлы, чаще всего переходные (Fe или Rh), в форме солей, металлоорганических соединений или карбонилов. К катализаторам относятся также ферменты – белковые молекулы, регулирующие биохимические реакции. Активный центр некоторых ферментов содержит атом металла (Zn, Cu, Fe или Mo). Металлсодержащие ферменты катализируют реакции с участием малых молекул (О2, CO2 или N2). Ферменты обладают очень высокой активностью и селективностью, но работают только при определенных условиях, таких, в которых протекают реакции в живых организмах. В промышленности часто используют т.н. иммобилизованные ферменты.

КАК РАБОТАЮТ КАТАЛИЗАТОРЫ

Энергетика.

Любая химическая реакция может протекать лишь при условии, что реагенты преодолеют энергетический барьер, а для этого они должны приобрести определенную энергию. Как мы уже говорили, каталитическая реакция X ® Y состоит из ряда последовательных стадий. Для протекания каждой из них необходима энергия E, называемая энергией активации. Изменение энергии вдоль координаты реакции представлено на рис. 1.

Рассмотрим сначала некаталитический, «тепловой» путь. Чтобы реакция смогла осуществиться, потенциальная энергия молекул X должна превысить энергетический барьер Eт. Каталитическая же реакция состоит из трех стадий. Первая – образование комплекса Х-Кат. (хемосорбция), энергия активации которой равна Еадс. Вторая стадия – перегруппировка Х-Кат. ® Y-Кат. с энергией активации Екат, и наконец, третья – десорбция с энергией активации Едес; Еадс, Екат и Едес много меньше Ет. Поскольку скорость реакции экспоненциально зависит от энергии активации, каталитическая реакция протекает значительно быстрее тепловой при данной температуре.

Катализатор можно уподобить инструктору-проводнику, который ведет альпинистов (реагирующие молекулы) через горный хребет. Он проводит одну группу через перевал и затем возвращается за следующей. Путь через перевал лежит значительно ниже того, который лежит через вершину (тепловой канал реакции), и группа совершает переход быстрее, чем без проводника (катализатора). Возможно даже, что самостоятельно группа вообще не смогла бы преодолеть хребет.

Теории катализа.

Для объяснения механизма каталитических реакций были предложены три группы теорий: геометрические, электронные и химическая. В геометрических теориях основное внимание обращено на соответствие между геометрической конфигурацией атомов активных центров катализатора и атомов той части реагирующих молекул, которая ответственна за связывание с катализатором. Электронные теории исходят из представления, что хемосорбция обусловливается электронным взаимодействием, связанным с переносом заряда, т.е. эти теории связывают каталитическую активность с электронными свойствами катализатора. Химическая теория рассматривает катализатор как химическое соединение с характерными свойствами, которое образует химические связи с реагентами, в результате чего формируется нестабильный переходный комплекс. После распада комплекса с высвобождением продуктов катализатор возвращается в исходное состояние. Последняя теория считается сейчас наиболее адекватной.

На молекулярном уровне каталитическую газофазную реакцию можно представить следующим образом. Одна реагирующая молекула связывается с активным центром катализатора, а другая взаимодействует с ней, находясь непосредственно в газовой фазе. Возможен и альтернативный механизм: реагирующие молекулы адсорбируются на соседних активных центрах катализатора, а потом взаимодействуют друг с другом. По-видимому, именно таким образом протекает большинство каталитических реакций.

Другая концепция предполагает, что существует связь между пространственным расположением атомов на поверхности катализатора и его каталитической активностью. Скорость одних каталитических процессов, в том числе многих реакций гидрирования, не зависит от взаимного расположения каталитически активных атомов на поверхности; скорость других, напротив, существенно изменяется при изменении пространственной конфигурации поверхностных атомов. В качестве примера можно привести изомеризацию неопентана в изопентан и одновременный крекинг последнего до изобутана и метана на поверхности катализатора Pt-Al2O3.

ПРИМЕНЕНИЕ КАТАЛИЗА В ПРОМЫШЛЕННОСТИ

Тот бурный промышленный рост, который мы сейчас переживаем, был бы невозможен без развития новых химических технологий. В значительной мере этот прогресс определяется широким применением катализаторов, с помощью которых низкосортное сырье превращается в высокоценные продукты. Образно говоря, катализатор – это философский камень современного алхимика, только он превращает не свинец в золото, а сырье в лекарства, пластмассы, химические реактивы, топливо, удобрения и другие полезные продукты.

Пожалуй, самый первый каталитический процесс, который человек научился использовать, – это брожение. Рецепты приготовления алкогольных напитков были известны шумерам еще за 3500 до н.э. См. ВИНО; ПИВО.

Значительной вехой в практическом применении катализа стало производство маргарина каталитическим гидрированием растительного масла. Впервые эта реакция в промышленном масштабе была осуществлена примерно в 1900. А начиная с 1920-х годов один за другим были разработаны каталитические способы получения новых органических материалов, прежде всего пластмасс. Ключевым моментом стало каталитическое получение олефинов, нитрилов, эфиров, кислот и т.д. – «кирпичиков» для химического «строительства» пластмасс.

Третья волна промышленного использования каталитических процессов приходится на 1930-е годы и связана с переработкой нефти. По своему объему это производство вскоре оставило далеко позади все другие. Переработка нефти состоит из нескольких каталитических процессов: крекинга, риформинга, гидросульфирования, гидрокрекинга, изомеризации, полимеризации и алкилирования.

И наконец, четвертая волна в использовании катализа связана с охраной окружающей среды. Наиболее известное достижение в этой области – создание каталитического нейтрализатора выхлопных газов автомобилей. Каталитические нейтрализаторы, которые устанавливают на автомобили с 1975, сыграли большую роль в улучшении качества воздуха и сберегли таким образом много жизней.

За работы в области катализа и смежных областей было присуждено около десятка Нобелевских премий.

О практической значимости каталитических процессов свидетельствует тот факт, что на долю азота, входящего в состав полученных промышленным путем азотсодержащих соединений, приходится около половины всего азота, входящего в состав пищевых продуктов. Количество соединений азота, образующихся естественным путем, ограничено, так что производство пищевого белка зависит от количества азота, вносимого в почву с удобрениями. Невозможно было бы прокормить и половину человечества без синтетического аммиака, который получают почти исключительно с помощью каталитического процесса Габера – Боша.

Область применения катализаторов постоянно расширяется. Важно и то, что катализ позволяет значительно повысить эффективность ранее разработанных технологий. В качестве примера можно привести усовершенствование каталитического крекинга благодаря использованию цеолитов.

Гидрирование.

Большое число каталитических реакций связано с активацией атома водорода и какой-либо другой молекулы, приводящей к их химическому взаимодействию. Этот процесс называется гидрированием и лежит в основе многих этапов переработки нефти и получения жидкого топлива из угля (процесс Бергиуса).

