RU (495) 989 48 46
Пленка на бампер

АНТИГРАВИЙНАЯ ЗАЩИТА БАМПЕРА

 

Что такое генератор


от первого электрического генератора до современных устройств

Что такое генератор? Это электромеханический прибор, который преобразует кинетическую энергию в электрический переменный ток. Основой энергетического преобразования является вращающееся магнитное поле. Понятие генератора включает в себя массу устройств различного принципа действия. Это гальванические, электростатические приборы, солнечные батареи, турбины электростанций и пр. В статье пойдёт речь именно о генераторах электрической энергии.

Электрогенераторы

Принцип работы электрогенератора

В основу работы агрегатов, преобразующих энергию, положен закон Фарадея об электродвижущей силе (ЭДС). Учёный открыл закон, который объяснил природу появления тока в металлическом контуре (рамке), вращающемуся в однородном магнитном поле (явление индукции). Ток возникает также при вращении постоянных магнитов вокруг металлического контура.

Простейшая схема генератора представляется в виде вращающейся металлической рамки между двумя разно полюсными магнитами. На оси рамки помещают токосъёмные кольца, которые получают заряд электрического тока и передают его дальше по проводникам.

В действительности статор (неподвижная часть прибора) состоит из электромагнитов, а ротором служит группа рамных проводников. Устройство представляет обратный электромотор. Электродвигатель поглощает электрический ток и заставляет вращаться ротор. Электрический генератор, преобразовывающий кинематическую энергию механического вращения в ЭДС, называют индукционным генератором.

Классификация генераторов

Классификация преобразователей энергии даёт чёткое понятие – что такое генератор электрического тока. Различают электрические генераторы по следующим признакам:

Автономность

Главное преимущество, которым обладает электрический генератор, – это его полная независимость от централизованных поставщиков энергии. Автономность электротехнического оборудования бывает стационарной и мобильной.

Стационарные

Обычно это генераторные станции, работающие от дизельных двигателей. Станции используют для электроснабжения потребителей в местах, удалённых от централизованных электрических сетей.

Стационарные генераторные станции необходимы для обеспечения током производственных процессов там, где даже кратковременные перебои поставки электроэнергии недопустимы.

Мобильные

Электрогенераторы мобильного типа выполнены в виде компактных аппаратов, которые можно перемещать в пространстве. Передвижные станции используют для электросварки, местного освещения, снабжения током бытовых электроприборов и многое другое.

Оборудование включает в себя двигатель внутреннего сгорания, работающий на бензине или дизельном топливе. Агрегаты имеют различные габариты. Компактный аппарат может транспортировать один человек. Существуют мобильные агрегаты, которые устанавливаются на специальном автомобильном прицепе.

Бензиновый генератор на колёсной паре

Фазность

По фазовой структуре электрического потока различают однофазные и трёхфазные агрегаты.

Однофазные

Генераторы, производящие однофазный ток, предназначены в основном для питания бытовых приборов. Чаще всего это мобильные аппараты. Однофазными агрегатами хозяева оснащают свои частные домовладения для бытовых нужд (освещения, питания электротехники и др.).

Трёхфазные

Генераторные источники трёхфазного тока используются для питания силового электрооборудования. В некоторых случаях получаемый трёхфазный ток разделяют по фазам. Таким образом, делают развод электропроводки по всему дому для питания бытовых электроприборов.

Важно! Все ветви фазового разделения должны равняться между собой мощности потребления. Если разница нагрузок будет велика, то генератор быстро выйдет из строя.

Режимы работы

В зависимости от того, в каком режиме эксплуатируются агрегаты, их подразделяют на основные и резервные.

Основные

Аппараты предназначены для работы в постоянном режиме. Мощные электрогенераторы с дизельными двигателями относят к промышленным установкам. Устанавливаются там, где требуется получение электроэнергии круглосуточно.

Резервные

Само название агрегатов говорит о применении их в исключительных случаях – при внезапном отключении централизованного электроснабжения. Генераторы могут включаться в работу при срабатывании реле, реагирующего на исчезновение напряжения в электросети централизованного источника. Резервные аппараты рассчитаны на беспрерывную работу в течение нескольких часов.

Сфера применения

Генераторы изготавливают, рассчитанные на две сферы применения: для быта и производства.

Быт

Сейчас торговая сеть предлагает широкий выбор бытовых генераторов. Это однофазные установки, предназначенные для аварийного обеспечения электроэнергией частных домостроений. Также компактные агрегаты используют для питания выносного электрооборудования. Для бытовых электроприборов, использующих цифровую элементную базу важно качество тока. Устройство должно выдавать электроэнергию следующих параметров: 220 В, 1 А, 50 Гц.

Мощные бытовые агрегаты используют для электросварочных работ. Их преимуществом является способность производить ток большой силы для получения электрической дуги.

Обратите внимание! Если в инструкции бытового аппарата производитель не оговаривает применение для электросварки, то его нельзя использовать для сварочных работ. В противном случае генератор выйдет из строя.

Производство

Независимыми мощными стационарными генераторами оснащают цеха промышленных предприятий, жилые районы, строительные объекты, больницы и объёмные общественные здания.

Виды бытовых генераторов

Электротехническая промышленность выпускает бытовые генераторы переменного тока трёх видов:

  • газовые;
  • бензиновые;
  • дизельные.

Газовые

Генераторы газового типа выдают ток низкой себестоимости. Стоимость 1 кВт/ часа составляет 3 рубля. Газовые агрегаты используют как резервные источники электроэнергии. Устройства предназначены для режима кратковременного включения при сбое поставки электрического тока централизованной сетью электроснабжения.

В частных домов используют газовые установки мощностью 5 кВт. Агрегаты оснащены системой автозапуска. При отключении электричества аппарат автоматически включается в работу и восстанавливает напряжение в электросети дома. Генераторы с воздушным охлаждением после 12 часов непрерывной работы требуют перерыва.

Выгодно устанавливать такие преобразователи энергии при центральном газопроводе. Автономное снабжение сжатым природным газом установок связано с рядом условий, таких, как наличие газобаллонного сервиса поставки энергоносителя и технически исправного приёмного оборудования в доме.

Бытовой газовый генератор

Одними из достоинств газовых агрегатов является то, что генераторы работают практически бесшумно, выхлоп продуктов сгорания топлива сведён к 0.

Газовые генераторы устанавливают вне дома. Для обеспечения бесперебойной работы устройства в зимний период помещают в специальные кожухи. Существующие модели – с жидкостным охлаждением, какое допускает их установку внутри дома.

Бензиновые

Бензиновые генераторы в основной своей массе изготавливают мощностью, не превышающей 20 кВт. Устройства используют для аварийного обеспечения электричеством загородных домов, дач, а также для питания ручных электроинструментов, небольших станков и прочее. Генераторы могут поддерживать освещение придомовой территории, автомобильной стоянки и торговых площадей.

Бензогенератор

Дополнительная информация. Стандартное топливо для агрегатов – это бензин марки АИ-92. Кратковременно можно заливать в бак оборудования бензин АИ-76 и АИ-95.

Бензиновые генераторы переменного тока могут быть мобильными и стационарными. Особо мощные тяжёлые установки оснащают колёсной парой. В зависимости от модели, устройства оснащают ручным запуском или стартером. Для понижения шумности работы двигателя внутреннего сгорания аппарат помещают в звукопоглощающий кожух.

Дизельные

Дизельные генераторы переменного тока представляют устройства, мощность которых достигает до 3 мВт. Агрегаты могут служить постоянными источниками электроэнергии для загородных домов и дач. Автономные дизельные источники переменного электрического тока питают мощное деревообрабатывающее оборудование, станки различного назначения. Дизель-генераторы могут снабжать током целые посёлки.

Дизель-генератор для сварочных работ

Дизельные установки изготавливают в стационарном и мобильном варианте. Агрегаты обладают большой шумностью. Поэтому в некоторых случаях их помещают в специальные шумоизоляционные кожухи.

По сравнению с бензиновыми аналогами, дизель-генераторы потребляют топливо в меньшем объёме, которое стоит дешевле, чем бензин. Дорогие модели способны контролировать управление процессом генерации энергии, автоматически включаться в работу при возникновении аварийных ситуаций в сети центрального электроснабжения.

