RU (495) 989 48 46
Пленка на бампер

АНТИГРАВИЙНАЯ ЗАЩИТА БАМПЕРА

 

Блок электронного зажигания


Блок электронного зажигания

В. Беспалов, "Радио", №1, 1987
Модификация: Алексей Кузнецов
E-mail: RA3TSL (at) mail.ru
(замените (at) на @)

Для экономии бензина и уменьшения вредных продуктов сгорания в последнее время наметилась тенденция обеднять горючую смесь в двигателях автомобилей. Для надежного воспламенения обедненной смеси требуется мощный и длительный искровой разряд. Установлено, что такой разряд, кроме этого, допускает больший разброс угла опережения зажигания, уменьшает детонацию, улучшает пуск и повышает устойчивость работы двигателя на любых режимах. Формирование запальных искровых разрядов в последние годы все чаще доверяют электронным системам зажигания, преимущества которых широко известны.

Описываемый ниже блок объединяет в себе свойства транзисторной и тринисторной систем зажигания. От первой он отличается тем, что в нем использован закрытый (при замкнутых контактах прерывателя) транзисторный ключ, коммутирующий цепь первичной обмотки катушки зажигания, а от второй - тем, что накопительный конденсатор заряжается от ЭДС самоиндукции этой же обмотки, когда транзисторный ключ прерывает ток через нее [1].

От известных систем зажигания с импульсным накоплением энергии на конденсаторе [2] и от комбинированных систем [3, 4] она отличается отсутствием специального многообмоточного накопительного трансформатора. Система обеспечивает искровой разряд более высокой длительности и энергии. По этим параметрам она превосходит известные системы зажигания. Так, по длительности разряда устройство в 8... 10 раз превосходит тринисторно-конденсаторные системы с непрерывным и импульсным накоплением энергии. При неработающем двигателе она потребляет незначительный ток, имеет высоную скорость нарастания высоковольтного импульса и при всех значениях частоты вращения коленчатого вала двигателя формирует на один запускающий импульс мощный двойной искровой разряд. Система защищена от дребезга контактов прерывателя и от помех бортовой сети автомобиля.

Недостатком системы зажигания является обязательность использования в ней катушки зажигания с малой индуктивностью первичной обмотки и высоким коэффициентом трансформации (около 300). Удовлетворительно работает система с катушкой Б114 (коэффициент трансформации 227). Но для полной реализации возможностей системы катушку надо несколько переделать, чтобы довести коэффициент трансформации до 280. После переделки можно использовать и широко распространенные катушки Б115, Б117 О самой переделке рассказано в конце статьи.

Основные технические характеристики

Напряжение питания. В 6...17
Потребляемый ток, А. при неработающем двигателе и замкнутых контактах прерывателя 0,15
разомкнутых контактах прерывателя 0.015
частоте искрообразования 100 Гц 3.3
максимальной частоте искр образования (200 Гц) 4.5
Энергия искры, мДж, при напряжении питания 14 В, частоте искрообразования 100 Гц и длине искрового промежутка 7 мм 170
Длительность искрового разряда при тех же. условиях, мс 4.8
Скорость нарастания высоковольтного импульса, В/мкс, при длине искрового промежутка 7 мм 350
15 мм 500

Принципиальная схема блока зажигания показана выше. Устройство состоит нз узла запуска, собранного на транзисторе VТ1, формирователя запускающих импульсов на транзисторах VT2 и VТЗ, транзисторного ключа VТ4, тринисторного ключа VS1 и накопительного конденсатора С5.

Временные диаграммы (мгновенное значение) поясняют работу системы зажигания при частоте искрообразования 50 Гц, угле замкнутого состояния контактов прерывателя 55°, напряжении питания 14 В и длине искрового промежутка 7 мм. Диаграммы А, Б, В, Е, И сняты относительно общего провода, Г (показана в увеличенном масштабе времени) и Ж — относительно катода тринистора VS1; Д снята в разрыве цепи коллектора транзистора VT4; И — диаграмма напряжения на вторичной обмотке, снята с делителя напряжения, составленного из резисторов 10 МОм и 1кОм; для снятия диаграммы К — тока вторичной обмотки катушки зажигания — последовательно с искровым промежутком, со стороны общего провода, включали резистор сопротивлением 10 Ом, с которого сигнал подавали на осциллограф.

Предположим, что в исходном состоянии контакты прерывателя замкнуты, тогда конденсатор С1 узла запуска разряжен и транзистор VT1 закрыт. Транзистор VT2 открывается током, протекающим через резисторы R5—R7, a VT3 будет закрыт, так как напряжение на его базе будет близко к нулю. Формирующий конденсатор С2 через резисторы R10, R9, R7 и эмиттерный переход транзистора VT2 заряжен до напряжения около 5,3 В. Так как транзистор VT3 закрыт, то транзистор VT4 будет также закрыт. Ток через первичную обмотку катушки зажигания Т2 от бортовой сети автомобиля не протекает и накопительный конденсатор С5 разряжен.

При первом размыкании контактов прерывателя через цепь R1VD1 заряжается конденсатор С1 и открывается транзистор VT1. Напряжение конденсатора С2 оказывается приложенным через открытый транзистор VT1 с закрывающей полярности к эмиттерному переходу транзистора VT2 и поэтому он закрывается, а сам конденсатор начинает перезаряжаться от источника питания через резисторы R5 и R6. Пока разряжается конденсатор С2, транзисторы VT3— VT4 открыты. Время разрядки конденсатора С2 можно регулировать резистором R5. Через первичную обмотку катушки зажигания начинает протекать ток, и в ней накапливается электромагнитная энергия. Параметры этой обмотки должны быть такими, чтобы процесс накопления энергии закончился через 2...2.5 мс. Примерно такое же время необходимо, чтобы напряжение на конденсаторе С2 успело уменьшиться до напряжения, при котором открывается транзистор VT2. Из-за большого статического коэффициента передачи тока транзисторов VT2—VT4 транзисторный ключ VT4 в момент открывания транзистора VT2 резко закрывается, что приводит к прерыванию тока в первичной обмотке катушки зажигания. Во вторичной обмотке катушки зажигания через 2...2,5 мс возникает высоковольтный импульс, вызывающий искру в запальной свече. После уменьшения его напряжения до 1,2 кВ искровой разряд поддерживается некоторое время, которое зависит от параметров катушки зажигания и искрового промежутка.

В момент закрывания ключа VT4 возникает большая ЭДС самоиндукции в первичной обмотке Импульсом этой ЭДС через диоды VD6 и VD4 накопительный конденсатор С5 заряжается до напряжения примерно 105 В даже при замкнутой вторичной обмотке катушки зажигания.

После замыкания контактов прерывателя из-за разрядки конденсатора С1 через базовую цепь транзистора VT1 обеспечивается временная задержка (около 0.5 мс) закрывания этого транзистора, что защищает систему от дребезга контактов п р рывателя. Как только транзистор VT1 закроется, вновь заряжается формирующий конденсатор С2.