Производство авиационного бензина и моторного топлива из угля было развито в Германии во время Второй мировой войны, поскольку в этой стране нет нефтяных месторождений. Процесс Бергиуса заключается в непосредственном присоединении водорода к углю. Уголь нагревают под давлением в присутствии водорода и получают жидкий продукт, который затем перерабатывают в авиационный бензин и моторное топливо. В качестве катализатора используют оксид железа, а также катализаторы на основе олова и молибдена. Во время войны на 12 заводах Германии с помощью процесса Бергиуса получали примерно 1400 т жидкого топлива в сутки.

Другой процесс, Фишера – Тропша, состоит из двух стадий. Вначале уголь газифицируют, т.е. проводят реакцию его с водяным паром и кислородом и получают смесь водорода и оксидов углерода. Эту смесь превращают в жидкое топливо с помощью катализаторов, содержащих железо или кобальт. С окончанием войны производство синтетического топлива из угля в Германии было прекращено.

В результате повышения цен на нефть, последовавшего за нефтяным эмбарго в 1973–1974, были предприняты энергичные усилия по разработке экономически выгодного способа получения бензина из угля. Так, прямое ожижение угля можно проводить более эффективно, используя двухстадийный процесс, в котором сначала уголь контактирует с алюмокобальтомолибденовым катализатором при относительно низкой, а затем при более высокой температуре. Стоимость такого синтетического бензина выше, чем получаемого из нефти.

Аммиак.

Один из самых простых с химической точки зрения процессов гидрирования – синтез аммиака из водорода и азота. Азот весьма инертное вещество. Для разрыва связи N–N в его молекуле необходима энергия порядка 200 ккал/моль. Однако азот связывается с поверхностью железного катализатора в атомарном состоянии, и для этого нужно всего 20 ккал/моль. Водород связывается с железом еще более охотно. Синтез аммиака протекает следующим образом:

Этот пример иллюстрирует способность катализатора ускорять в равной степени как прямую, так и обратную реакцию, т.е. тот факт, что катализатор не изменяет положение равновесия химической реакции.

Гидрирование растительного масла.

Одна из важнейших в практическом отношении реакций гидрирования – неполное гидрирование растительных масел до маргарина, кулинарного жира и других пищевых продуктов. Растительные масла получают из соевых бобов, семян хлопчатника и других культур. В их состав входят эфиры, а именно триглицериды жирных кислот с разной степенью ненасыщенности. Олеиновая кислота СН3(СН2)7СН=СН(СН2)7СООН имеет одну двойную связь С=С, линолевая кислота – две и линоленовая – три. Присоединение водорода с разрывом этой связи предотвращает окисление масел (прогоркание). При этом повышается их температура плавления. Твердость большинства получаемых продуктов зависит от степени гидрирования. Гидрирование проводят в присутствии мелкодисперсного порошка никеля, нанесенного на подложку, или никелевого катализатора Ренея в атмосфере водорода высокой степени очистки.

Дегидрирование.

Дегидрирование – это тоже важная в промышленном отношении каталитическая реакция, хотя масштабы ее применения несравнимо меньше. С ее помощью получают, например, стирол – важный мономер. Для этого дегидрируют этилбензол в присутствии катализатора, содержащего оксид железа; протеканию реакции способствуют также калий и какой-нибудь структурный стабилизатор. В промышленных масштабах осуществляют дегидрирование пропана, бутана и других алканов. Дегидрированием бутана в присутствии алюмохромового катализатора получают бутены и бутадиен.

Кислотный катализ.

Каталитическая активность большого класса катализаторов обусловливается их кислотными свойствами. Согласно И.Брёнстеду и Т.Лоури, кислота – это соединение, способное отдавать протон. Сильные кислоты легко отдают свои протоны основаниям. Концепция кислотности получила дальнейшее развитие в работах Г.Льюиса, который дал определение кислоты как вещества, способного принимать электронную пару от вещества-донора с образованием ковалентной связи за счет обобществления этой электронной пары. Эти идеи вместе с представлениями о реакциях с образованием карбений-ионов помогли понять механизм разнообразных каталитических реакций, особенно тех, в которых участвуют углеводороды.

Силу кислоты можно определить с помощью набора оснований, изменяющих цвет при присоединении протона. Оказывается, некоторые промышленно важные катализаторы ведут себя как очень сильные кислоты. К ним относится катализатор процесса Фриделя – Крафтса, такой, как HCl-AlCl2O3 (или HAlCl4), и алюмосиликаты. Сила кислоты – это очень важная характеристика, поскольку от нее зависит скорость протонирования – ключевого этапа процесса кислотного катализа.

Активность таких катализаторов, как алюмосиликаты, применяющихся при крекинге нефти, определяется присутствием на их поверхности кислот Брёнстеда и Льюиса. Их структура аналогична структуре кремнезема (диоксида кремния), в котором часть атомов Si4+ замещена атомами Al3+. Лишний отрицательный заряд, возникающий при этом, может быть нейтрализован соответствующими катионами. Если катионами являются протоны, то алюмосиликат ведет себя как кислота Брёнстеда:

Активность кислотных катализаторов обусловливается их способностью реагировать с углеводородами с образованием в качестве промежуточного продукта карбений-иона. Алкилкарбений-ионы содержат положительно заряженный углеродный атом, связанный с тремя алкильными группами и/или атомами водорода. Они играют важную роль как промежуточные продукты, образующиеся во многих реакциях с участием органических соединений. Механизм действия кислотных катализаторов можно проиллюстрировать на примере реакции изомеризации н-бутана в изобутан в присутствии HCl-AlCl3 или Pt-Cl-Al2O3. Сначала малое количество олефина С4Н8 присоединяет положительно заряженный ион водорода кислотного катализатора с образованием третичного карбений-иона. Затем отрицательно заряженный гидрид-ион Н отщепляется от н-бутана с образованием изобутана и вторичного бутилкарбений-иона. Последний в результате перегруппировки превращается в третичный карбений-ион. Эта цепочка может продолжаться с отщеплением гидрид-иона от следующей молекулы н-бутана и т.д.:

Существенно, что третичные карбений-ионы более стабильны, чем первичные или вторичные. Вследствие этого на поверхности катализатора присутствуют в основном именно они, а потому основным продуктом изомеризации бутана является изобутан.

Кислотные катализаторы широко применяются при переработке нефти – крекинге, алкилировании, полимеризации и изомеризации углеводородов (см. также ХИМИЯ И МЕТОДЫ ПЕРЕРАБОТКИ НЕФТИ). Установлен механизм действия карбений-ионов, играющих роль катализаторов в этих процессах. При этом они участвуют в целом ряде реакций, включая образование малых молекул путем расщепления больших, соединение молекул (олефина с олефином или олефина с изопарафином), структурную перегруппировку путем изомеризации, образование парафинов и ароматических углеводородов путем переноса водорода.