Современный рынок электротехники располагает огромным ассортиментом генераторов переменного тока. Модели различных систем питания с большим диапазоном мощности удовлетворят любые требования потребителей.

Видео

Генератор - это... Что такое генератор?

Она содержит два генератора: генератор поисковой частоты собран на транзисторах V1 и V2, генератор эталонной частоты — на транзисторах V3 и V4.

Каким должно быть сопротивление обмоток электрических машин (вспомогательный генератор в системе СТН, индукторный генератор в системе ВЧ, обращенный синхронный генератор в системе БСВ) при измерении сопротивления постоянному току обмоток трансформаторов и электрических машин в системах возбуждения?

Если бы вы позволили своим меньшим земным братьям использовать гораздо больше энергии, чем могут дать какие-то жалкие десять генераторов, тогда за украденный генератор не платили бы по миллиону марок, и он не представлял бы для нас, несчастных, такого искушения.

Электрик, худощавый блондин с бачками, сказал, что вышел из строя генератор, надо менять, а генераторов, кажется, нет.

Попади эта штуковина в руки министерства обороны любой страны, оно сразу же переименует себя в министерство агрессии, тем более что технология изготовления таких генераторов хоть и сложна и дорогостоящая, но вполне доступна нашей промышленности, а стали, меди и вольфрама, из которых состоит генератор, на планете пока предостаточно.

Если бы вы позволили своим меньшим земным братьям использовать гораздо больше энергии, чем могут дать какие–то жалкие десять генераторов, тогда за украденный генератор не платили бы по миллиону марок, и он не представлял бы для нас, несчастных, такого искушения.

Когда в 1990-м году фирма iD-Software выпустила на рынок программного обеспечения генератор уровней для популярной игры "Doom" , никто и предположить не мог, что наступил момент смены вех; что произошло событие, разделившую историю человеческой культуры на две (пока неравные) части: на историю до выхода генератора в свет и на историю после его выхода.

На этом же заводе производительная работа высокочастотного генератора мощностью сто десять киловатт по закалке коленчатых валов составляла одну целую и восемь десятых часа за смену, остальное время, около пяти часов, генератор работал вхолостую, ежегодные потери составляли двадцать шесть тысяч киловатт-часов...

Он включил тумблер с надписью «Дополнительный генератор» и до упора вывернул регулятор мощности генератора.

Ровно в девять-ноль-ноль отдан приказ запустить центральный генератор нулевого времени и четыре вспомогательных генератора электромагнитных колебаний.

генератор — Викисловарь

Морфологические и синтаксические свойства[править]

падеж ед. ч. мн. ч.
Им. генера́тор генера́торы
Р. генера́тора генера́торов
Д. генера́тору генера́торам
В. генера́тор генера́торы
Тв. генера́тором генера́торами
Пр. генера́торе генера́торах

ге-не-ра́-тор

Существительное, неодушевлённое, мужской род, 2-е склонение (тип склонения 1a по классификации А. А. Зализняка).

Корень: -генер-; суффикс: -атор [Тихонов, 1996].

Произношение[править]

  • МФА: ед. ч. [ɡʲɪnʲɪˈratər]  мн. ч. [ɡʲɪnʲɪˈratərɨ]

Семантические свойства[править]

Генератор [1] электроэнергии
Значение[править]
  1. техн. механизм или устройство, преобразующее энергию одного вида в энергию другого вида, чаще всего, в электрическую ◆ Генератор постоянного тока (то же, что динамо-машина). ◆ Вся работа, при условии получения генератора, может быть закончена в несколько месяцев. И. Э. Бабель, «Статьи в газете «Заря Востока»», 1922 г. (цитата из Национального корпуса русского языка, см. Список литературы) ◆ В пещере в это время устанавливали большие паровые машины и огромные генераторы электрического тока. В. А. Обручев, «Тепловая шахта», 1920 г. (цитата из Национального корпуса русского языка, см. Список литературы)
  2. перен. некто или нечто, являющееся источником чего-либо ◆ И одновременно указание на источник силы автора как практика: он и генератор идей, и их исполнитель – важнейшее условие эффективного управления. ◆ Один из самых обыкновенных способов объяснения изомерии, помимо, как думают, химического строения, заключается в том, что химики приурочивают изомерию к различию способа образования вещества и говорят, что вещества не тождественны в силу различия своих генераторов или реакций, давших веществам начало. А. М. Бутлеров, «Теоретические и экспериментальные работы по химии», 1851–1886 г. (цитата из Национального корпуса русского языка, см. Список литературы) ◆ И это правильно хотя бы потому, что инициатива по всем новым машинам исходила от него, от Ильюшина, генератором идей был он. Ф. И. Чуев, «Ильюшин», 1998 г. (цитата из Национального корпуса русского языка, см. Список литературы)
  3. техн. печь особого устройства для производства генераторного газа ◆ В технике пользование газообразным топливом также распространено, с той разницей, что здесь, вместо дорогого светильного газа, применяют гораздо более дешёвый, так называемый «генераторный газ», получаемый при неполном сгорании топлива в специально устроенном генераторе. П. Н. Лебедев, «Способы получения высоких температур», 1899 г. (цитата из Национального корпуса русского языка, см. Список литературы)
Синонимы[править]
  1. источник, производитель
  2. источник, родитель, начало, кладезь
Антонимы[править]
  1. частичн.: потребитель
  2. губитель, убийца
Гиперонимы[править]
  1. источник, устройство, агрегат
  2. источник
  3. печь, реактор
Гипонимы[править]
  1. солнечная батарея; биогенератор, лёдогенератор, парогенератор, ветрогенератор, газогенератор, электростанция, электрогенератор, тахогенератор, теплогенератор
  2. аэроионогенератор, дымогенератор

Родственные слова[править]

Этимология[править]

Происходит от лат. generātor «производитель, предок, родитель», из generāre «производить, порождать, создавать», далее из genus «происхождение, род», далее из genere «рожать, порождать» (восходит к праиндоевр. *gen-/*gon-/*gn- «порождать»).

Фразеологизмы и устойчивые сочетания[править]

Перевод[править]

Библиография[править]

Для улучшения этой статьи желательно:
  • Добавить все семантические связи (отсутствие можно указать прочерком, а неизвестность — символом вопроса)
  • Добавить хотя бы один перевод для каждого значения в секцию «Перевод»

устройство и принцип работы, напряжение и мощность

В стандартном исполнении в автомобиле существуют два источника питания – генератор и аккумулятор. Разница между ними заключается в том, что АКБ накапливает электроэнергию, а автомобильный генератор ее вырабатывает. То есть это устройство преобразует механическую энергию от двигателя в электрическую с целью дальнейшего питания всех потребителей и заряда аккумулятора.

Функции генератора

При запуске двигателя пусковой ток на стартер подается от аккумулятора. Но сам аккумулятор не вырабатывает энергию, а только ее накапливает и потом отдает. Если использовать для питания всех потребителей только АКБ, то она быстро разрядится. Автомобильный генератор производит электроэнергию, заряжает АКБ и питает бортовую сеть автомобиля во время работы двигателя (при достижении им определенных оборотов вращения коленчатого вала).

Автомобильный генератор

Генератор начинает вырабатывать электрический ток начиная с частоты вращения холостого хода, однако, на оптимальный режим работы он выходит при достижении двигателем 1600-1800 об/мин и более.

Виды генераторов

Выделяют два вида автомобильных генераторов:

  • постоянного тока;
  • переменного тока.

Первый вид генераторов в настоящее время уже не используется. Такие устройства устанавливались на старых моделях автомобилей (ГАЗ-51, Победа и др.). Они имеют много недостатков, такие как:

  • малая мощность и эффективность;
  • необходимость в постоянном контроле и обслуживании;
  • небольшой срок службы.

Сейчас применяются генераторы переменного тока. Главное их отличие в том, что вне зависимости от режима работы двигателя автомобильную сеть питает постоянный ток. Это достигается благодаря полупроводниковому выпрямителю.