При втором и последующих размыканиях контактов прерывателя снова открываются транзисторы VT1, VT3 — VT4. Перепад напряжения, который формируют транзисторы VT2, VT3. открывает транзистор VT4. Во вторичной обмотке трансформатора T1 возникает импульс, который открывает тринистор VS1. Ранее заряженный накопительный конденсатор С5 разряжается через транзистор VT4, источник питания, первичную обмотку катушки зажигания и тринистор VS1. Во время разрядки накопительного конденсатора диод VD6 закрывается. Пропускание разрядного тока конденсатора по первичной обмотке катушки зажигания вызывает пробой искрового промежутка в свече зажигания, но теперь уже в момент размыкания контактов прерывателя.

После того, как разрядный ток накопительного конденсатора значительно уменьшится, триннстор VS1 закроется, через первичную обмотку катушки зажигания, открывшийся диод VD6, транзистор VT4 от бортовой сети потечет тек. Этот ток некоторое время поддерживает возникший искровой разряд. Одновременно с ним происходит накопление энергии в первичной обмотке катушки зажигания.

Когда через 2...2,5 мс будет прерван ток в первичной обмотке катушки зажигания, накопленная в ней энергия преобразуется в положительный импульс для повторного пробоя искрового промежутка и разряд поддерживается еще некоторое время. Одновременно после закрывания транзисторного ключа вновь заряжается накопительный конденсатор. Таким образом, длительность всего искрового разряда достигает 4,8 мс.

С повышением частоты искрообразования из-за уменьшения времени, отводимого на зарядку формирующего конденсатора С2, время, в течение которого открыт транзисторный ключ УТ5, уменьшается (при частоте более 120 Гц — до 1,7.-2 мс), что приводит к уменьшению длительности и энергии искрового разряда.

Защиту блока зажигания от помех со стороны бортовой сети автомобиля обеспечивают цепи VD7C6, СЗС4 и резистор R7. Кроме этого, во время формирования запускающих импульсов цепь обратной связи через резистор R4 удерживает транзистор VT1 открытым, что увеличивает помехозащищенность и четкость работы системы в момент размыкания контактов прерывателя.

Чертеж печатной платы, которая изготовлена из фольгированного стеклотекстолита толщиной 2 мм, показан на рисунке. Диод VD6 для улучшения его охлаждения установлен на дюралюминиевом уголке и изолирован слюдяной прокладкой. Соединительные проводники между коллектором транзистора VT4, диодом VD6 и зажимом 2 блока должны иметь минимальную длику и сечение не менее 0,75 мм2.

Разделительный трансформатор Т1 наматывают на кольцевом магнито проводе типоразмера К12Х6Х4 из феррита с магнитной проницаемостью 1000—2000. Можно применить магнитопровод другого типоразмера, например, K12X5X5,5 или из двух колец K10Х Х6Х4.5. Обмотки содержат по 70 витков провода ПЭЛШО 0,15. Наматывают их одновременно двумя проводами.

Конденсаторы С1, СЗ, С4 — К10-7В или КЛС; С2 — К73П-3; С5 — МБГО; Сб — К50-3, его можно заменить малогабаритным К52-2 емкостью 15 мкФ на номинальное напряжение 70 В. Диод КД202Р можно заменить на КД202М, КД202К, Д245А - на Д231А, Д232, Д246А; тринистор КУ202Н — на КУ202Л, КУ202И; стабилитрон КС168А — на КС168В, КС162А, КС156А; КС630А — на 2С930А. Транзисторы КТ315И можно заменить на КТ315В. КТ315Г, КТ503 с любым буквенным индексом; КТ608Б — на КТ608А, КТ815Б — КТ815Г; КТ805АМ — на КТ805БМ; 1Т813В — на 1Т813Б, 1Т806В, ГТ806В.

Общий вид блока (со снятой крышкой) и размещение деталей в нем показаны на рисунке.

Переделка катушки зажигания

Для переделки катушки зажигания Б114 ее разбирают. Перед разборкой, чтобы было легче развальцевать металлический стакан, снимают напильником фаску по его краю. После этого, осторожно, чтобы не повредить пластмассовую крышку, развальцовывают край металлического стакана, вынимают катушку и резиновое уплотнительное кольцо. С первичной обмотки, расположенной поверх вторичной, сматывают верхний слой (35 витков). Оставшиеся витки необходимо надежно укрепить петлей из тесьмы. Поверх обмотки следует уложить 2—3 слоя бумаги и обмотать сверху нитками.

Для обеспечения оптимальной индуктивности рассеяния сечение стержневого магнитопровода катушки зажигания надо уменьшить в 2,5 раза (оставить 10 пластин). Эти пластины обертывают несколькими слоями бумаги и плотно вставляют в катушку.
Затем катушку зажигания собирают, при необходимости в стакан добавляют трансформаторного масла и снова завальцовывают. Перед завальцовкой крышку катушки следует прижать, например, струбциной.

У катушек зажигания Б117, Б115 надо также оставить 10 пластин, а первичную обмотку следует удалить и намотать другую проводом ПЭВ-2 диаметром 1,2 мм. Число витков — 100; их укладывают в три слоя. Обмотку следует надежно закрепить; расстояние по поверхности изоляции между ее крайними витками и магнитопроводом не должно быть менее 15 мм.

Перед налаживанием блока особое внимание следует уделить проверке цепи управления тринистором и подключению источника питания. Полярность подключения первичной обмотки катушки зажигания Б114 особой роли не играет. Однако, если катушку зажимом «К» подключить к плюсовому выводу источника питания, то запас по пробивному напряжению будет выше на 10... 15 % и произойдет изменение полярности высоковольтных импульсов. У катушек Б117, Б115 общую точку соединения обмоток рекомендуется подключать к плюсовому проводу питания. С такими катушками общая длительность искрового разряда уменьшается до 3,4...3,7 мс, а скорость нарастания высоковольтного импульса увеличивается до 600 В/мкс.

Для налаживания блока зажигания требуется регулируемый источник питания с напряжением до 15 В на ток нагрузки не менее 2 А. Выходные зажимы источника питания следует зашунтировать батареей конденсаторов с общей емкостью не менее 15 000 мкФ. Налаживают устройство при напряжении питания 14 В. Испытательный искровой промежуток в цепи вторичной обмотки катушки зажигания должен быть равен 7...8 мм. Вместо прерывателя подключают микропереключатель. Параллельно накопительному конденсатору С5 включают вольтметр постоянного тока на напряжение не менее 120 В и с током полного отклонения стрелки не более 100 мкА.

После включения питания микропереключателем подают одиночные запускающие импульсы. В искровом промежутке должна проскакивать мощная искра. При этом напряжение на накопительном конденсаторе С5 должно быть в пределах 100...105 В, его устанавливают подстроенным резистором R5. Если напряжение превышает 110 В и его не удается уменьшить, то следует проверить подключение обмоток трансформатора Т1 По окончании налаживания печатную плату и внутреннюю поверхность корпуса блока рекомендуется покрыть лаком.