Одно из последних применений кислотного катализа в промышленности – получение этилированных топлив присоединением спиртов к изобутилену или изоамилену. Добавление кислородсодержащих соединений в бензин уменьшает концентрацию оксида углерода в выхлопных газах. Метил-трет-бутиловый эфир (МТБЭ) с октановым числом смешения 109 тоже позволяет получить высокооктановое топливо, необходимое для работы автомобильного двигателя с высокой степенью сжатия, не прибегая к введению в бензин тетраэтилсвинца. Организовано также производство топлив с октановыми числами 102 и 111.

Основной катализ.

Активность катализаторов обусловливается их основными свойствами. Давним и хорошо известным примером таких катализаторов является гидроксид натрия, применяющийся для гидролиза или омыления жиров при получении мыла, а один из последних примеров – катализаторы, используемые при производстве полиуретановых пластиков и пенопластов. Уретан образуется при взаимодействии спирта с изоцианатом, а ускоряется эта реакция в присутствии оснóвных аминов. В ходе реакции происходит присоединение основания к атому углерода в молекуле изоцианата, в результате чего на атоме азота появляется отрицательный заряд и его активность по отношению к спирту повышается. Особенно эффективным катализатором является триэтилендиамин. Полиуретановые пластики получают при взаимодействии диизоцианатов с полиолами (полиспиртами). Когда изоцианат реагирует с водой, ранее образовавшийся уретан разлагается с выделением CO2. При взаимодействии смеси полиспиртов и воды с диизоцианатами образующийся пенополиуретан вспенивается газообразным CO2.

Катализаторы двойного действия.

Эти катализаторы ускоряют реакции двух типов и дают лучшие результаты, чем при пропускании реагентов последовательно через два реактора, каждый из которых содержит только один тип катализатора. Это связано с тем, что активные центры катализатора двойного действия находятся очень близко друг к другу, и промежуточный продукт, образующийся на одном из них, тут же превращается в конечный продукт на другом.

Хороший результат дает объединение катализатора, активирующего водород, с катализатором, способствующим изомеризации углеводородов. Активацию водорода осуществляют некоторые металлы, а изомеризацию углеводородов – кислоты. Эффективным катализатором двойного действия, который применяется при переработке нефти для превращения нафты в бензин, является мелкодисперсная платина, нанесенная на кислый глинозем. Конверсия таких составляющих нафты, как метилциклопентан (МЦП), в бензол повышает октановое число бензина. Сначала МЦП дегидрируется на платиновой части катализатора в олефин с тем же углеродным остовом; затем олефин переходит на кислотную часть катализатора, где изомеризуется до циклогексена. Последний переходит на платиновую часть и дегидрируется до бензола и водорода.

Катализаторы двойного действия существенно ускоряют риформинг нефти. Их используют для изомеризации нормальных парафинов в изопарафины. Последние, кипящие при тех же температурах, что и бензиновые фракции, ценны тем, что обладают более высоким октановым числом по сравнению с неразветвленными углеводородами. Кроме того, превращение н-бутана в изобутан сопровождается дегидрированием, способствуя получению МТБЭ.

Стереоспецифическая полимеризация.

Важной вехой в истории катализа явилось открытие каталитической полимеризации a-олефинов с образованием стереорегулярных полимеров. Катализаторы стереоспецифической полимеризации были открыты К.Циглером, когда он пытался объяснить необычные свойства полученных им полимеров. Другой химик, Дж.Натта, предположил, что уникальность полимеров Циглера определяется их стереорегулярностью. Эксперименты по дифракции рентгеновских лучей показали, что полимеры, полученные из пропилена в присутствии катализаторов Циглера, высококристалличны и действительно имеют стереорегулярную структуру. Для описания таких упорядоченных структур Натта ввел термины «изотактический» и «синдиотактический». В том случае, когда упорядоченность отсутствует, используется термин «атактический»:

Стереоспецифическая реакция протекает на поверхности твердых катализаторов, содержащих переходные металлы групп IVA–VIII (такие, как Ti, V, Cr, Zr), находящиеся в неполностью окисленном состоянии, и какое-либо соединение, содержащее углерод или водород, который связан с металлом из групп I–III. Классическим примером такого катализатора является осадок, образующийся при взаимодействии TiCl4 и Al(C2H5)3 в гептане, где титан восстановлен до трехвалентного состояния. Эта исключительно активная система катализирует полимеризацию пропилена при обычных температуре и давлении.

Каталитическое окисление.

Применение катализаторов для управления химизмом процессов окисления имеет большое научное и практическое значение. В некоторых случаях окисление должно быть полным, например при нейтрализации СО и углеводородных загрязнений в выхлопных газах автомобилей. Однако чаще нужно, чтобы окисление было неполным, например во многих широко применяемых в промышленности процессах превращения углеводородов в ценные промежуточные продукты, содержащие такие функциональные группы, как –СНО, –СООН, –С–СО, –СN. При этом применяются как гомогенные, так и гетерогенные катализаторы. Примером гомогенного катализатора является комплекс переходного металла, который используется для окисления пара-ксилола до терефталевой кислоты, эфиры которой служат основой производства полиэфирных волокон.

Катализаторы гетерогенного окисления.

Эти катализаторы обычно являются сложными твердыми оксидами. Каталитическое окисление проходит в два этапа. Сначала кислород оксида захватывается адсорбированной на поверхности оксида молекулой углеводорода. Углеводород при этом окисляется, а оксид восстанавливается. Восстановленный оксид взаимодействует с кислородом и возвращается в исходное состояние. Используя ванадиевый катализатор, неполным окислением нафталина или бутана получают фталевый ангидрид.

Получение этилена путем дегидродимеризации метана.

Синтез этилена посредством дегидродимеризации позволяет превращать природный газ в более легко транспортируемые углеводороды. Реакцию 2CH4 + 2O2® C2H4 + 2H2O проводят при 850° С с использованием различных катализаторов; наилучшие результаты получены с катализатором Li-MgO. Предположительно реакция протекает через образование метильного радикала путем отщепления атома водорода от молекулы метана. Отщепление осуществляется неполностью восстановленным кислородом, например О22–. Метильные радикалы в газовой фазе рекомбинируют с образованием молекулы этана и в ходе последующего дегидрирования превращаются в этилен. Еще один пример неполного окисления – превращение метанола в формальдегид в присутствии серебряного или железомолибденового катализатора.

Цеолиты.