Устройство генератора переменного тока

Работу любого генератора можно сравнить с электродвигателем, который работает в обратном режиме, то есть не потребляет, а вырабатывает ток. По типу конструкции современные генераторы делятся на два вида: компактный и традиционный. Они имеют общее устройство, но различаются в компоновке корпуса, вентилятора, выпрямительного узла и приводного шкива. Также у современных устройств имеется три фазы.

Устройство генератора

Генератор состоит из следующих основных элементов:

  • привод со шкивом, подшипниками и валом;
  • ротор с обмоткой возбуждения и контактными кольцами;
  • статор с сердечником и обмоткой;
  • корпус, состоящий из двух крышек;
  • регулятор напряжения;
  • выпрямительный блок или диодный мост;
  • щеточный узел.

Разберем каждый элемент устройства отдельно и подробно.

Корпус

В корпусе находятся все основные элементы генератора. Он состоит из двух крышек (передняя и задняя). Крышки соединяются между собой болтами. Для изготовления крышек используют легкие сплавы алюминия, которые не намагничиваются и хорошо отводят тепло. В крышках есть вентиляционные отверстия и крепежные фланцы.

В задней крышке установлен диодный мост и щеткодержатель со щетками. Также в задней крышке расположен выводной контакт, по которому ток поступает от генератора.

Привод

Вращение от коленчатого вала передается на шкив генератора и вращает ротор. Частота вращения шкива больше частоты вращения коленвала в 2-3 раза. Крутящий момент от двигателя передается посредством ременной передачи. Могут использоваться поликлиновый и клиновый ремень в зависимости от конструкции. Поликлиновый ремень считается более универсальным и современным.

Ротор

На валу ротора находится обмотка возбуждения, которая создает магнитное поле и, по сути, представляет собой обычный электромагнит. Обмотка находится между двух полюсных половин (сердечников), необходимых для регулирования и направления магнитного поля. Каждая из половин имеет по шесть треугольных выступов, называемых клювами. Также на валу ротора расположены два медных контактных кольца. Иногда они изготавливаются из стали или латуни. Через контактные кольца на обмотку возбуждения поступает питание от аккумулятора. Контакты обмотки припаяны к кольцам.

Ротор генератора

На переднем конце вала ротора находится приводной шкив, а на другом крепится крыльчатка вентилятора. Их может быть две. Они нужны для охлаждения внутренних деталей генератора. Также на обоих концах ротора установлены необслуживаемые шариковые подшипники.

Статор

Статор

Конструктивно статор имеет форму кольца. Это основная деталь, служащая для создания переменного тока от магнитного поля ротора. Состоит из обмотки и сердечника. В свою очередь, сердечник состоит из соединённых стальных пластин, в которых образуются 36 пазов. В пазы навивается три обмотки, которые образуют трехфазное соединение. Может быть две схемы соединения обмоток: «звезда» и «треугольник». По схеме «звезда» концы каждой из трех обмоток соединены в одной точке. По схеме «треугольник» концы обмоток выводятся отдельно.

Выпрямительный блок или диодный мост

Выпрямительный блок выполняет задачу по преобразованию переменного тока генератора в постоянный, который необходим для питания бортовой сети автомобиля. Другими словами, он выдает напряжение стабильной и одинаковой величины.

Диодный мост

Блок также называют диодным мостом, который состоит из двух радиаторных пластин (положительной и отрицательной) и диодов. На каждую фазу приходится по два диода. Сами диоды герметично вмонтированы в пластины. Диодный мост имеет форму подковы.

С обмотки статора ток поступает на диодный мост, затем «выпрямляется», и подается на выводной контакт на задней крышке.

Через диоды ток проходит только в одном направлении, при этом отсекаются токи обратной полярности. Диодный мост может находиться в корпусе генератора, а может быть вынесен за корпус. Но чаще всего он крепится на внутренней стороне задней крышки.

Регулятор напряжения

Регулятор поддерживает напряжение генератора в определенных пределах. В современных моделях применяются полупроводниковые электронные регуляторы напряжения. Они устанавливаются сверху блока щеткодержателей.

Регулятор напряжения и щеточный узел

Когда двигатель работает на больших оборотах, то напряжение на обмотке статора может доходить до 16В. Такое напряжение не должно поступать в бортовую сеть. Чтобы это исключить, регулятор напряжения, получая ток от АКБ, будет снижать его значение. Малый ток на обмотке ротора будет создавать такое же малое магнитное поле. Это значит, что на обмотке статора будет понижаться напряжение.

Щеточный узел

Щеточный узел в современных генераторах объединен с регулятором напряжения в один неразборный механизм. Он передает ток возбуждения на медные контактные кольца ротора. Это простая конструкция, которая состоит из щеткодержателя, двух графитовых щеток и прижимающих пружин.

Принцип работы

Теперь разберем подробнее работу генератора переменного тока в автомобиле. При включении зажигания, на щеточный узел подается ток от аккумуляторной батареи. Через щеточный узел он попадает на медные контактные кольца, а затем на обмотку возбуждения ротора. Напомним, что ротор, по сути, является электромагнитом, который создает магнитное поле. Коленчатый вал через шкив и ременную передачу начинает вращать ротор. Вокруг ротора расположен статор, который от вращения начинает вырабатывать переменный ток. Когда вращение ротора достигает определенной частоты, обмотка возбуждения питается от самого генератора.

Через диодный мост переменный ток “выпрямляется” и преобразуется в постоянный, необходимый для питания бортовой сети. Так автомобильный генератор обеспечивает питание потребителей и подзаряжает аккумулятор. Регулятор напряжения изменяет работу обмотки возбуждения при возрастании частоты вращения ротора. Таким образом поддерживается стабильная нагрузка.

В салоне автомобиля на приборной панели есть контрольная лампа генератора, которая показывает состояние устройства. Например, лампа может загореться при обрыве ремня. Тогда питание

Генераторы. Виды и применение.

Устройство, которое переводит энергию вращения ротора в электрическую энергию, называют генератором. Генератор, среди всего многообразия различного инструмента, по праву считается самым универсальным приспособлением. Сфера его применения включает в себя все сферы, в которых применяется электроинструменты или электроприборы. Главным достоинством генератора является то, что он полностью автономен, и не нуждается в тепловых, газовых, и других сетях.

Виды генераторов

По мобильности генераторы разделяют на стационарные и мобильные.
Стационарные генераторы больше схожи со станциями и применяются, в основном, для экономии, в тех местах, где выгоднее генерировать электричество или там, где недопустимы перебои энергоснабжения.

А мобильные генераторы легко перевозятся в любое нужное место, мобильность такого генератора определяется его массой и размерами.

По режиму и продолжительности работы генераторы делятся на резервные и основные.
Резервные, их еще называют аварийными, в основном применяются при прекращении энергоснабжения основных источников, они автоматически включаются, если основной источник тока отключается, или включается вручную. Чаще это бензиновые генераторы, которые работают около четырех часов. 
Основные генераторы. Это мощные дизельные генераторы, которые работают круглосуточно и без перерывов.

Так же, генераторы различают по сфере применения - промышленные, профессиональные и бытовые.

К промышленным генераторам относят те, которые производят генерацию электричества для промышленности: заводов, больниц, строек, жилых районов и т.п.

Профессиональные установки применяются для подключения к ним профессионального электроинструмента.

Бытовые генераторы в основном обеспечивают электричеством частные владения владельца.

Следует выделить отдельный вид профессиональные генераторы – генераторы с установленным сварочным аппаратом. Особенностью таких генераторов является то, что они способны выдавать большее количество тока в тот момент, когда образуется электрическая дуга. Если для сварки применять другие генераторы, то генератор будет постоянно испытывать перегрузки, что впоследствии приведет к его поломке.

Так же генераторы подразделяют на трехфазные и однофазные. Однофазные генераторы применяются для питания всех однофазных потребителей тока, таких как бытовые приборы, освещение и однофазного электроинструмента. Трехфазные генераторы предназначаются для специализированного трехфазного оборудования.

принцип работы, устройство, назначение генератора

Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.

Превращение механической энергии в электрическую

Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Схема генератора переменного тока

Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.