Блок зажигания устанавливают на автомобиле в двигательном отсеке. Конденсатор, установленный на корпусе прерывателя, следует отключить. Проводники, соединяющие блок с бортовой сетью автомобиля, должны иметь сечение не менее 1,5 мм и минимальную длину.

Для более полной передачи энергии на свечи зажигания при большой частоте вращения коленчатого вала двигателя (свыше 3000 мин-1) рекомендуется доработать пластину ротора (бегунка) распределителя зажигания [5].

В. БЕСПАЛОВ, г. Кемерово

ЛИТЕРАТУРА
  1. Беспалов В. Е. Авторское свидетельство СССР № 977846 Бюллетень «Открытия, изобретения...*, 1982. № 44, с. 155.
  2. Синельников А. X. Электронные приборы для автомобилей.— М.: Энергоиз-дат. 1981; с. 16—34, 41—46.
  3. Everdlnq H. Elektronlsches Zundsystem reduziert schadiiche Abgase.— Elektronik. 1976. № 1, s. 61—64.
  4. Штырлов А., Вавннов В. Комбинированная электронная система зажигания.— Радио, 1983, № 7, с. 30—32.
  5. Синельников А. X. Электроника в автомобиле.— М.: Радист и связь, 1985; с. 32.

Усовершенствованный электронный блок зажигания. | Мастер Винтик. Всё своими руками!

Представленная ниже, схема зажигания автомобиля предназначена для опытных радиолюбителей.

Тем, кто ранее собирал простые схемы блоков зажигания и желающим собрать устройство, из которого, максимально «выжато» все или может почти всё!

За истекшие годы стабилизированный блок зажигания [1] повторили очень многие авто- и радиолюбители, и несмотря на выявленные недостатки можно считать что он проверку временем выдержал. Существенно также, что в литературе пока не появились публикации сходных по простоте конструкций с аналогичными параметрами.
Эти обстоятельства и побудили автора сделать ещё одну попытку основательно улучшить показатели блока, сохранив его простоту.

Основное отличие усовершенствованного блока зажигания от [1] — заметное улучшение его энергетических характеристик. Если у исходного блока максимальная длительность искры не превышала 1,2 мс, причем она могла быть получена лишь на самых низких значениях частоты искрообразования, то у нового длительность искры постоянна во всей рабочей полосе 5…200 Гц и равна 1,2… 1,4 мс. Это значит, что на средних и максимальных оборотах двигателя — а это наиболее часто используемые режимы, длительность искры практически соответствует установившимся и настоящее время требованиям.

Ощутимо изменилась и мощность, подводимая к катушке зажигания. На частоте 20 Гц при катушке Б-115 она достигает 50…52 мДж, а на 200 Гц — около 16 мДж. Расширены также пределы питающего напряжения, в которых блок работоспособен. Уверенное искрообразование при пуске двигателя обеспечивается при бортовом напряжении 3,5 В, но работоспособность блока сохраняется и при 2,5 В. На максимальной частоте искрообразование не нарушается, если питающее напряжение достигает 6 В, а длительность искры — не ниже 0,5 мс.

Указанные результаты получены главным образом за счет изменения режима работы преобразователя, особенно условий его возбуждения. Эти показатели, которые, по мнению автора, находятся на практическом пределе возможностей при использовании всего одного транзистора, обеспечены также применением ферритового магнитопровода в трансформаторе преобразователя.

Как видно из принципиальной схемы блока, показанной на рисунке выше, основные ее изменения относятся к преобразователю, т.е. генератору зарядных импульсов, питающих накопитель-конденсатор С2. Упрощена цепь запуска преобразователя, выполненного, как и прежде, по схеме однотактного стабилизированного блокинг-генератора. Функции пускового и разрядного диодов(соответственно VD3 и VD9 по прежней схеме) выполняет теперь один стабилитрон VD1. Такое решение обеспечивает более надежный запуск генератора после каждого цикла искрообразования путем значительного увеличения начального смещения на эмиттерном переходе транзистора VT1. Это не снизило тем не менее общей надежности блока, поскольку режим транзистора ни по одному из параметров не превысил допустимых значений.

Изменена и цепь зарядки конденсатора задержки С1. Теперь он после зарядки накопительного конденсатора заряжается через резистор R1 и стабилитроны VD1 и VD3. Таким образом, в стабилизации участвуют два стабилитрона, суммарным напряжением которых при их открывании и определяется уровень напряжения на накопительном конденсаторе С2. Некоторое увеличение напряжения на этом конденсаторе скомпенсировано соответствующим увеличением числа витков базовой обмотки и трансформатора. Средний уровень напряжения на накопительном конденсаторе уменьшен до 345…365 В, что повышает общую надежность блока и обеспечивает вместе с тем требуемую мощность искры.

В разрядной цепи конденсатора С1 использован стабистор VD2, позволяющий получить такую же степень перекомпенсации при уменьшении бортового напряжения, как три-четыре обычных последовательных диода. При разрядке этого конденсатора стабилитрон VD1 открыт в прямом направлении, (подобно диоду VD9 исходного блока). Конденсатор С3 обеспечивает увеличение длительности и мощности импульса, открывающего тринистор VS1. Это особенно необходимо при большой частоте искрообразования, когда средний уровень напряжения на конденсаторе С2 существенно снижается.

В блоках электронного зажигания с многократной разрядкой накопительного конденсатора на катушку зажигания [1,2] длительность искры и в определенной степени ее мощность определяет качество тринистора, поскольку все периоды колебаний, кроме первого, создаются и поддерживаются только энергией накопителя. Чем меньше затраты энергии на каждое включение тринистора, тем большее число запусков будет возможно и тем большее количество энергий (и за большее время) будет передано катушке зажигания. Крайне желательно поэтому подобрать тринистор с минимальным открывающим током.
Хорошим можно считать тринистор, если блок обеспечивает начало искрообразования (с частотой 1…2 Гц) при питании блока напряжением 3 В. Удовлетворительному качеству соответствует работа при напряжении 4…5 В. С хорошим тринистором длительность искры равна 1,3…1,5 мс, при плохом — уменьшается до 1… 1,2 мс.


При этом, как это ни покажется странным, мощность искры в обоих случаях будет примерно одинаковой по причине ограниченной мощности преобразователя. В случае большей длительности конденсатор-накопитель разряжается практически полностью, начальный (он же средний) уровень напряжения на конденсаторе, задаваемый преобразователем, несколько ниже, чем в случае с меньшей длительностью. При меньшей же длительности начальный уровень более высок, но высок и остаточный уровень напряжения на конденсаторе из-за его неполной разрядки.

 Таким образом, разность между начальным и конечным уровнями напряжения на накопителе в обоих случаях практически одинакова, а от нее и зависит количество вводимой в катушку зажигания энергии [3]. И все-таки при большей длительности искры достгается лучшее дожигание горючей смеси в цилиндрах двигателя, т.е. повышается его КПД.