Цеолиты составляют особый класс гетерогенных катализаторов. Это алюмосиликаты с упорядоченной сотовой структурой, размер ячеек которой сравним с размером многих органических молекул. Их называют еще молекулярными ситами. Наибольший интерес представляют цеолиты, поры которых образованы кольцами, состоящими из 8–12 ионов кислорода (рис. 2). Иногда поры перекрываются, как у цеолита ZSМ-5 (рис. 3), который используется для высокоспецифичного превращения метанола в углеводороды бензиновой фракции. Бензин содержит в значительных количествах ароматические углеводороды и поэтому имеет высокое октановое число. В Новой Зеландии, например, с помощью этой технологии получают треть всего потребляемого бензина. Метанол же получают из импортируемого метана.

Катализаторы, составляющие группу Y-цеолитов, существенно повышают эффективность каталитического крекинга благодаря в первую очередь своим необычным кислотным свойствам. Замена алюмосиликатов цеолитами позволяет увеличить выход бензина более чем на 20%.

Кроме того, цеолиты обладают селективностью в отношении размера реагирующих молекул. Их селективность обусловлена размером пор, через которые могут проходить молекулы лишь определенных размеров и формы. Это касается как исходных веществ, так и продуктов реакции. Например, вследствие стерических ограничений пара-ксилол образуется легче, чем более объемные орто- и мета-изомеры. Последние оказываются «запертыми» в порах цеолита (рис. 4).

Применение цеолитов произвело настоящую революцию в некоторых промышленных технологиях – депарафинизации газойля и машинного масла, получении химических полупродуктов для производства пластмасс алкилированием ароматических соединений, изомеризации ксилола, диспропорционировании толуола и каталитическом крекинге нефти. Особенно эффективен здесь цеолит ZSM-5.

Катализаторы и охрана окружающей среды.

Применение катализаторов для уменьшения загрязнения воздуха началось в конце 1940-х годов. В 1952 А.Хаген-Смит установил, что углеводороды и оксиды азота, входящие в состав выхлопных газов, реагируют на свету с образованием оксидантов (в частности, озона), которые оказывают раздражающее действие на глаза и дают другие нежелательные эффекты. Примерно в это же время Ю.Хоудри разработал способ каталитической очистки выхлопных газов путем окисления CO и углеводородов до CO2 и Н2О. В 1970 была сформулирована Декларация о чистом воздухе (уточненная в 1977, расширенная в 1990), согласно которой все новые автомобили, начиная с моделей 1975, должны снабжаться каталитическими нейтрализаторами выхлопных газов. Были установлены нормы для состава выхлопных газов. Поскольку соединения свинца, добавляемые в бензин, отравляют катализаторы, принята программа поэтапного отказа от них. Обращалось внимание и на необходимость снижения содержания оксидов азота.

Специально для автомобильных нейтрализаторов созданы катализаторы, в которых активные компоненты нанесены на керамическую подложку с сотовой структурой, через ячейки которой проходят выхлопные газы. Подложку покрывают тонким слоем оксида металла, например Al2O3, на который наносят катализатор – платину, палладий или родий. Содержание оксидов азота, образующихся при сжигании природных топлив на теплоэлектростанциях, можно уменьшить добавлением в дымовые газы малых количеств аммиака и пропусканием их через титанованадиевый катализатор.

Ферменты.

Ферменты – это природные катализаторы, регулирующие биохимические процессы в живой клетке. Они участвуют в процессах энергообмена, расщеплении питательных веществ, реакциях биосинтеза. Без них не могут протекать многие сложные органические реакции. Ферменты функционируют при обычных температуре и давлении, обладают очень высокой селективностью и способны увеличивать скорость реакций на восемь порядков. Несмотря на эти преимущества, лишь ок. 20 из 15 000 известных ферментов применяются в широких масштабах.

Человек тысячелетиями использовал ферменты при выпечке хлеба, получении алкогольных напитков, сыра и уксуса. Сейчас ферменты применяются и в промышленности: при переработке сахара, получении синтетических антибиотиков, аминокислот и белков. Протеолитические ферменты, ускоряющие процессы гидролиза, добавляют в детергенты.

С помощью бактерий Clostridium acetobutylicum Х.Вейцман осуществил ферментативное превращение крахмала в ацетон и бутиловый спирт. Этот способ получения ацетона широко использовался в Англии во время Первой мировой войны, а во время Второй мировой войны с его помощью в СССР изготавливали бутадиеновый каучук.

Исключительно большую роль сыграло применение ферментов, продуцируемых микроорганизмами, для синтеза пенициллина, а также стрептомицина и витамина B12.

Этиловый спирт, получаемый ферментативным путем, широко используют в качестве автомобильного топлива. В Бразилии более трети из примерно 10 млн. автомобилей работают на 96%-ном этиловом спирте, получаемом из сахарного тростника, а остальные – на смеси бензина и этилового спирта (20%). Хорошо отработана технология производства топлива, представляющего собой смесь бензина и спирта, в США. В 1987 из зерен кукурузы было получено ок. 4 млрд. л спирта, из них примерно 3,2 млрд. л было использовано в качестве топлива. Разнообразное применение находят и т.н. иммобилизованные ферменты. Эти ферменты связаны с твердым носителем, например силикагелем, над которым пропускают реагенты. Преимущество этого метода состоит в том, что он обеспечивает эффективное контактирование субстратов с ферментом, разделение продуктов и сохранение фермента. Один из примеров промышленного использования иммобилизованных ферментов – изомеризация D-глюкозы во фруктозу.

ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ

Современные технологии невозможно представить без применения катализаторов. Каталитические реакции могут протекать при температурах до 650° С и давлениях 100 атм и более. Это заставляет по-новому решать проблемы, связанные с контактированием между газообразными и твердыми веществами и с переносом частиц катализатора. Чтобы процесс был эффективным, при его моделировании необходимо учитывать кинетические, термодинамические и гидродинамические аспекты. Здесь широко используются компьютерное моделирование, а также новые приборы и методы контроля за технологическими процессами.

В 1960 был достигнут значительный прогресс в производстве аммиака. Применение более активного катализатора позволило понизить температуру получения водорода при разложении водяного пара, благодаря чему удалось понизить давление и, следовательно, уменьшить производственные затраты, например за счет применения более дешевых центробежных компрессоров. В результате стоимость аммиака упала более чем вдвое, произошло колоссальное увеличение его производства, а в связи с этим – увеличение производства пищевых продуктов, поскольку аммиак – ценное удобрение.

Методы.

Исследования в области катализа проводят с использованием как традиционных, так и специальных методов. Применяются радиоактивные метки, рентгеновская, инфракрасная и рамановская (КР) спектроскопия, электронно-микроскопические методы; проводятся кинетические измерения, изучается влияние способов получения катализаторов на их активность. Большое значение имеет определение площади поверхности катализатора по методу Брунауэра – Эммета – Теллера (метод БЭТ), основанному на измерении физической адсорбции азота при разных давлениях. Для этого определяют количество азота, необходимого для образования монослоя на поверхности катализатора, и, зная диаметр молекулы N2, вычисляют суммарную площадь. Помимо определения общей площади поверхности проводят хемосорбцию разных молекул, что позволяет оценить число активных центров и получить информацию об их свойствах.