Классификация и виды агрегатов

Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

По принципу работы

Разделяют асинхронные и синхронные генераторы переменного тока.

Асинхронный

У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.

Синхронный

Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

По типу топлива двигателя

Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

Газовый генератор

В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:

  • Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
  • Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
  • Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
  • Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.
Дизельный генератор

Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:

  • Относительная дешевизна топлива;
  • Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
  • Высокий уровень противопожарной безопасности;
  • В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
  • Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.
Бензогенератор

Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:

  • Малые габариты при высокой мощности;
  • Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
  • В случае перегрузки генератора автоматически срабатывает защита;
  • Просты в обслуживании и ремонте;
  • Во время работы не издают много шума;
  • Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.

Основные сферы применения

В зависимости от того, где используется электрогенератор, определяются его технические характеристики. Главным образом, отношения генератора к определенной категории по области применения, определяет его мощность. Разделяют следующие разновидности оборудования по сферам эксплуатации:

  • Бытовые. Обладают мощностью от 0,7 до 25 кВт. Обычно к этой категории относятся бензиновые и дизельные генераторы. Применяются для электроснабжения бытовых электроприборов и оборудования малой мощности, очень часто на строительных площадках. Сгодятся в качестве портативного источника электроэнергии при выезде на природу;
  • Профессиональные. Могут применяться в качестве постоянного источника электроэнергии в муниципальных учреждениях и мелких производственных предприятиях. Его мощность не превышает 100 кВт;
  • Промышленные. Могут эксплуатироваться на крупных фабриках и заводах, где требуется высокомощное оборудование. Такие аппараты обладают мощностью более 100 кВт, имеют немалые габариты и сложны в техническом обслуживании для неподготовленного человека.

Что такое генератор?

Генератор (электрический) - это устройство, преобразующее механическую или химическую энергию в электрическую. В генераторах часто используются двигатели, турбины, двигатели, кривошипы, поршни или другие источники механической энергии. Аналогичным образом, в генераторах могут использоваться химические вещества или другие материалы, вырабатывающие электричество при смешивании или воспламенении. Генераторы сами по себе не производят электричество, а просто создают поток электричества, заставляя электроны от внешнего источника проходить через электрическую цепь.Генераторы используются для самых разных целей и доступны во многих различных формах.

Как работает генератор
Генераторы используют широкий набор внешних сил для производства электрического тока, что приводит к их очень большим. Они созданы для выработки электроэнергии для всего здания, города или региона. Вода, ветер, сейсмическая активность, ручной труд, магнетизм, пар, сжатый воздух или бензин могут приводить в действие генераторы. Однако бензиновые генераторы являются наиболее распространенными для коммерческого и бытового применения.В генераторе любого типа механическая сила используется для перемещения турбины или другого вращающегося устройства, чтобы возбуждать электроны и индуцировать электрический ток в цепи. Затем электричество направляется по медным проводам для питания внешнего оборудования, такого как системы освещения или другие электронные устройства.

Применения
Электрические генераторы имеют множество целей, и их можно встретить во всем мире в различных моделях. Например, генераторы часто используются в больницах, офисных зданиях и супермаркетах для обеспечения электроэнергией всего здания при отключении электроэнергии.Это важно в таких средах, поскольку жизненно важные электронные устройства зависят от постоянного источника электроэнергии. Генераторы также используются на электростанциях для преобразования ядерной, механической или химической энергии в электричество, которое электрические компании распределяют по всему городу или округу. Бытовые генераторы обеспечивают питание основных бытовых электрических устройств, таких как системы освещения и холодильники, во время бедствия до тех пор, пока электроэнергия не будет восстановлена. Также важно отметить, что генератор переменного тока, который есть в каждом современном автомобиле, представляет собой разновидность электрического генератора.

Преимущества
Электрические генераторы обладают рядом важных преимуществ. Например, генераторы могут вырабатывать электроэнергию как для долгосрочного, так и для краткосрочного использования. Генераторы также доступны во многих формах и размерах, что делает их доступными практически для всех. Десятки различных сил могут приводить в действие генераторы, что делает их чрезвычайно универсальными. Точно так же генераторы могут прослужить годами, прежде чем их придется ремонтировать или заменять.

Недостатки
Хотя электрические генераторы полезны, у них также есть несколько недостатков.Например, генераторы часто очень дороги, хотя при необходимости они того стоят. Генераторы обычно большие и могут быть очень тяжелыми. Они также могут использовать большое количество механических входов и не всегда эффективны.

.

Что такое электрический генератор? (с иллюстрациями)

Электрический генератор - это устройство, которое вырабатывает электричество из механической энергии, обычно посредством электромагнитной индукции. Электромагнитная индукция работает путем принудительного перемещения проволочной петли (ротора) вокруг неподвижного стержня (статора), который создает электрическое поле, либо через постоянный магнит, либо через электромагнит. По закону Фарадея это вызывает ток в роторе, который можно использовать для питания механизмов или зарядки аккумуляторов.Возможные источники механической энергии включают паровые двигатели, воду, падающую через турбину или водяное колесо, двигатель внутреннего сгорания, ручной кривошип, ветряную турбину, сжатый воздух, солнечную энергию и многие другие. Электрический генератор - это основа нашего современного электрического общества. Если бы электрические генераторы перестали работать, то же самое сделала бы большая часть экономики.

Турбина, предназначенная для выработки энергии из ветра.

Электрический генератор был впервые изобретен венгерским изобретателем и инженером Аньосом Едликом где-то между 1827 и 1830 годами. Едлик изобрел генератор, простую динамо-машину, по крайней мере за шесть лет до Warner von Siemens в Германии и Чарльза Уитстона в Великобритании, чьи имена обычно связанных с изобретением устройства. Хотя электрический генератор был изобретен около 1830 года, только после новаторской работы Николы Теслы по вращающимся магнитным полям около 1882 года генераторы стали пригодными для промышленного использования.Электрификация Соединенных Штатов произошла в 1890-х годах, что помогло вызвать вторую промышленную революцию, с которой электричество тесно связано.

Плотина «Три ущелья» в Китае вырабатывает огромное количество электроэнергии.

Сегодня существуют электрические генераторы всех мыслимых размеров, от генераторов мощностью 3-6 Вт до велосипедных фонарей и гидрогенераторов на плотине «Три ущелья» в Китае, которые будут обеспечивать мощность 22,5 гигаватт, когда они будут полностью установлены в 2012 году. Текущее мировое производство электроэнергии составляет около 20 000 тераватт-часов, из которых около 66% генерируется за счет тепла (сжигание ископаемого топлива), 16% за счет гидроэнергетики, 15% за счет ядерной энергии и 2% за счет возобновляемых источников энергии, таких как энергия ветра или солнца.По причинам, связанным с окружающей средой и здоровьем, во всем мире предпринимаются усилия по расширению производства электроэнергии из гидро, ядерных и возобновляемых источников и сокращению производства электроэнергии из источников ископаемого топлива.

Турбины внутри гидроэлектростанции, например, те, что используются на плотине Гувера, включают динамо-машины, вырабатывающие электричество.На дизель-электрическом локомотиве дизельный двигатель обеспечивает мощность тягового электродвигателя, который вращает колеса агрегата. Фотоэлементы превращают солнечный свет в электрическую энергию. Многие бытовые генераторы работают на бензине или дизельном топливе.Генераторы часто полагаются на газовые двигатели для работы при производстве электроэнергии. .Конструкция

, принцип работы, типы и применение

Первоначальный электромагнитный генератор (диск Фарадея) был изобретен британским ученым Майклом Фарадеем в 1831 году. Генератор постоянного тока представляет собой электрическое устройство, используемое для выработки электроэнергии. Основная функция этого устройства - преобразовывать механическую энергию в электрическую. Доступно несколько типов механических источников энергии, таких как ручные кривошипы, двигатели внутреннего сгорания, водяные турбины , газовые и паровые турбины. Генератор обеспечивает энергией все электрические сети . Обратную функцию генератора может выполнять электродвигатель. Основная функция двигателя - преобразование электрической энергии в механическую. Двигатели, как и генераторы, обладают схожими характеристиками. В этой статье обсуждается обзор генераторов постоянного тока.