При нормальной работе блока формированию каждой искры соответствуют 4,5 периода колебаний в катушке зажигания. Это означает, что искра представляет собой девять знакопеременных разрядов в свече зажигания, непрерывно следующих один за другим.

Нельзя поэтому согласиться с, мнением (изложенным в[4]) о том, что вклад третьего и тем более четвертого периодов колебаний не удается обнаружить ни при каких условиях. На самом деле каждый период вносит свой совершенно конкретный и ощутимый вклад в общую энергию искры, что подтверждают и другие публикации, например [2]. Однако, если источник бортового напряжения включен последовательно с элементами контура (т.е. последовательно с катушкой зажигания и накопителем), сильное затухание, вносимое именно источником, а не другими элементами, действительно, не позволяет обнаружить упомянутый выше вклад. Такое включение как раз и использовано в [4].

В описываемом блоке источник бортового напряжения в колебательном процессе участия не принимает и упомянутых потерь, естественно, не вносит.

Один из наиболее ответственных узлов блока — трансформатор Т1. Его магнитопровод Ш15х12 изготовлен из оксифера НМ2000. Обмотка I содержит 52 витка провода ПЭВ-2 0,8; II — 90 витков провода ПЭВ-2 0,25; III — 450 витков провода ПЭВ-2 0.25.

Зазор между Ш-образными частями магнитопровода должен быть выдержан с максимально возможной точностью. Для этого при сборке между его крайними стержнями помещают, без клея по гетинаксовой (или текстолитовой) прокладке толщиной 1,2+-0,05 мм, после чего детали магнитопровода стягивают прочными нитками.
Снаружи трансформатор необходимо покрыть несколькими слоями эпоксидной смолы, нитроклея или нитроэмали.
Катушку можно выполнить на прямоугольной шпуле без щек. Первой наматывают обмотку III, в которой каждый слой отделяют от следующего тонкой изоляционной прокладкой, а завершают трехслойной прокладкой. Далее наматывают обмотку II. Обмотку I отделяют от предыдущей двумя слоями изоляции. Крайние витки каждого слоя при намотке на шпуле следует фиксировать любым нитроклеем.

Гибкие выводы катушки лучше всего оформить по окончании всей намотки. Выводить концы обмотки I и II следует в сторону диаметрально противоположную концам обмотки III, но все выводы должны быть на одном из торцов катушки. В таком же порядке располагают и гибкие выводы, которые закрепляют нитками и клеем на прокладке из электрокартона (прессшпана). Перед заливкой выводы маркируют.

Кроме КУ202Н, в блоке можно применить тринистор КУ221 с буквенными индексами А-Г. При выборе тринистора следует принять во внимание, что, как показывает опыт, КУ202Н по сравнению с КУ221 имеют в большинстве случаев меньший ток открывания, но более критичны к параметрам импульса запуска (длительности и частоте). Поэтому для случая использования тринистора из серии КУ221 номиналы элементов цепи удлинения искры необходимо скорректировать — конденсатор С3 должен иметь емкость 0,25 мкФ, а резистор R4 — сопротивление 620 Ом.

Транзистор КТ837 может быть с любыми буквенными индексами, кроме Ж, И, К, Т, У, Ф. Желательно, чтобы статический коэффициент передачи тока не был менее 40. Применение транзистора другого типа нежелательно.

Теплоотвод транзистора должен иметь полезную площадь не менее 250 кв.см. В роли теплоотвода удобно использовать металлический кожух блока или его основание, которые следует дополнить охлаждающими ребрами. Кожух должен обеспечивать и брызгозащищенность блока.

Стабилитрон VD3 также необходимо устанавливать на теплоотвод. В блоке он представляет собой две полосы размерами 60x25x2 мм, согнутые П-образно и вложенные одна в другую. Стабилитрон Д817Б можно заменить последовательной цепью из двух стабилитронов Д816В; при бортовом напряжении 14 В и частоте искрообразования 20 Гц эта пара должна обеспечивать на накопители напряжение 350…360В. Каждый из них устанавливают на небольшой теплоотвод. Стабилитроны подбирают только после выбора и установки тринистора.

Стабилитрон VD1 подборки не требует, но он обязательно должен быть в металлическом корпусе. Для увеличения общей надежности блока целесообразно этот стабилитрон снабдить небольшим теплоотводом в виде обжимки из полоски тонкого дюралюминия.

Стабистор КС119А (VD2) можно заменить тремя диодами Д223А (или другими кремниевыми диодами с импульсным прямым током не менее 0,5 А), включенными последовательно.

Большинство деталей блока смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм. Чертеж платы показан на рис.2. Плата разработана с учетом возможности монтажа деталей при различных вариантах замены.

Для блока, предназначенного работать в местностях с суровым зимним климатом, оксидный конденсатор С1 желательно использовать танталовый с рабочим напряжением не ниже 10 В. Его устанавливают вместо большой перемычки на плате, при этом точки подключения алюминиевого оксидного конденсатора (он-то и показан на плате), пригодного для работы в подавляющем большинстве климатических зон, следует замкнуть перемычкой соответствующей длины. Конденсатор С2-МБГО, МБГЧ или К73-17 на напряжение 400…600 В.

В случае выбора для блока тринистора из серии КУ221 нижнюю по рис.2 часть платы необходимо скорректировать так, как это показано на рис.3. При монтаже тринистора необходимо один из винтов его крепления изолировать от печатной дорожки общего провода.

Проверку работоспособности и тем более регулировку следует проводить именно с такой катушкой зажигания, с которой блок будет работать в дальнейшем. Следует иметь в виду, что включение блока без катушки зажигания, нагруженной запальной свечой, совершенно недопустимо. Для проверки вполне достаточно измерять пиковым вольтметром напряжение на накопительном конденсаторе С2. Таким вольтметром может служить авометр, имеющий предел постоянного напряжения 500 В. Авометр подключают к конденсатору С2 через диод Д226Б (или подобный), а зажимы авометра шунтируют конденсатором емкостью 0,1…0,5мкф, на напряжение 400…600 В.

При номинальном напряжении питания (14 В) и частоте искрообразования 20 Гц напряжение на накопителе должно находиться в пределах 345…365 В. Если напряжение меньше, то прежде всего подбирают тринистор с учетом сказанного выше. Если после подборки будет обеспечено искрообразоеание при понижении напряжения питания до 3 В, но на конденсаторе С2 при номинальном напряжении питания будет повышенное напряжение, следует подобрать стабилитрон VD3 с несколько пониженным напряжением стабилизации.

Далее проверяют блок на высшей частоте искрообраэования (200 Гц), поддерживая номинальное бортовое напряжение. Напряжение на конденсаторе С2 должно находиться в пределах 185…200 В, а потребляемый блоком ток после непрерывной работы в течение 15…20 мин не должен превышать 2,2 А. Если транзистор за это время нагреется выше 60°С при комнатной окружающей температуре, тёплоотводящую поверхность следует несколько увеличить. Конденсатор С3 и резистор R4 подборки, как правило, не требуют. Однако для отдельных экземпляров тринисторов (как того, так и другого типа) может потребоваться корректировка номиналов, если на частоте 200 Гц будет обнаружена неустойчивость в искрообраэовании. Она проявляется обычно в виде кратковременного сбоя в показаниях вольтметра, подключенного к накопителю, и хорошо заметна на слух.