В распоряжении исследователей имеются разные методы изучения структуры поверхности катализаторов на атомном уровне. Уникальную информацию позволяет получить метод EXAFS. Среди спектроскопических методов все шире применяются УФ-, рентгеновская и оже-фотоэлектронная спектроскопия. Большой интерес представляет масс-спектрометрия вторичных ионов и спектроскопия ионного рассеяния. Для исследования природы каталитических комплексов применяются измерения ЯМР. Сканирующий туннельный микроскоп позволяет увидеть расположение атомов на поверхности катализатора.

ПЕРСПЕКТИВЫ

Масштабы каталитических процессов в промышленности увеличиваются с каждым годом. Все более широкое применение находят катализаторы для нейтрализации веществ, загрязняющих окружающую среду. Возрастает роль катализаторов в производстве углеводородов и кислородсодержащих синтетических топлив из газа и угля. Весьма перспективным представляется создание топливных элементов для экономичного преобразования энергии топлива в электрическую энергию.

Новые концепции катализа позволят получать полимерные материалы и другие продукты, обладающие многими ценными свойствами, усовершенствовать методы получения энергии, увеличить производство пищевых продуктов, в частности путем синтеза белков из алканов и аммиака с помощью микроорганизмов. Возможно, удастся разработать генно-инженерные способы получения ферментов и металлоорганических соединений, приближающихся по своей каталитической активности и селективности к природным биологическим катализаторам.

www.krugosvet.ru

катализ — Химическая энциклопедия

КАТАЛИЗ (от греч. katalysis — разрушение)

изменение скорости хим. реакции при воздействии веществ (катализаторов), которые участвуют в реакции, но не входят в состав продуктов. Катализатор не находится в стехиометрич. отношениях с продуктами и регенерируется после каждого цикла превращ. реагентов в продукты. Различают положительный и отрицательный К., в зависимости от того, ускоряет катализатор реакцию или замедляет ее. Как правило, термин "К." относят к ускорению реакции; вещества, замедляющие реакцию, наз. ингибиторами. Каталитич. действие на реакцию могут оказывать образующиеся в ходе реакции промежут. вещества или продукты (см. автокатализ). Для К. характерно, что небольшие количества катализатора ускоряют превращ. больших количеств реагирующих веществ. Так, 1 мас. ч. Pt-катализатора вызывает превращ. 104мас. ч. SO3 в SO2 или 106мас. ч. NH3 в NO. Ускоряющее действие растворителя на реакцию в растворах обычно не относят к К. на том основании, что количество растворителя, как правило, значительно превышает количество растворенных реагирующих веществ. Известны, однако, случаи ускорения реакций в присутствии очень малых добавок растворителя, напр. воды. Неизменность хим. состава и структуры катализатора по окончании процесса вряд ли может служить обязательным признаком К. Известно, что хим. состав выгруженного из реактора катализатора существенно иной, чем у загруженного; на состав и структуру катализатора влияет состав реакц. смеси.

Неизменность хим. состава и структуры катализатора имеет смысл рассматривать по отношению к той из элементарных стадий сложной каталитич. реакции, в которой непосредственно участвует катализатор, однако для этого необходимо надежно установить механизм реакции, что не всегда возможно.

Термин "К." введен И. Берцелиусом в 1835.

При гомогенном катализе катализатор и реагирующие вещества находятся в одной фазе в молекулярно-дисперсном состоянии. При гетерогенном катализе катализатор образует самостоят. фазу, отделенную границей раздела от фазы, в которой находятся реагирующие вещества. Выделяют также гетерогенно-гомогенный К., при котором реакция начинается на поверхности твердого катализатора, а затем продолжается в объеме. Межфазным катализом принято называть К. на границе двух несмешивающихся жидкостей; при этом роль катализатора состоит в переносе реагентов между фазами. Промежут. положение между гомогенным и гетерогенным К. занимает микрогетерогенный К. коллоидными частицами в жидкой фазе. Ускорение реакций в присутствии мицелл ПАВ наз. мицеллярным катализом. Исключительную роль в процессах в живых организмах играет ферментативный катализ, обусловленный действием ферментов.

Важным компонентом пром. катализаторов являются промоторы — вещества, добавление которых к катализатору в малых количествах (проценты или доли процента) увеличивает его активность, селективность или устойчивость. Если промотор добавляется к катализатору в больших количествах или сам по себе каталитически активен, катализатор наз. смешанным. Вещества, воздействие которых на катализатор приводит к снижению его активности или полному прекращению каталитич. действия, наз. ядами каталитическими. Встречаются случаи, когда одна и та же добавка к катализатору при одних концентрациях и температурах является промотором, при других — ядом. В гетерог. К. широко применяют носители — вещества, сами по себе каталитически неактивные или малоактивные. Нанесение на них катализатора значительно повышает его активность, гл. обр. вследствие увеличения поверхности катализатора или предохранения его частиц от спекания (см. нанесенные катализаторы).

Общие закономерности катализа. Все каталитич. реакции — самопроизвольные процессы, т. е. протекают в направлении убыли энергии Гиббса системы. Катализатор не смещает положения равновесия хим. реакции, если не считать его влияния на коэф. активности реагирующих веществ в растворах (или коэф. летучести, в случае реакций в газовой фазе при высоких давлениях). Вблизи от равновесия один и тот же катализатор ускоряет прямую и обратную реакции в равной степени, вдали от равновесия этого может и не быть. Из неск. возможных реакций катализатор ускоряет не обязательно термодинамически наиб. выгодную, т. е. ту, для которой убыль энергии Гиббса максимальна. Например, в присутствии Bi2O3.MoO3 пропилен окисляется частично (до акролеина), в присутствии Co3O4 происходит полное окисление (до CO2 и H2O). Мерой селективности (избирательности действия) катализатора является отношение скорости vi реакции, ведущей к накоплению i-го продукта, к суммарной скорости превращ. исходных веществ во всех возможных реакциях, т. е. vi/Svi. Расчет скорости каталитич. реакции возможен на основе ряда моделей и приближений относительно ее механизма и режима протекания; для простейших случаев гомогенного и гетерогенного К. подход к расчету скорости изложен в ст. каталитических реакций кинетика.