Что такое генератор постоянного тока?

Генератор постоянного тока или генератор постоянного тока - это один из видов электрических машин, и основная функция этой машины - преобразовывать механическую энергию в электричество постоянного тока. В процессе изменения энергии используется принцип энергетически индуцированной электродвижущей силы. Схема генератора постоянного тока показана ниже.


Генератор постоянного тока

Когда проводник рассекает магнитный поток , в нем будет генерироваться энергетически индуцированная электродвижущая сила на основе принципа электромагнитной индукции Закона Фарадея . Эта электродвижущая сила может вызвать протекание тока, когда цепь проводника не разомкнута.

Конструкция

Генератор постоянного тока также используется в качестве двигателя постоянного тока без изменения его конструкции.Следовательно, двигатель постоянного тока, иначе генератор постоянного тока, можно вообще назвать машиной постоянного тока . Конструкция 4-полюсного генератора постоянного тока показана ниже. Этот генератор состоит из нескольких частей , таких как ярмо, полюса и полюсные наконечники, обмотка возбуждения, сердечник якоря, обмотка якоря, коммутатор и щетки. Но двумя основными частями этого устройства являются статор и ротор .

Статор

Статор является важной частью генератора постоянного тока, и его основная функция заключается в создании магнитных полей, в которых вращаются катушки.Сюда входят стабильные магниты, два из которых обращены противоположными полюсами. Эти магниты расположены в области ротора.

Сердечник ротора или якоря

Сердечник ротора или является второй важной частью генератора постоянного тока и включает в себя металлические пластины с прорезями и пазами, которые уложены друг на друга для формирования цилиндрического сердечника якоря. Как правило, эти пластинки предлагаются для уменьшения потерь из-за вихревого тока .


Обмотки якоря

Пазы сердечника якоря в основном используются для удержания обмоток якоря. Они имеют форму обмотки замкнутой цепи, и она соединена последовательно с параллелью для увеличения суммы производимого тока.

Ярмо

Внешняя конструкция генератора постоянного тока представляет собой ярмо, и оно выполнено из чугуна или стали. Он дает необходимую механическую мощность для передачи магнитного потока , передаваемого через полюса.

Полюса

В основном используются для удержания обмоток возбуждения. Обычно эти обмотки намотаны на полюса, и они подключаются последовательно, в противном случае - параллельно обмоткам якоря . Кроме того, полюса будут соединяться по направлению к ярму с помощью метода сварки, в противном случае с помощью винтов.

Полюсный башмак

Полюсный башмак в основном используется для распределения магнитного потока, а также для предотвращения падения катушки возбуждения.

Коммутатор

Коммутатор работает как выпрямитель для изменения переменного напряжения на постоянного напряжения внутри обмотки якоря на щетках. Он разработан с медным сегментом, и каждый медный сегмент защищен друг от друга с помощью листов слюды . Он расположен на валу станка.

Коммутатор в генераторе постоянного тока
Функция коммутатора генератора постоянного тока

Основная функция коммутатора в генераторе постоянного тока состоит в изменении переменного тока на постоянный.Он действует как реверсивный переключатель, и его роль в генераторе обсуждается ниже.

ЭДС, наводимая в катушке якоря генератора, является переменной. Таким образом, ток в катушке якоря также может быть переменным. Этот ток можно реверсировать через коммутатор в точный момент, когда катушка якоря пересекает магнитную несмещенную ось. Таким образом, нагрузка достигает постоянного или однонаправленного тока.

Коммутатор гарантирует, что ток от генератора всегда будет течь в одном направлении.Щетки будут обеспечивать качественные электрические соединения между генератором и нагрузкой, перемещаясь по коммутатору.

Щетки

С помощью щеток можно обеспечить электрические соединения между коммутатором , а также с внешней цепью нагрузки.

Принцип работы

Принцип работы генератора постоянного тока основан на законах Фарадея электромагнитной индукции . Когда проводник находится в нестабильном магнитном поле, внутри проводника индуцируется электродвижущая сила.Величина наведенной ЭДС может быть измерена с помощью уравнения электродвижущей силы генератора .

Если проводник находится на замкнутой полосе, индуцируемый ток будет течь по ней. В этом генераторе катушки возбуждения создают электромагнитное поле, а проводники якоря превращаются в поле. Следовательно, в проводниках якоря будет возникать электромагнитно индуцированная электродвижущая сила (ЭДС). Путь наведенного тока будет определяться правилом правой руки Флеминга.

Уравнение ЭДС генератора постоянного тока

Уравнение ЭДС генератора постоянного тока согласно законам электромагнитной индукции Фарадея равно Eg = PØZN / 60 A

Где Φ - это

поток или полюс в пределах Webber

'Z '- общее количество проводов якоря

' P '- количество полюсов в генераторе

' A '- количество параллельных дорожек внутри якоря

' N '- вращение якоря в об / мин (обороты в минуту)

'E' - индуцированное e.mf в любой параллельной полосе внутри якоря

'Eg' - генерируемая ЭДС в любой из параллельных полос

'N ​​/ 60' - количество оборотов в секунду

Время одного поворота будет dt = 60 / N sec

Типы генераторов постоянного тока

Классификация генераторов постоянного тока может быть сделана по двум наиболее важным категориям, а именно: отдельно возбужденные, а также самовозбуждающиеся.

Типы генераторов постоянного тока
С раздельным возбуждением

В типах с раздельным возбуждением катушки возбуждения усиливаются от автономного внешнего источника постоянного тока.

Самовозбуждение

В самовозбуждающемся типе катушки возбуждения усиливаются за счет генерируемого тока генератором. Генерация первой электродвижущей силы будет происходить из-за ее выдающегося магнетизма внутри полюсов поля.

Произведенная электродвижущая сила вызовет подачу части тока в катушки возбуждения, что, таким образом, увеличит поток поля, а также генерацию электродвижущей силы. Кроме того, эти типы генераторов постоянного тока можно разделить на три типа, а именно: с последовательной обмоткой, шунтирующей обмоткой и составной обмоткой.

  • При последовательной намотке обмотка возбуждения и обмотка якоря соединены последовательно друг с другом.
  • При шунтовой обмотке обмотка возбуждения и обмотка якоря подключены параллельно друг другу.
  • Составная обмотка представляет собой смесь последовательной и параллельной обмоток.
КПД генератора постоянного тока

Генераторы постоянного тока очень надежны и имеют КПД 85-95%

Считайте, что выходной сигнал генератора равен VI

Входной сигнал генератора равен VI + Потери

Вход = VI + I2aRa + Wc

Если ток возбуждения шунта незначителен, то Ia = I (примерно)

После этого n = VI / (VI + Ia2Ra + wc) = 1 / (1 + Ira / V + wc / VI)

Для наивысшего КПД d / dt (Ira / V + wc / VI) = 0 в противном случае I2ra = wc

Следовательно, КПД будет максимальным, когда переменные потери эквивалентны постоянным потерям

Ток нагрузки, эквивалентный наивысшему КПД, равен I2ra = wc в противном случае I = √wc / ra

Потери в генераторе постоянного тока

На рынке доступны различные типы машин, в которых общая входная энергия не может быть преобразована в выходную из-за потерь входной энергии.В генераторах этого типа могут возникать разные потери.

Потери в меди

Потери в меди в якоре (Ia2Ra), где ток якоря равен «Ia», а сопротивление якоря - «Ra». Для генераторов, таких как шунтирующие, потери в меди эквивалентны Ish3Rsh, что почти стабильно. Для генераторов с последовательной обмоткой потери в меди в поле эквивалентны Ise2 Rse, что также почти стабильно. Для генераторов, таких как составная обмотка, потери в меди в поле аналогичны Icomp2 Rcomp, которые также почти стабильны.При полной нагрузке потери в меди происходят на 20-30% из-за контакта щеток.