В этом случае следует увеличить емкость конденсатора С3 на 0,1…0,2 мкФ, а если это не поможет, вернуться к прежнему значению и увеличить сопротивление резистора R4 на 100…200 Ом. Одна из этих мер, а иногда и обе вместе, обычно устраняют неустойчивость запуска. Заметим, что увеличение сопротивления уменьшает, а увеличение емкости увеличивает длительность искры.

Если есть возможность воспользоваться осциллографом, то полезно убедиться в нормальном течении колебательного процесса в катушке зажигания и фактической его длительности. До полного затухания должны быть хорошо, различимы 9-11 полуволн, суммарная длительность которых должна быть равна 1,3…1,5 мс на любой частоте искрообразования. Вход X осциллографа следует подключать к общей точке обмоток катушки зажигания.

Типичный вид осциллограммы показан на рис.4. Всплески посредине минусовых полуволн соответствуют единичным импульсам блокинг-генератора при изменении направления тока в катушке зажигания.

Целесообразно проверить также зависимость напряжения на накопительном конденсаторе от бортового напряжения.

Ее вид не должен заметно отличаться от показанного на рис.5.

Изготовленный блок рекомендуется устанавливать в моторном отсеке в передней, более прохладной его части. Искрогасящий конденсатор прерывателя следует отключить и соединить его вывод с соответствующим контактом розетки разъема Х1. Переход на классическое зажигание выполняют, как и в прежней конструкции, установкой вставки-замыкателя Х1.3.

В заключение отметим, что попытки получить столь же «длинную» искру с трансформатором на стальном магнитопроводе, даже из стали самого высокого качества, не приведут к успеху. Наибольшая длительность, которая может быть достигнута, — 0,8…0,85 мс. Тем не менее блок почти без изменений (сопротивление резистора R1 следует уменьшить до 6…8 Ом) работоспособен и с трансформатором на стальном магнитопроводе с указанными намоточными характеристиками, и эксплуатационный качества блока выше, чем у его прототипа [1].

Литература:
1. Г. Карасев. Стабилизированный блок электронного зажигания. — Радио, 1988, № 9, с. 17; 1989, №5, с.91
2. П.Гацанюк. Усовершенствованная электронная система зажигания. В сб.: «В помощь радиолюбителю», вып: 101, с. 52, — М.: ДОСААФ.
3. А. Синельников. Электроника в автомобиле. — М.:, Радио и связь, 1985, с.46.
4. Ю. Архипов. Полуавтоматический блок зажигания. — Радио, 1990, № 1, с. 31-34; №2, с. 39-42. 

 Источник: Радио №8, 1994 г.



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:


Популярность: 6 602 просм.

Блок электронного зажигания

  Автомобильные системы зажигания сейчас в основном построены на тиристорах [1], тем не менее, транзисторные системы не потеряли своей актуальности [2, З]. В последнее время выпускается много мощных, в том числе составных транзисторов с характеристиками, позволяющими использовать их для автомобильных систем зажигания. Предлагаемая схема автомобильного электронного блока зажигания разработана и испытана автором в автомобиле "Жигули 2108" и др., в которых применяются транзисторные коммутаторы (3620-3734) с бесконтактным датчиком Холла (53.013706).

  Отличием данной конструкции от штатной [2] является то, что для формирования импульсов прерывания используется микросхема К561ЛА8, включенная по схеме триггера Шмитта. Технические характеристики практически не отличаются от штатного блока зажигания, но с применением триггера Шмитта импульсы прерывания формируются с более крутым задним фронтом, что позволяет практически мгновенно отключать источник тока от катушки зажигания, тем самым повышая высокое напряжение на ее вторичной обмотке. ;Применение конденсатора С2 обеспечивает отключение катушки зажигания от источника тока при остановке двигателя автомобиля, тем самым предотвращая бесполезный нагрев катушки.

  Схема блока электронного зажигания, изображенная на рис.1, содержит:
- схему формирования импульсов с регулируемой скважностью на микросхеме DD1. собранную по схеме триггера Шмитта;
- мощный ключ на транзисторах VT1 и VT3 с активным ограничителем тока на транзисторе VT2, делителем напряжения на резисторах R8, R9 и токоизмерительным резистором R10;
- стабилизатор напряжения для питания микросхемы DD1 на стабилитроне VD4, конденсаторе СЗ и резисторе R3;
- схему защиты от превышения импульсного напряжения в бортовой сети на стабилитроне VD6, конденсаторе С4 и резисторе R11;
- схему защиты блока от неверного присоединения аккумуляторной батареи на диоде VD7;
- схему защиты транзистора VT3 от импульсных перегрузок при работе катушки зажигания на диоде VD5, резисторах R12, R13.

  Работает схема следующим образом. При включении зажигания напряжение от аккумуляторной батареи подается на схему через диод VD7 и резистор R11. На катушку зажигания напряжение в начальный момент не поступает, так как стартер не вращает вал двигателя, и на входе микросхемы DD1.2 отсутствуют импульсы. На выходе DD1 присутствует напряжение низкого уровня, которое удерживает транзистор VT1 в закрытом состоянии, поэтому закрыт и транзистор VT3.

  Когда стартер поворачивает вал двигателя, на выходе датчика возникают импульсы, поступающие через С2 на вход элемента DD1.1. Последний переключается, и на выходе DD1.2 появляется импульс, который открывает транзисторы VT1 и VT3. Через катушку зажигания проходит ток, и в магнитном поле катушки накапливается электрическая энергия. В следующий момент, когда с выхода датчика исчезает импульс положительной полярности, триггер Шмитта резко переключается в обратное состояние, на выходе элемента DD1.2 появляется низкий уровень, поступающий на базу транзистора VT1. Транзисторы VT1 и VT3 быстро закрываются, и ток, проходящий через катушку зажигания, также быстро исчезает. При этом в первичной обмотке катушки индуцируется ЭДС самоиндукции напряжением 400 В, а во вторичной обмотке катушки зажигания возникает импульс высокого напряжения — 23000...25000 В.

  В мощном ключе на транзисторах VT1 и VT3 применена схема активного ограничения тока в катушке зажигания, которая защищает транзистор VT3 от перегрузки и стабилизирует величину тока "разрыва" при колебаниях питающего напряжения бортовой сети автомобиля, тем самым обеспечивая неизменность выходных характеристик системы зажигания [З].

  При отпирании транзистора VT1 выходной транзистор VT3 насыщается, обеспечивая низкую величину остаточного напряжения на выходе блока электронного зажигания. Пока ток, протекающий через выходной транзистор VT3 и токоизмерительный резистор R10, включенный в его эмиттерную цепь, ниже допустимого уровня ограничения, транзистор VT2 заперт.