Энергия активации Е каталитич. реакции значительно меньше, чем для той же реакции в отсутствие катализатора. Например, для некаталитич. разложения NH3 на N2 + H2 E ~ 320 кДж/моль, для того же разложения в присутствии Pt Е ~ 150 кДж/моль. Благодаря снижению E обеспечивается ускорение каталитич. реакций по сравнению с некаталитическими. Снижение E объясняется тем, что при К. реакция протекает по новому механизму, складывающемуся из элементарных реакций с меньшими энергиями активации, чем некаталитич. реакция. При т. наз. стадийном механизме К. (кривая 1 на рис.) реакция типа А → В (энергия активации E1) заменяется совокупностью стадий: 1) А + К → АК, 2) АК → В + К (энергии активации E2 и E3соотв.), где К — катализатор, АК — устойчивое промежут. соед. реагента с катализатором. Для бимолекулярной реакции А + В → C + D стадийный механизм может осуществляться по схеме: 1) А + К → АК, 2) АК + B → K + C + D. По такой схеме протекает, напр., окисление H2 на металлич. катализаторе М: 1) М + 1/2O2 → МО, 2) МО + H2 → М + H2O. Одностадийные процессы К. (их наз. также ассоциативными или слитными) протекают по схеме: А + К → АК* : В + К. В этом случае (кривая 2 на рис.) катализатор не образует устойчивых промежут. соед. с реагентами, но входит в активир. комплекс АК*. Реакция происходит с преодолением одного потенциального барьера, разделяющего начальное и конечное состояния системы, как и некаталитич. реакция, но с пониженным значением энергии активации (E4 на рис.).

Энергетическая диаграмма реакции типа A → B; а — без катализатора, б — с катализатором К; 1 — при сталийном механизме, 2 — при ассоциативном механизме катализа: E1, E2, E4, E4 — потенциальные барьеры, разделяющие исходное и конечное состояния системы, Q — тепловой эффект реакции.

Большая скорость каталитич. реакции м. б. обусловлена не только снижением энергии активации вследствие протекания реакции по новому механизму, но и осуществлением под действием катализатора цепного механизма реакции. Например, каталитич. действие паров воды на газофазное окисление CO объясняется образованием реакц. цепей с участием активных частиц Н и ОН. В гетерогенно-гомог. К. на поверхности образуются активные частицы (напр., своб. радикалы HO2 и RO2 при окислении углеводородов RH), которые затем вылетают в газовую фазу и продолжают там цепь.

Доказано образование цепей на поверхности катализатора при полимеризации олефинов и синтезе углеводородов из CO и H2. Для мн. других гетерогенно-каталитич. реакций обнаружены особенности, характерные для цепных реакций: генерирование активных центров (чередование заполнения мест на поверхности и их освобождение), образование активных промежут. частиц в сверхравновесных концентрациях (что способствует преодолению барьера энергетически невыгодных стадий), достижение макс. скорости реакции спустя некоторое время после ее начала. Каталитич. и цепные реакции сближает также явление кинетич. сопряжения. Если превращ. катализатора при взаимодействии с реагентами сопряжены с самой каталитич. реакцией (т. е. имеют общее промежут. вещество или активир. комплекс), становится возможным образование сверхравновесных концентраций активных центров на поверхности катализатора и др. эффекты, типичные для цепных процессов.

Основные механизмы катализа. Каталитич. процессы, обусловленные переносом электрона (окисление, восстановление, гидрирование, дегидрирование, разложение нестойких кислородсодержащих соединений), относят к окислительно-восстановительному катализу. Типичными катализаторами для них являются переходные металлы и их соед.: простые оксиды (V2O5, MnO2, MoO3, Cr2O3), шпинели (Fe3O4, CuCr2O4), сульфиды (MoS2, WS2) и др.; для реакций в растворах — соли и комплексные соед. переходных металлов. Высокая каталитич. активность этих веществ объясняется тем, что атомы переходных металлов могут существовать в разл. степенях окисления, изменение которых не требует больших энергетич. затрат. В результате перенос электрона от реагента к катализатору осуществляется легче, чем в отсутствие катализатора от восстановителя к окислителю. При одноэлектронном переходе образуются своб. радикалы, далее участвующие в реакции. Например, при переходе одного электрона от активного центра молибденового катализатора к кислороду образуется ион-радикал O2, участвующий далее в каталитич. окислении (Mo5+ + O2 → Mo6+ + O2; O2 + CnHm : продукт). Существует окислительно-восстановит. К. с многоэлектронным механизмом, при котором не образуются своб. радикалы в качестве промежут. частиц. Многоэлектронные переходы между катализатором и реагирующими молекулами возможны, если в активный центр катализатора входят неск. атомов переходного металла. Например, в разложении H2O2 активны комплексные соед., содержащие 2 иона Fe3+; в восстановлении мол. азота до N2H4 — комплексные соед., содержащие 2 или более ионов V2+.

К процессам кислотно-основного катализа относятся каталитич. крекинг, гидратация, дегидратация, мн. реакции изомеризации, конденсации орг. веществ. Типичные катализаторы для этого класса процессов — вещества, способные передавать или принимать протон от реагентов или же способные к гетеролитич. взаимод. с реагентами (без разделения пары электронов). Среди этих веществ — протонные (H2SO4, CH3COOH, HF) и апротонные (BF3, AlCl3) кислоты, аморфные и кристаллич. алюмосиликаты, Al2O3, фосфаты, сульфаты. Активными центрами в них является протонный центр H+ (центр Брёнстеда ) или акцептор электронной пары, напр., атом Al (центр Льюиса). Реже применяются катализаторы основного характера (растворенные основания, твердые CaO, MgO и др.).

В случае т. наз. полифункциональных катализаторов отдельные этапы сложных каталитич. процессов окислительно-восстановительные и кислотно-основные — протекают на разных составных частях многокомпонентной многофазной системы. Например, при неполном окислении непредельных альдегидов в непредельные кислоты в присутствии оксидов Mo и V в элементарном акте происходят окислительно-восстановит. превращения катализатора:

V2O5 + CH2=CHCHO → CH2=CHCOOH + V2O4;

2MoO3 + CH2=CHCHO → CH2=CHCOOH + Mo2O5;

V2O4 + 1/2 O2 → V2O5, Mo2O5 + V2 O2 → 2MoO3

Конечная стадия реакций — десорбция кислоты — происходит на поверхностях V2O5 и MoO3, обладающих слабокислотными свойствами. В водных растворах каталитич. активность солей или комплексных соед. переходных металлов проявляется в определенном интервале pH. Это объясняется не только устойчивостью комплексных соед. при определенном pH, но и участием ионов H+ и OH в элементарных стадиях К.

Катализ в промышленности. Несмотря на появление новых способов активации молекул (плазмохимия, радиац. химия, лазерная химия и др.), К. остается основой хим. производств. Относит. доля каталитич. процессов составляет 80–90% и продолжает возрастать; в общем объеме мирового пром. производства каталитич. процессы дают ок. 18% стоимости всей продукции. В неорганическом синтезе важнейшими каталитич. процессами являются производство H2SO4, синтез NH3 из N2 и H2, производство HNO3. В старейшем газофазном (нитрозном) способе производства H2SO4 окисление SO2 в SO3 осуществлялось в присутствии оксидов азота. В кон. 19 в. возник контактный процесс, при котором окисление SO2 в SO3 протекало в присутствии Pt, нанесенной на разл. носители. Впоследствии Pt была заменена V2O5 с добавкой K2O и др. оксидов. Контактным способом получают десятки млн. т H2SO4 ежегодно.