Сердечник или железо, или магнитные потери

Классификация потерь в сердечнике может быть сделана на два типа, например, гистерезис и вихревой ток

Гистерезисные потери

Эти потери в основном возникают из-за реверсирования сердечника якоря. Каждая часть сердечника ротора проходит под двумя полюсами, такими как север и юг поочередно, и соответственно достигает полярности S и N. Когда ядро ​​подает напряжение ниже одного набора полюсов, ядро ​​завершает одну серию смены частоты.Пожалуйста, обратитесь к этой ссылке, чтобы узнать больше о том, что такое потери на гистерезис: факторы и их применение

Потери на вихревые токи

Сердечник якоря сокращает магнитный поток на протяжении всего своего вращения, и ЭДС может быть индуцирована внутри сердечника за пределами сердечника в зависимости от Согласно законам электромагнитной индукции, эта ЭДС чрезвычайно мала, однако она создает большой ток на поверхности сердечника. Этот огромный ток известен как вихревой ток, тогда как потери называются потерями на вихревые токи.

Потери в сердечнике стабильны для составных и шунтирующих генераторов, поскольку их токи возбуждения почти стабильны. Эти потери в основном происходят от 20% до 30% при полной нагрузке.

Механические потери

Механические потери могут быть определены как потери на трение вращающегося якоря в воздухе или потери от ветра. Потери на трение в основном возникают от 10% до 20% потерь полной нагрузки на подшипниках и коммутаторе.

Паразитные потери

Паразитные потери в основном возникают из-за сочетания потерь в сердечнике и механических потерь.Эти потери также называются вращательными потерями.

Разница между генераторами переменного и постоянного тока

Прежде чем мы сможем обсудить разницу между генераторами переменного и постоянного тока, мы должны знать концепцию генераторов. Как правило, генераторы делятся на два типа, например, переменного и постоянного тока. Основная функция этих генераторов - изменение мощности с механической на электрическую. Генератор переменного тока генерирует переменный ток, тогда как генератор постоянного тока генерирует постоянную энергию.

Оба генератора используют закон Фарадея для выработки электроэнергии.Этот закон гласит, что когда проводник перемещается в магнитном поле, он разрезает магнитные силовые линии, чтобы стимулировать ЭДС или электромагнитную силу внутри проводника. Величина этой наведенной ЭДС в основном зависит от силовой связи магнитной линии через проводник. Как только цепь проводника замкнута, ЭДС может вызвать протекание тока. Основными частями генератора постоянного тока являются магнитное поле и проводники, которые движутся в магнитном поле.

Основные различия между генераторами переменного и постоянного тока - одна из самых важных электрических тем.Эти различия могут помочь студентам изучить эту тему, но перед этим следует знать о генераторах переменного тока, а также генераторах постоянного тока во всех деталях, чтобы различия были очень просты для понимания. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о разнице между генератором переменного и постоянного тока.

Характеристики

Характеристику генератора постоянного тока можно определить как графическое представление между двумя отдельными величинами. Этот график покажет установившиеся характеристики, которые объясняют основную взаимосвязь между напряжением на клеммах, нагрузкой и возбуждением через этот график.Ниже рассмотрены наиболее важные характеристики этого генератора.

Характеристики намагничивания

Характеристики намагничивания обеспечивают разность производимого напряжения в противном случае напряжение холостого хода через ток возбуждения при стабильной скорости. Этот вид характеристики также известен как характеристика холостого хода разомкнутой цепи.

Внутренние характеристики

Внутренние характеристики генератора постоянного тока могут быть нанесены на график между током нагрузки и генерируемым напряжением.

Внешние характеристики или характеристики нагрузки

Характеристики нагрузки или внешнего типа обеспечивают основные соотношения между током нагрузки, а также напряжением на клеммах при стабильной скорости.

Преимущества

Преимущества генератора постоянного тока a включают следующее.

  • Генераторы постоянного тока генерируют большую мощность.
  • Терминальная нагрузка этих генераторов высока.
  • Генераторы постоянного тока проектируются очень просто.
  • Они используются для генерации неравномерной выходной мощности.
  • Они полностью соответствуют 85-95% рейтингу эффективности.
  • Они дают надежный результат.
  • Они легкие и компактные.

Недостатки

К недостаткам генератора постоянного тока можно отнести следующее.

  • Генератор постоянного тока не может использоваться с трансформатором
  • Эффективность этого генератора низкая из-за множества потерь, таких как медные, механические, вихревые и т. Д.
  • Падение напряжения может происходить на больших расстояниях
  • Он использует разъемное кольцо коммутатор, поэтому он усложнит конструкцию машины
  • Дорогой
  • Высокие затраты на обслуживание
  • Искры будут генерироваться при выработке энергии
  • Больше энергии будет потеряно при передаче

Применения генераторов постоянного тока

Применение различных типов постоянного тока генераторы включают следующее.

  • Генератор постоянного тока с раздельным возбуждением используется для повышения напряжения, а также для гальваники . Он используется для питания и освещения с помощью регулятора поля
  • Генератор постоянного тока с самовозбуждением или шунтирующий генератор постоянного тока используется для питания, а также для обычного освещения с использованием регулятора. Может использоваться для аккумуляторного освещения.
  • Генератор постоянного тока серии используется в дуговых лампах для освещения, генератора стабильного тока и бустера.
  • Составной генератор постоянного тока используется для обеспечения источника питания для сварочных аппаратов постоянного тока.
  • Составной генератор постоянного тока уровня используется для электроснабжения общежитий, домиков, офисов и т. Д.
  • Генератор постоянного тока над составной частью используется для компенсации падения напряжения в фидерах.

Таким образом, это все про генератор постоянного тока . Наконец, исходя из приведенной выше информации, мы можем сделать вывод, что основные преимущества генераторов постоянного тока включают простую конструкцию и дизайн, легкость параллельной работы и проблемы стабильности системы в меньшей степени, чем генераторы переменного тока.Вот вам вопрос, каковы недостатки генераторов постоянного тока?

.

Что это и как работает

Крупные отключения электроэнергии в последние годы стали тревожным сигналом для всех. Прерывание питания - это больше, чем испорченная еда, потеря света или просто раздражение. Это потенциально опасная для жизни ситуация, например, отключение кондиционирования воздуха летом или жара зимой, не говоря уже о потере мощности для электрического медицинского оборудования.
Частный резервный источник питания позволяет вам продолжать использовать отдельные приборы и освещение во время отключения электроэнергии или подавать электричество во весь дом.Электрогенератор с приводом от двигателя (или генераторная установка) является наиболее распространенным и, как правило, наименее дорогим типом резервного источника электроэнергии. Однако среди потребителей существует значительный недостаток знаний о доступных типах, технических деталях, требованиях к размерам и безопасности таких устройств.

Этот сайт посвящен практической информации о различных типах генераторов для домашнего и коммерческого применения. Прежде чем обсуждать их выбор, давайте быстро рассмотрим некоторые основы. Генератор - это латинское слово, означающее создатель или создатель.В целом этот термин имеет разные значения. В электроэнергетике это устройство, производящее электричество, которым является электрогенератор.

ЧТО ТАКОЕ ЭЛЕКТРОГЕНЕРАТОР?

Электрогенератор - это электромеханическое устройство, вырабатывающее электричество из механической энергии. Его работа основана на процессе, называемом электромагнитная индукция : всякий раз, когда проводник движется относительно магнитного поля, в этом проводнике индуцируется электродвижущая сила (ЭДС).В частности, если внутри катушки вращается магнит, между его выводами индуцируется периодическое переменное напряжение.

КАК ЭТО РАБОТАЕТ.

Мы знаем, что, хотя электричество действительно возникает естественным образом, оно не существует в формах, которые можно было бы практически сохранить и использовать. Следовательно, для практического использования электрическая энергия производится из других форм энергии, таких как химическая, ядерная или тепловая энергия, содержащаяся в различных видах топлива. Его также можно получить из возобновляемых источников. Производство электроэнергии - это многоэтапный процесс.Например, в генераторах химическая энергия, запасенная в топливе, преобразуется в механическую энергию вращающегося вала. Машина, которая это делает, называется первичным двигателем . Наиболее распространенными типами первичных двигателей являются паровые турбины, двигатели внутреннего сгорания и газовые турбины. Электричество затем вырабатывается из энергии вращения вращающегося вала.