  При достижении выходным током предельного уровня, транзистор VT2 начинает открываться, и потенциал на его коллекторе понижается, что приводит к уменьшению величины тока управления. Транзистор VT3 при этом выходит из режима насыщения в активный режим, напряжение на выходе возрастает до уровня, при котором поддерживается заданный режим тока ограничения. В случае превышения импульсного напряжения в катушке зажигания, оно через делитель R12-R13 подается на стабилитрон VD5, который, открываясь, запирает транзистор VT3. Цепочка C5-R14, включенная параллельно выходному транзистору, является элементом колебательного контура ударного возбуждения, т.е. определяет величину и скорость нарастания вторичного напряжения, развиваемого системой зажигания. Резистор R14 ограничивает емкостный ток через транзистор VT3 в момент отпирания последнего, если конденсатор С5 разряжен. Конструктивно блок электронного зажигания выполнен на печатной плате из одностороннего фольгированного стеклотекстолита размером 95х75 мм, на которой смонтированы элементы схемы. Плата устанавливается в штатный корпус от коммутатора 3620-3734.

  В электронном блоке зажигания использована микросхема К561ЛА8 и резисторы МЛТ. Резистор R10 — типа С5-16 мощностью не менее 1 Вт. Конденсаторы — К73-11 на напряжение не менее 63 В. Диоды VD2, VD3 — КД521А или любые кремниевые маломощные. Стабилитрон VD1 — на напряжение стабилизации 8 В, типа Д814А или КС182А. Стабилитрон VD4 — на напряжение стабилизации 9 В, типа Д814Б или КС191А. Стабилитрон VD5 — КС518А или КС508Г. Диод VD7 — типа КД209А, можно заменить диодом КД226Г. Транзисторы VT1, VT2 — КТ972А; VT3 — КТ898А или КТ890А (КТ8109А). VT3 устанавливается на штатный радиатор из алюминиевой пластины толщиной 4 мм, изолированный от корпуса двойной слюдяной прокладкой с термопроводной пастой.

  Для налаживания блока применяется звуковой генератор с частотой от 30 до 400 Гц, имитирующий работу датчика прерывателя. Для получения выходного сигнала напряжением 7...9 В, в случае необходимости, к нему нужно изготовить усилитель мощности на транзисторе КТ815 [4]. Для просмотра импульсов годится любой осциллограф, лучше двухлучевой. Кроме того, необходим блок питания с регулировкой напряжения от 8 до 18 В с током не менее 10 А.

  На момент настройки схемы можно обойтись без катушки зажигания, нагрузив коллектор транзистора VT3 на дроссель с магнитопроводом из пластин электротехнической стали индуктивностью 3,8 мГн, сопротивлением 0,5 Ом. Для этого можно использовать унифицированный низкочастотный дроссель типа Д 179-0,01-6,3. Генератор-имитатор датчика импульсов подключают на вход схемы и наблюдают на осциллографе форму и амплитуду выходных импульсов. Изменением сопротивлений в цепях VD2-R4 и VD3-R5 можно регулировать скважность импульсов, что позволяет регулировать время замыкания и размыкания катушки зажигания.

  Для установки необходимого тока ограничения осциллограф подключают к эмиттеру транзистора VT2. При этом в эмиттерную цепь транзистора VT2 необходимо временно подключить резистор сопротивлением 0,1 Ом. Изменяя напряжение на блоке питания, наблюдают появление сигнала на эмиттере. Регулировка уровня ограничения тока производится резисторами R12 и R13. После предварительной настройки схему устанавливают в автомобиле в соответствии со схемой подключения [2] и производят ее окончательную настройку.

Литература:
1. Ломакин Л. Электроника за рулем. — Радио, 1996, N8, С.58,
2. Старков В. Транзисторные системы зажигания — Радио, 1991, N9. С.26-29.
3. Бела Буна. Электроника на автомобиле. — М.: Транспорт,1979.
4. Автомобили "Жигули 2108" и их модификации. Устройство и ремонт. — М.:  Транспорт,1987.
5. Ютт В.Е. Электрооборудование автомобилей: Учебник. — М.: Транспорт,1989, 175с.
6. Сидорчук В. Электронный октан-корректор. — Радио, 1991, N11, С.26.

Г. СКОБЕЛЕВ
г. Курган

Источник: shems.h2.ru

Электронное зажигание | Все своими руками

Эта схема электронного зажигания пришла на смену контактному зажиганию. Схема
давно известная в интернете и показала себя в работе с самой лучшей стороны. Проверена
годами так сказать. Среди некоторых моих знакомых видел данное устройство в работе

Данное электронное зажигание несет кучу плюсов за собой:
— универсальность(ВАЗ,ГАЗ,УАЗ и т.д.)
— защита катушки зажигания
— качественная искра
— контакты больше не будут подгорать
— не нужен балластный резистор в цепи катушки

Давайте рассмотрим подробнее
— Во-первых, благодаря тонкой и не сложной настройке компонентов, схема работает
практическими со всеми катушками зажигания, что делает ее практически универсальной
для всех автомобилей с контактным зажигание
— Во-вторых, практически исключает порчу катушки при включенном зажигании, но
заглушенном двигателе
— В третьих электронное зажигание дает более качественную искру. При запуске двигателя
искра более мощная, что облегчает запуск. А в работе искра стабилизируется до
нормальной
— В четвертых не пригорают контакты зажигания на трамблере, потому что всю нагрузку
от катушки зажигания берет на себя транзистор
— В пятых не знаю на сколько достоверная информация, но слух есть что уменьшается
расход топлива благодаря хорошей искре. Сомнительное утверждение, но слышал не раз.
Поэтому к плюсам добавлю экономию на топливе

Схема электронного зажигания

Используемые компоненты
C1 = 4.7мФ
C2 = 0.047мФ
R1 = 390
R2,3 = 110к
R4,5 = 100
R6 = 20к нужен для стабилизации напряжения на катушке и подбирается под катушку индивидуально. Этот расчет для
катушки Б115
VD1 = 1N4148
VT1 = КТ973
VT2 = КТ898А рекомендуется ставить составные транзисторы для повышения надежности схемы

Работа электронного зажигания. Когда прерыватель замыкается и размыкается, импульс
проходит через конденсатор C1, открывая транзисторы. Когда транзистор VT2
закрывается, возникает искра сглаживающаяся конденсаторам C2.
Плата электронного зажигания

Как видите плата устанавливается поверх радиатора. Транзистор VT2 через термопасту и
диэлектрическую прокладку крепится на радиатор.
Спасибо за внимае. Жду Комментариев
С ув. Admin-чек

Похожие материалы: Загрузка...

Электронный блок зажигания — Меандр — занимательная электроника

В [1] было описано разработан­ное мною устройство, которое по­вторили многие желающие. В тече­ние эксплуатации сбоев и отказов не наблюдалось. Система электрон­ного зажигания зарекомендовала себя как надежная и неприхотливая к комплектации и климатическим условиям ее эксплуатации.