Пром. синтез NH3 из N2 и H2 был осуществлен в результате работ Ф. Габера и К. Боша в нач. 20 в. на железных катализаторах при давлениях ок. 300 атм и температуре 450–500 °C. В настоящее время используют более активные Fe-катализаторы, промотированные V2O5, CaO, Al2O3и др. оксидами, что позволяет вести процесс при более низких давлениях и температурах. Водород для синтеза NH3 получают путем двух последоват. каталитич. процессов: конверсии CH4 или др. углеводородов (CH4 + H2O → CO + 3H2) на Ni-катализаторах и конверсии образующегося оксида углерода (CO + H2O → CO2 + H2). Для достижения высоких степеней превращения последнюю реакцию осуществляют в две стадии: высокотемпературной (315–480 °C) — на Fe-Cr-оксидных катализаторах и низкотемпературной (200–350 °C) — на Cu-Zn-оксидных катализаторах. Наиб. крупный потребитель NH3 — производство HNO3 окислением NH3 до NO на Pt и Pt-Rh сетках при 900–950 °C.

В органическом синтезе широкое применение К. началось в 1-й трети 20 в. благодаря работам П. Сабатье, В. Н. Ипатьева, Н. Д. Зелинского и др. Многочисл. реакции гидрирования C=C, C≡C, C=O, NO2-групп протекают на Ni-катализаторах, в числе которых Ni на носителях (кизельзуре, Al2O3) и скелетный Ni — высокопористый катализатор, получаемый выщелачиванием Ni-Al сплавов. Реже применяют Cu, Со, Pt, Pd. К крупным пром. процессам относится гидрогенизация жиров, превращ. бензола в циклогексан, нитробензола в анилин. В результате работ С. В. Лебедева и его учеников было создано производство синтетич. каучука. В его основе лежало получение мономера — бутадиена из этилового спирта по реакции 2C2H5OH → C4Hб + 2H2O + H2 на смешанном оксидном катализаторе, сочетающем дегидратирующую, дегидрирующую и конденсирующую функции, необходимые для всех стадий реакции. Впоследствии мономеры в производстве синтетич. каучука — бутадиен, изопрен, стирол — стали получать каталитич. дегидрированием соответствующих парафинов и олефинов на Al-Cr-оксидных катализаторах. Началось пром. применение экономически еще более выгодного процесса получения мономеров окислит. дегидрированием на разл. оксидах переходных металлов (RCH2CH3 + 1/2O2 → RCH=CH2 + H2O).

Широкое развитие в сер. 20 в. получили процессы каталитич. нефтепереработки; среди них — крекинг углеводородов нефти, для которого вначале основными катализаторами были аморфные алюмосиликаты, впоследствии цеолиты, отличающиеся более высокой активностью и большей селективностью по выходу парафиновых и ароматических углеводородов. Для получения высококачеств. бензинов, дизельных и реактивных топлив применяют каталитич. риформинг, алкилирование, гидрокрекинг и гидроочистку. Катализаторы риформинга — Al2O3, биметаллич. системы (Pt-Re на Al2O3), реже оксиды Mo или Cr на Al2O3; алкилирования — H2SO4, HF, AlCl3, BF3; гидрокрекинга (переработки высококипящих фракций нефти под давлением H2 в низкокипящие) — Al-Со-Mo- и Al-Ni-W-системы. Близкие по составу катализаторы применяют в процессах гидроочистки, в которых под давлением H2 тяжелые фракции нефти подвергаются обессериванию с выделением H2S; удаляются также азот- и кислородсодержащие соед. в результате гидрогенолиза соответствующих хим. связей. В условиях гидроочистки металлич. Ni-, Со-, Mo-, W-катализаторы превращаются в сульфиды (подробнее см. в статьях каталитический крекинг, каталитический риформинг).

Каталитич. переработка угля в моторное топливо началась в 20-30-х гг. 20 в. в двух вариантах: прямая гидрогенизация угольной пасты и синтез углеводородов по Фишеру-Тропшу на Co- и Fe-содержащих катализаторах. После 2-й мировой войны в связи с быстрым развитием нефтепереработки эти процессы утратили свое значение, однако затем интерес к каталитич. переработке угля возобновился в связи с начавшимся истощением запасов нефти. Появились новые катализаторы, были созданы опытно-пром. и отдельные пром. установки. Наиб. перспективен т. наз. Мобил-процесс, включающий газификацию угля, синтез метанола и послед. превращ. его в смесь углеводородов с большим выходом ароматических углеводородов C8-C12 на высококремнистых цеолитах с сечением пор, приближающимся к поперечному размеру соответствующих ароматич. молекул.

К наиб. крупнотоннажным процессам каталитич. окисления относятся: окисление этилена в этиленоксид на серебряных катализаторах, окисление метанола в формальдегид на серебре или молибдате Fe, окисление пропилена в акролеин и окислит. аммонолиз пропилена с получением акрилонитрила на молибдате Bi. Высокая селективность последних двух процессов достигается за счет введения в катализатор оксидных добавок; применяют шести- и даже восьмикомпонентные оксидные катализаторы. Из гомог. жидкофазных процессов в промышленности применяют окисление этилена в ацетальдегид в водном растворе, содержащем соли Cu и Pd, получение винилацетата окислением смеси C2H4 и CH3COOH в присутствии аналогичного катализатора и др. Каталитич. полимеризация получила развитие после открытия в 50-х гг. 20 в. К. Циглером и Дж. Наттой стереоспецифич. полимеризации олефинов на галогенидах, оксидах и др. соед. металлов IV-VIII групп (Ti, Zr, V, Cr, Mo и др.) с сокатализаторами — металлоорг. соед. Al и некоторых др. металлов I-III групп. В этих процессах получают кристаллич. полиолефины с регулярной структурой — полиэтилен, полипропилен, полибутадиен и др. (подробнее см. в статьях катализаторы окисления, катализаторы полимеризации, катализаторы процессов нефтепереработки).