На практике магнитное поле чаще всего создается электромагнитом, а не постоянным магнитом. Он состоит из так называемых полевых катушек, установленных на железном сердечнике.Прохождение тока в катушках возбуждения создает магнитное поле. Этот ток может быть получен либо от внешнего источника, либо от собственной якоря системы. Если оно получено от якоря, начальное поле создается остаточным магнетизмом в сердечниках электромагнита. Когда первичный двигатель начинает вращаться, якорь сначала работает в очень слабом магнитном поле и поэтому производит небольшую ЭДС. Эта ЭДС создает ток в катушках возбуждения, который увеличивает магнитный поток, что, в свою очередь, увеличивает ЭДС.Этот процесс продолжается до достижения номинального выходного напряжения.

Когда внешняя цепь подключена к клеммам катушки, генерируемое напряжение создает электрический ток, в результате чего энергия передается на нагрузку. Таким образом, кинетическая энергия, вращающая источник магнитного поля, преобразуется в электричество. Обратите внимание, что ток, протекающий через внешнюю нагрузку, в свою очередь, создает магнитное поле, которое противодействует изменению потока катушки, поэтому катушка противодействует движению.Чем выше ток нагрузки, тем большую силу необходимо приложить, чтобы ротор не замедлился.

Для получения дополнительной информации см. Наше руководство о том, как генераторы работают с анимацией, которая иллюстрирует их основные операции.

УСТРОЙСТВА АВАРИЙНОГО РЕЗЕРВНОГО КОПИРОВАНИЯ ДЛЯ ДОМАШНЕГО ИСПОЛЬЗОВАНИЯ.

На электростанциях электрогенерирующие устройства чаще всего приводятся в действие паровыми или гидравлическими турбинами или дизельными двигателями. Та же концепция производства электроэнергии широко используется в небольших потребительских установках.В имеющихся в продаже домашних генераторах генератор переменного тока объединен с двигателем внутреннего сгорания в единый узел. Такая сборка под названием генераторная установка является наиболее распространенным типом бытовых аварийных резервных источников питания. Генератор часто называют просто генератором, хотя он также включает в себя двигатель. Существует два основных типа таких устройств, различающихся способами подключения и активации: фиксированные (резервные) и переносные. Стационарные генераторы постоянно подключены как к системе электропроводки здания, так и к топливной магистрали.Поэтому они требуют профессиональной установки топливопровода и специальной системы резервирования. Последний изолирует энергосистему от вашей генераторной установки. Неудивительно, что постоянные устройства стоят дороже портативных. Однако у них есть большое преимущество - они могут обеспечивать практически непрерывную мощность до тех пор, пока подается топливо. Портативные модели предназначены в первую очередь для временного подключения к нескольким приборам через удлинители, а не ко всему дому. Обычно они питаются от бортового бака и поэтому нуждаются в частой дозаправке, хотя некоторые более дорогие модели также могут быть подключены к внешнему источнику для более длительной работы.Переносное устройство обычно дешевле резервного и может использоваться без какой-либо профессиональной установки. Однако, если вы хотите подключить его к домашней проводке, вам все равно необходимо установить безобрывный переключатель. Выбор лучшего устройства для вашего приложения включает в себя выбор правильного типа, выбор топлива и правильный размер в зависимости от количества энергии, которое может вам понадобиться во время чрезвычайной ситуации.

.

Типы и технологии »Электроника

Многие типы генераторов сигналов используются во многих тестовых системах, подающих стимул для тестируемого устройства.


Генераторы сигналов включает:
Основы генератора сигналов

Типы генераторов сигналов: Основы генератора радиочастотных сигналов Генератор сигналов произвольной формы Генератор функций Генератор импульсов


Генератор сигналов - это тестовое оборудование, которое выдает электрический сигнал в форме волны.Это используется как стимул для тестируемого предмета.

Генераторы сигналов во всех их формах широко используются в системах тестирования и разработки, а также с другими инструментами тестирования.

При рассмотрении того, что такое генератор сигналов, можно увидеть, что они бывают разных форм - существует много типов генераторов сигналов, каждый из которых используется для обеспечения различной формы сигнала. Некоторые из них выдают радиочастотные сигналы, другие - аудиосигналы, некоторые могут передавать сигналы различной формы, а другие - только импульсы.

Генераторы сигналов используются уже много лет. Ранние типы были очень простыми по стандартам сегодняшних различных типов генераторов сигналов. Уровни производительности, а также разнообразие доступных средств обслуживания увеличились и улучшились.

Что такое генератор сигналов

Генераторы сигналов

бывают разных форм, способных генерировать различные формы сигналов для различных тестовых приложений. Некоторые из этих измерительных приборов предназначены для тестирования радиочастот, в то время как другие используются для тестирования звука, возможно, в качестве генератора синусоидальных волн и т. Д., А другие для подачи импульсов, возможно, для возбуждения цифровых схем.Есть тысячи различных приложений для генераторов сигналов.

Однако они отличаются от измерительных тестовых приборов, таких как осциллограф, цифровые мультиметры, анализаторы спектра и т. Д., В том, что вместо измерения сигнала они генерируют сигнал, который подается на тестируемое устройство.

Соответственно стоит определить генератор сигналов:

Определение генератора сигналов:

Генератор сигналов - это электронный испытательный прибор, который создает или генерирует повторяющиеся или неповторяющиеся сигналы.Форма волны может быть разной формы и амплитуды. Генераторы сигналов всех типов чаще всего используются при проектировании, производстве, обслуживании и ремонте электронных устройств.

Обзор типов генераторов сигналов

Глядя на генератор сигналов, можно увидеть, что существует множество различных типов генераторов сигналов:

  • Генератор сигналов произвольной формы: Генератор сигналов произвольной формы - это тип генератора сигналов, который создает очень сложные формы сигналов, которые могут быть указаны пользователем.Эти сигналы могут иметь практически любую форму и могут быть введены различными способами, вплоть до указания точек на форме сигнала.

    По сути, генератор сигналов произвольной формы можно рассматривать как очень сложный генератор функций.

    Будучи значительно более сложными, генераторы сигналов произвольной формы более дороги, чем функциональные генераторы, и часто их полоса пропускания более ограничена из-за технологий, необходимых для генерации сигналов.


  • Генератор аудиосигналов: Как следует из названия, этот тип генератора сигналов используется для аудио приложений.Такие генераторы сигналов работают в звуковом диапазоне, обычно от 20 Гц до 20 кГц и более, и часто используются в качестве генераторов синусоидальных волн. Они часто используются при звуковых измерениях частотной характеристики и для измерения искажений. В результате они должны иметь очень ровный отклик и очень низкие уровни гармонических искажений.
  • Генератор функций: Генератор функций - это тип генератора сигналов, который используется для генерации простых повторяющихся сигналов.Обычно этот тип генератора сигналов создает сигналы или функции, такие как синусоидальные, пилообразные, квадратные и треугольные формы сигналов.

    Ранние функциональные генераторы, как правило, полагались на схемы аналоговых генераторов, которые напрямую генерировали сигналы. Современные функциональные генераторы могут использовать методы цифровой обработки сигналов для генерации сигналов в цифровом виде и последующего преобразования их из цифрового в аналоговый формат.

    Многие функциональные генераторы, как правило, ограничиваются более низкими частотами, поскольку именно здесь часто требуются формы сигналов, создаваемые этим типом генератора сигналов.Однако возможно получение версий с более высокой частотой.


  • Генератор импульсов: Как следует из названия, генератор импульсов представляет собой форму генератора сигналов, которая создает импульсы. Эти генераторы сигналов часто представляют собой генераторы логических импульсов, которые могут генерировать импульсы с переменной задержкой, а некоторые даже предлагают переменное время нарастания и спада.

    Импульсы часто необходимы при тестировании различных цифровых, а иногда и аналоговых схем.Способность генерировать импульсы позволяет запускать схемы или отправлять последовательности импульсов на устройство для обеспечения требуемого стимула.


  • Генератор радиочастотных сигналов: Как видно из названия, этот тип генератора сигналов используется для генерации радиочастотных или радиочастотных сигналов.