На этом разработки по усовер­шенствованию и модернизации не прекращались. Были предложения по увеличению длительности ис­кры, переход на плазменное зажи­гание (свечи “Плазмол”, “Плазмофор”, “Ракета” и др.). Отличие от обычной свечи — отсутствие отги­бающего электрода. Центральный электрод имеет зазор с основанием 0,8…1,1 мм.

На рис. 1 изображена усовер­шенствованная система зажига­ния. Узел управления изменен. Сейчас его можно подключить как с катушкой генератора, соединен­ной одним выводом с массой на кор­пус двигателя, так и независимой.

Рис. 1

Узел основательно модернизиро­ван. Введены следующие комплек­тующие: VT1 — КТ805БМ, VT2 — КТ818ГМ (вместо П216, П217), VD10 — КС518А (в металлическом корпусе). Транзисторные ключи ра­ботают в импульсном режиме. При больших оборотах двигателя уве­личивается переменное напряже­ние генератора в 2…4 раза, проис­ходит нагрев данных транзисторов. В обязательном порядке их устано­вить на игольчатый или ребристый радиатор с применением кремние­вой теплопроводной пасты. Дан­ный радиатор является крышкой блока.

Принцип работы устройства со­стоит в следующем.

Обмотка генератора соединена с “массой” корпуса двигателя. Блок зажигания подсоединен к клеммам “Ген 1″ и “Ген».

Обмотка генератора независи­мая. Блок подсоединен к клеммам “Ген 1” и “Ген”. Между выводами “Ген” и “массой” поставить пере­мычку.

В доработанном блоке примене­на цепочка увеличения длительно­сти искры, состоящая из VD11, R7, R6, С4, С5, которая работает сле­дующим образом. Конденсатор С2 не отдает всю энергию накопитель­ного заряда за один цикл прерыва­теля в первичную обмотку катуш­ки зажигания. Часть ее, 25…35% от емкости С2, остается не использо­ванной. Обратная связь VD11, R7, R6, C3, введенная в управляющий электрод тиристора VS1, создает на нем пакет из 4…5 импульсов, что существенно влияет на дли­тельность искрового разряда. Для снижения вероятности пробоя ка­тушки зажигания необходимо уста­новить конденсатор С4 емкостью 0,25 мкФ на рабочее напряжение 500…630 В. При этом импульс са­моиндукции, возникающий при броске тока через катушку зажига­ния, отсутствует. Кроме того, в кон­туре, образованном LC, возникают высокочастотные колебания, даю­щие многоискровой разряд на све­че. Все это можно видеть на осцил­лографе. Для этого необходимо корпус свечи соединить через ре­зистор 15…20 Ом мощностью 4…10 Вт. Второй вывод соединить с “массой”, а на самом резисторе произвести замеры осциллогра­фом. При всех нововведениях, при­менении катушки зажигания “Motorkraft” длительность искрово­го разряда составляет 0,9…1,1 мкс. При

Система зажигания с новым способом воспламенения


Система зажигания с новым способом воспламенения

  Проблема загрязнения окружающей среды, возникшая вместе с цивилизацией и обостряющаяся по мере ее развития, требует в настоящее время все большего внимания. Обусловлено это тем, что человечество продолжает использовать в качестве энергоносителей наиболее доступные и дешевые источники, т.е. углеводородное топливо. В последнее время стало ясно, что наибольший вклад в загрязнение атмосферы вносят автомобили. Особенно это касается больших городов. Помимо относительно безвредного углекислого газа (парниковый эффект пока не считаем), двигатели внутреннего сгорания выбрасывают в атмосферу целый ряд химических соединений, наличие которых в выхлопных газах не поддается контролю используемыми в настоящее время газоанализаторами. Ведь камера сгорания двигателя - это высокотемпературный химический реактор, заправленный такими реагентами как азот, углерод, водород, свинец, кислород, сера и другие. За рубежом получили широкое распространение каталитические нейтрализаторы, использующие свойство металлов платиновой группы (платина, родий, палладий и т.д.) способствовать доокислению (дожигу) в выхлопной трубе всего того, что не успело сгореть в камере сгорания. Правда, они недолговечны, а стоят достаточно дорого (порядка 10% стоимости автомобиля). Но остается открытым вопрос, что делать с нашим не очень "молодым" парком автомобилей, который будет еще эксплуатироваться непонятно сколько. Из создавшейся ситуации возможен следующий выход. Нужно разработать такую систему зажигания, которая способна по возможности сжечь все в камере сгорания, вдобавок повысив за счет этого экономичность двигателя. Задачу более полного сгорания воздушно-топливной смеси в двигателях внутреннего сгорания в определенной степени удалось решить с помощью системы зажигания, работа которой основана на новом способе воспламенения топлива [1, 2]. Как ни странно, современные системы воспламенения топливно-воздушной смеси, используемые в распространенных марках автомобилей, основаны на том же способе воспламенения, что и в начале эры автомобилизма. Это искровой разряд между электродами свечи зажигания. Описание процессов, происходящих в момент воспламенения топливно-воздушной смеси, и самого процесса горения сопровождаются в литературе, как правило, ссылками на отсутствие единой теоретической модели этого процесса и различными объяснениеми его разными авторами. Известно, что КПД двигателя внутреннего сгорания зависит от температуры газов в камере сгорания, зависящей, в свою очередь, от скорости сгорания топливно-воздушной смеси. Соответственно, с увеличением этой скорости увеличивается КПД двигателя и, как следствие, уменьшается удельный расход топлива.

  При разработке новой системы зажигания было сделано предположение, что увеличить скорость сгорания топливно-воздушной смеси в камере сгорания можно ослабив эффект "шнурования" плазмы, образующейся между электродами свечи за счет протекания в искровом промежутке постоянного тока. Ток в этом случае поддерживается за счет энергии, накопленной в катушке зажигания. В новой системе используется принцип накопления энергии в конденсаторе, обеспечивающий в искровом промежутке свечи зажигания биполярный импульсный ток. В течение первого периода колебаний напряжения на электродах свечи происходит подготовка смеси и ее воспламенение, а в течение последующих - ее сжигание. На рис.1 изображен график изменения напряжения на электродах свечи. В двух последних периодах импульсы напряжения имеют форму, близкую к прямоугольной.

  Схема электронного зажигания представлена на рис.2. Она работает следующим образом. Конденсаторы С5...С7 заряжаются от вторичной обмотки преобразователя на транзисторе VT1 до напряжения, значительно превышающего ЭДС аккумуляторной батареи. При размыкании контакта прерывателя, включенного между точками ПР и М, через, управляющий электрод тиристора VD8 проходит импульс тока, сформированный RC-цепью R1, R2, R5, С1. Тиристор открывается, и начинается колебательный разряд конденсаторов через первичную обмотку катушки зажигания, подключенной к точке КЗ. В течение первого полупериода ток протекает через тиристор, а в течение второго - через диоды VD9, VD10.