Каталитич. синтезы на основе CO быстро развиваются в связи с возрастающим значением ненефтяного сырья. Разработан пром. процесс получения уксусной кислоты карбонилированием метанола в присутствии очень малых количеств солей Rh. Быстро возрастает применение К. для очистки отходящих пром. газов доокислением вредных орг. примесей в CO2 на катализаторах глубокого окисления: металлах, простых оксидах (MnO2, Fe2O3), шпинелях (CuCr2O4, CoCr2O4) и др. Перспективна также разработка катализаторов, селективно удаляющих вредные серосодержащие примеси (H2S, SO2) из отходящих пром. газов и прир. газа. В 70-х гг. 20 в. возникло новое направление каталитич. очистки — удаление примесей из выхлопных газов автомобилей. Катализатор в дожигателях выхлопных газов должен доокислять примеси углеводородов и CO до CO2, а также восстанавливать оксиды азота до N2. Используют в дожигателях Pt, Pd, Rh, нанесенные на носители.

Лит.: Проблемы кинетики и катализа, т. 1–19, Л.-М., 1935–85; Боресков Г. К., Катализ, ч. 1–2, Новосиб., 1971; Томас Ч., Промышленные каталитические процессы и эффективные катализаторы, пер. с англ., М.. 1973; Гейтс Б., Кетцир Дж., Шуйт Г., Химия каталитических процессов, пер. с англ., М., 1981; Крылов О. В., "Кинетика и катализ", 1985, т. 26, № 2, с. 263–74; Advances in catalysis, v. 1–35, N.Y.-L, 1948–87.

О. В. Крылов

Источник: Химическая энциклопедия на Gufo.me


Значения в других словарях

  1. катализ — -а, м. хим. Возбуждение химической реакции или изменение ее скорости под влиянием катализатора. [От греч. κατάλυσις — роспуск] Малый академический словарь
  2. катализ — катализ м. Ускорение химической реакции под влиянием некоторых веществ. Толковый словарь Ефремовой
  3. Катализ — • Κατάλυσις τοῦ δήμου так называлось в Афинах ниспровержение существующего строя государства в пользу какой-нибудь другой формы правления. Словарь классических древностей
  4. катализ — сущ., кол-во синонимов: 4 автокатализ 2 биокатализ 1 фотокатализ 1 электрокатализ 1 Словарь синонимов русского языка
  5. Катализ — (от греч. katálysis — разрушение) изменение скорости химических реакций в присутствии веществ (катализаторов (См. Катализаторы)), вступающих в промежуточное химическое взаимодействие с реагирующими веществами... Большая советская энциклопедия
  6. катализ — КАТАЛИЗ — явление самопроизвольного ускорения весьма медленно протекающих реакций. Теоретически к этой же категории должны быть отнесены все явления изменения скорости реакций в присутствии какого-либо постороннего вещества при условии... Ботаника. Словарь терминов
  7. катализ — орф. катализ, -а Орфографический словарь Лопатина
  8. КАТАЛИЗ — КАТАЛИЗ, изменение скорости протекания химической реакции посредством добавки вещества-КАТАЛИЗАТОРА, которое не участвует в реакции. Научно-технический словарь
  9. катализ — Катализ, катализы, катализа, катализов, катализу, катализам, катализ, катализы, катализом, катализами, катализе, катализах Грамматический словарь Зализняка
  10. катализ — Ката́лиз/. Морфемно-орфографический словарь
  11. катализ — КАТАЛИЗ а, м. catalyse f. <�гр. katalysis прекращение. Изменение скорости химической реакции под влиянием некоторых веществ (катализаторов). БАС-1. Заимствовано из фр. яз. в 1837 г. Впервые фиксируется в "Горном журнале" 1837... Словарь галлицизмов русского языка
  12. катализ — Катализа, м. [от греч. katalysis – роспуск] (хим.). Ускорение или замедление химической реакции под влиянием катализаторов. Большой словарь иностранных слов
  13. КАТАЛИЗ — КАТАЛИЗ (от греч. katalysis — разрушение) — ускорение химической реакции в присутствии веществ — катализаторов, которые взаимодействуют с реагентами, но в реакции не расходуются и не входят в состав продуктов. Большой энциклопедический словарь
  14. катализ — КАТ’АЛИЗ, катализа, ·муж. (от ·греч. katalysis — роспуск) (·хим. ). Ускорение или замедление химической реакции под влиянием катализаторов. Толковый словарь Ушакова
  15. катализ — КАТАЛИЗ -а; м. [от греч. katalysis — роспуск, разрушение] Хим. Возбуждение химической реакции или изменение её скорости под влиянием катализатора. ◁ Каталитический, -ая, -ое. К-ая реакция. К-ая активность. Толковый словарь Кузнецова

gufo.me

КАТАЛИЗАТОР - это... Что такое КАТАЛИЗАТОР?

  • катализатор — ускоритель, энзим, фермент Словарь русских синонимов. катализатор сущ., кол во синонимов: 11 • биокатализатор (1) • …   Словарь синонимов

  • КАТАЛИЗАТОР — КАТАЛИЗАТОР, катализатора, муж. (см. катализ) (хим.). Вещество, ускоряющее или замедляющее химическую реакцию, само при этом не изменяющееся. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • КАТАЛИЗАТОР — КАТАЛИЗАТОР, а, муж. (спец.). Вещество, изменяющее скорость химической реакции. | прил. катализаторный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • катализатор — вещество, ускоряющее или замедляющее реакцию, но остающееся при этом неизменным. Биол. К. являются ферменты. (Источник: «Микробиология: словарь терминов», Фирсов Н.Н., М: Дрофа, 2006 г.) …   Словарь микробиологии

  • КАТАЛИЗАТОР ФС-26/6 — катализатор, применяемый в составе песчано смоляных смесей при изготовлении стержней с фенолокарбамидными связующими в нагреваемой оснастке. Представляет собой водный раствор карбамида, хлористого и бромистого аммония и уротропина. Прозрачная… …   Металлургический словарь

  • катализатор — Вещество, изменяющее скорость химических реакций. [ГОСТ Р 51953 2002] Тематики крахмал и крахмалопродукты …   Справочник технического переводчика

  • катализатор — – вещество, влияющее на скорость химической реакции или возбуждающее ее, но в конечном итоге остающееся неизменным и неизрасходованным. Общая химия : учебник / А. В. Жолнин [1] …   Химические термины

  • Катализатор — вещество, ускоряющее химическую реакцию, не будучи реагентом или продуктом реакции. [Ушеров Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы. 2009. – 112 с.] Рубрика термина: Общие термины Рубрики энциклопедии: Абразивное… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • КАТАЛИЗАТОР — вещество, ускоряющее хим. реакцию. Вещество, замедляющее реакцию называют (см.). К. дают новые направления хим. реакции, они могут образовывать с реагирующими веществами промежуточные соединения, однако сами не входят в состав конечных продуктов …   Большая политехническая энциклопедия

  • Катализатор — (Catalyst) Определение катализатора, механизм действия катализатора Определение катализатора, механизм действия катализатора, применение катализатора Содержание Содержание 1. в химии Виды катализаторов Механизм действия катализаторов Требования,… …   Энциклопедия инвестора

  • dic.academic.ru


    Смотрите также