    Типичный генератор ВЧ сигналов Генератор радиочастотного сигнала может использовать множество методов для генерации сигнала. Типы аналоговых генераторов сигналов использовали автономные генераторы, хотя некоторые использовали методы частотной автоподстройки частоты для повышения стабильности.Однако в большинстве генераторов радиочастотных сигналов используются синтезаторы частоты для обеспечения необходимой стабильности и точности. Могут использоваться как методы фазовой автоподстройки частоты, так и методы прямого цифрового синтеза. Генераторы радиочастотных сигналов часто имеют возможность добавлять модуляцию к форме волны. Нижние конечные могут иметь возможность добавлять AM или FM, но высокопроизводительные генераторы RF-сигналов могут иметь возможность добавлять форматы модуляции OFDM, CDMA и т. Д. . поэтому их можно использовать для тестирования сотовых и беспроводных систем.


  • Векторный генератор сигналов: Векторный генератор сигналов - это тип генератора радиочастотных сигналов, который генерирует радиочастотные сигналы со сложными форматами модуляции, такими как QPSK, QAM и т. Д.

    Векторные генераторы сигналов обычно используются для тестирования современных систем передачи данных, от Wi-Fi до 4G, систем мобильной связи 5G и многих других решений для связи, в которых используются передовые формы сигналов. Поскольку эти формы сигналов используют схемы модуляции и формы сигналов, которые используют информацию о фазе, часто требуется векторный генератор сигналов.

Форматы генератора сигналов

Как и другие виды испытательного оборудования электроники, генераторы сигналов доступны во множестве различных форматов.Доступные типы форматов в определенной степени зависят от конкретного типа генератора сигналов, но есть несколько вариантов, которые могут быть доступны.

  • Традиционное стендовое испытательное оборудование: Традиционное стендовое испытательное оборудование - это видение того, что приходит на ум при разговоре об испытательных инструментах. Автономный блок, который включает в себя сам генератор, а также источник питания, функции управления, дисплей и внешние элементы управления, обычно считается испытательным оборудованием.Эти тестовые инструменты охватывают наибольший объем, но не всегда являются наиболее подходящими, поскольку другие варианты также могут иметь свои преимущества.
  • Стойка для тестового прибора: Существуют тестовые модули, которые можно вставить в испытательную стойку. Ранние стоечные системы включали VXI, но сегодня PXI является наиболее широко используемым. Основанный на популярном стандарте ПК, известном как PCI, PXI - это открытый стандарт, управляемый PXI Systems Alliance, PXISA, который взял стандарт PCI и обновил его для приложений контрольно-измерительного оборудования.Стойка состоит из базовой 19-дюймовой стоечной системы, которая включает в себя источник питания, а первый слот зарезервирован для контроллера или подключения к внешнему ПК. Остальные слоты для карт можно использовать для тестовых приборов. Доступен широкий выбор генераторов сигналов, генераторов функций, генераторов сигналов произвольной формы и т. Д. Такой подход идеально подходит для построения автоматизированной системы с несколькими блоками. Несмотря на то, что может показаться на первый взгляд, можно получить инструменты для тестирования PXI с очень высокими характеристиками, многие из которых сопоставимы по характеристикам с оборудованием для стендовых испытаний.
  • Генератор сигналов USB: Еще один вариант для многих измерительных приборов в наши дни - использовать мощность ПК для выполнения некоторых функций измерительного прибора. Тестовый модуль обеспечивает функциональность тестового оборудования, в данном случае генерируя сигнал, но питание, элементы управления и дисплей обеспечивает ПК. Это позволяет покупать гораздо более дешевые инструменты, сохраняя при этом возможности и производительность.
  • Использовать сигнал, сгенерированный компьютером: В некоторых случаях можно сгенерировать сигнал в цифровом виде на компьютере с помощью приложения или программы генератора сигналов.Результирующий сигнал можно отправить через аудиоразъем звуковой карты. Этот путь предлагает очень дешевый способ создания сигнала, но он ограничен выходом аудио или звуковой карты ПК. Он может быть идеальным для некоторых приложений, но конечный результат очень зависит от звука или вывода с ПК, и этот маршрут, возможно, не лучший вариант, если требуется вывод с гарантированной производительностью.

Существует много различных форматов для генераторов сигналов с точки зрения физического формата тестового прибора.Если требуется автономное оборудование, часто оборудование для стендовых испытаний является идеальным вариантом, но для систем и областей, где доступны ПК, другие варианты могут подойти лучше.

Различные типы генераторов сигналов могут генерировать сигналы разных типов. Они могут использоваться в различных приложениях: одни для тестирования РЧ-оборудования, другие для обеспечения стимулов для логических плат, а другие используются во множестве различных областей для обеспечения различных необходимых стимулов. При рассмотрении того, что такое генератор сигналов, необходимо определить тип генератора, необходимый для данной работы.

Другие темы тестирования:
Анализатор сети передачи данных Цифровой мультиметр Частотомер Осциллограф Генераторы сигналов Анализатор спектра Измеритель LCR Дип-метр, ГДО Логический анализатор Измеритель мощности RF Генератор радиочастотных сигналов Логический зонд Тестирование и тестеры PAT Рефлектометр во временной области Векторный анализатор цепей PXI GPIB Граничное сканирование / JTAG
Вернуться в меню тестирования.. .

.

Что такое генераторная установка? (с иллюстрациями)

Генераторная установка обычно состоит из двигателя и генератора, которые смонтированы вместе как единое целое. В некоторых приложениях генераторная установка может включать в себя другие компоненты, такие как топливный контейнер, регулятор напряжения или инвертор. Основная функция установки заключается в том, что электрический генератор преобразует механическую энергию двигателя в электрическую. Генераторные установки могут работать на различных источниках топлива и часто используются в местах, где электроэнергия недоступна или была отключена.Они могут варьироваться по размеру от небольших устройств с ручным управлением до более крупных комплектов, которые устанавливаются в транспортных средствах, на прицепах или даже в зданиях.

Пропан можно использовать для питания генератора.

Многие генераторные установки включают в себя компоненты, кроме необходимого двигателя и электрического генератора.Переносные генераторные установки обычно включают топливный бак. Это позволяет перемещать эти компактные устройства с ручным управлением по мере необходимости, не беспокоясь о дополнительном источнике топлива. Многие другие генераторные установки включают в себя такие вещи, как регуляторы скорости для управления скоростью вращения двигателя; регуляторы напряжения для жесткого контроля выходного напряжения; и инверторы, чтобы помочь сделать электрическую мощность более подходящей для работы чувствительной электроники.

Генератор.

Генераторная установка технически может работать на любом источнике топлива, который может приводить в действие компонент двигателя. Некоторые из наиболее распространенных источников топлива - это бензин, дизельное топливо, пропан и природный газ. Меньшие агрегаты с ручным приводом чаще всего работают на газе, тогда как более крупные агрегаты, устанавливаемые в зданиях, обычно подключаются к природному газу, если он имеется, или работают на цистернах с дизельным топливом в других приложениях.Установленные на транспортных средствах генераторные установки, например, те, что используются в транспортных средствах для отдыха, часто используют тот же источник топлива, что и основной двигатель самого транспортного средства. Такие агрегаты также могут иметь свои собственные топливные баки, если двигатель генератора и двигатель транспортного средства работают на разных видах топлива. Если установка работает на сжиженном нефтяном газе (LPG), ее можно просто подключить к баллону с пропаном.

Многие генераторы работают на дизельном топливе или бензине.

Одно из потенциально полезных применений генераторной установки - это резервный источник питания в критических установках. В таких зданиях, как больницы, где перебои в подаче электроэнергии могут привести к гибели людей или другим нежелательным дорогостоящим повреждениям, часто используются встроенные генераторные установки. В этих случаях большая генераторная установка часто устанавливается на месте и подключается к зданию через монтажную панель.Специфика установки будет отличаться, хотя существуют системы, которые автоматически запускают генераторную установку после сбоя питания, переключают здание с отключенного сетевого питания на генератор, а затем снова отключают генератор после восстановления подачи электроэнергии.

Газовый двигатель часто используется для включения генераторов, вырабатывая электричество для использования на открытом воздухе, в домах или на предприятиях..

Смотрите также