  Процесс повторяется до тех пор, пока конденсатор С4 не зарядится до напряжения, при котором открывается ключ на транзисторе VT2, что предотвращает очередное отпирание тиристора. После замыкания контакта прерывателя остаточное напряжение конденсатора С4 прикладывается к управляющему переходу тиристора и надежно запирает его. Конденсатор С4 при этом разряжается через резистор R3 и диод VD4, однако ключ VT2 некоторое время после замыкания контакта остается открытым, что предотвращает случайное отпирание тиристора за счет дребезга контактов прерывателя.

  В случае применения коммутатора в системе зажигания с датчиком Холла, последний непосредственно управляет работой ключа. Процессы, происходящие при этом в схеме, аналогичны описанным выше. Предлагаемая схема зажигания позволяет подавать на электроды свечей зажигания напряжение, полярность которого меняется в течение одного такта работы двигателя. Подбором элементов схемы управления обеспечивается оптимальная продолжительность разряда в свече. Применение описанного способа зажигания дает возможность повысить топливную экономичность двигателя, его мощность и приемистость, уменьшить содержание окиси углерода в выхлопных газах и увеличить ресурс свечей зажигания.


Рис. 3

  Трансформатор преобразователя блока зажигания имеет послойную рядовую намотку (виток к витку). Изоляция между обмотками - два слоя лакоткани (Uпр>1000В). Изоляция между слоями - один слой лакоткани. Число витков: 1 - 35 вит. ПЭТВ-2-1,0; 2 - 48 вит. ПЭТВ-2-0,42; 3 - 420 вит. ПЭТВ-2-0,25. Порядок намотки обмоток - 2 - 3 - 1. Сердечник трансформатора ферритовый Ш12х15 марки 2000НМ-1, собирается с зазором 1 мм, в который вставляется диэлектрическая прокладка из гетинакса.

  Схема подключения разработанного блока (ОН-427) к системе зажигания автомобиля показана на рис.3 и 4. При подключении и отключении блока зажигание должно быть выключено, а клемма "Масса" ("-") отсоединена от аккумулятора. Блок электронного зажигания, изготовленный по данной схеме, прошел испытания на грузовых автомобилях и сравнивался с различными штатными системами зажигания.

Рис. 4.

  Были выбраны автомобили ГАЗ-52 с классической контактной системой и ГАЗ-53 с более совершенной транзисторной системой и индукционным датчиком зажигания. Испытания проводились по методике, разработанной НПМП "Витар". Результаты испытаний разработанного блока приведены на рис.5. Анализ результатов свидетельствует об эффективности разработанного устройства и позволяет предположить, что характер происходящих при воспламенении топливно-воздушной смеси процессов в какой-то степени соответствует описанным.

Puc. 5.

Литература
1. Патент РФ N2056521. Способ поджига топливной смеси и коммутатор для его осуществления.
2. Патент РБ N1429. Способ поджига топливной смеси в двигателе внутреннего сгорания и коммутатор для его осуществления.
3. Блок системы зажигания ОН-427. Паспорт. - ОАО "МНИПИ", г.Минск.

В.ЩЕРБАТЮК
г.Минск
Радиолюбитель № 7,1999
Дополнения Евтеева

Источник: shems.h2.ru

блок зажигания, блок зажигания Поставщики и производители на Alibaba.com

Бренд GZKAIMIN MOQ 10 высшее качество Доставка DHL FedEx EMS TNT ИБП и т. Д. Срок поставки Около 2 ~ 5 рабочих дней Условия оплаты Банковский перевод, Wester Union, PayPal и т. Д. Запасы OEM / ODM протестированы. Такие же, как у подлинного БЛОК ПИТАНИЯ J722T MD326836 ДЛЯ 1996-1999 гг. Для MITSUBISHI ECLIPSE 2.4L 4 CYL Модуль зажигания Блок зажигания POWER TR UNIT фактическое фото Упаковка и amp; Способы доставки: 23480-31021 23480-31020 23480-28013 23480-21020 22380-28013 04221-27011 294009-0260 096360-0760 096710-0062 096710-005204221-27011 294009-0260 294009-0120 294000-02394000-0237 294000-0332 94000-0334 294000-034 # 294000-0342294000-0400294000-0402 294000-04047294000-041294000-0412294000-042294000-0424 294000-0501 294000-0502294000-0503 294000-0532 294000-0560 294000-0581 294000-062 294000-0621 294000 064 294000-0640 294000-0654294000-066 294000-0662 294000-0690 294000-0750 294000-0763 294000-0770 294000-0782 294000-0840 294000-095 499000-6160 499000-6131 499000-6111 499000-6121 499000-6111

.Электронный блок зажигания

סקירות - יות מקוונות וסקירות על электронный блок зажигания ב- AliExpress

מבצעים חמים ב- электронный блок зажигания: העסקאות והנחות המקוונות הטובות ביותר עם ביקורות של לקוחות אמיתיים.

ות טובות! אתה נמצא במקום הנכון עבור электронный блок зажигания. יו אתה כבר יודע את זה, מה שאתה מחפש, אתה בטוח למצוא את זה aliexpress.אנחנו ממש יש אלפי מוצרים מעולים בכל קטגוריות המוצרים. ין אם אתה מחפש high-end תוויות ו זול, כ רכישות בכמות גדולה, אנו מבטיחים כי זה כאן aliexpress. תוכלו למצוא חנויות רשמיות עבור שמות מותגים לצד מוכרים הנחה עצמאית קטנה, כולם מציעים משלוח מהיר ואמיר.

ולם לא יוכה על בחירה, איכות ומחיר.כל יום תוכלו למצוא הצעות חדשות, מקוונות בלבד, הנחות בחנויות והזדמנות לשמור עוד יותר על ידי איסוף קופונים. י ייתכן שיהיה עליך לפעול מהר כמו זה העליון блок электронного зажигания מוגדר להיות אחד המבוקשים ביותר המבוקשים ביותר בתוך זמן קצר. תחשוב כמה קנאי אתה חברים יהיה כאשר אתה אומר להם שיש לך блок электронного зажигания על aliexpress. עם ירים הנמוכים ביותר באינטרנט, מחירי משלוח זול ואפשרויות אוסף מקומי, תה יכול לעשות חיסכון גדול עוד יותר.

תה עדיין נמצא בשני מוחות לגבי блок электронного зажигания וחושבים על בחירת מוצר דומה, 'אלכס' הוא מקום מצוין להשוות מחירים ומוכרים.ו נעזור לך להבין אם זה שווה ת תוספת עבור גירסת high-end או אם אתה מקבל רק עסקה טובה על ידי מקבל ת הפריט זול יותר. Номер и, אם אתה רק רוצה לטפל בעצמך ו להתיז על הגרסה היקרה ביותר, תמיד יהיה תמיד לוודא שאתה יכול לקבל את המחיר הטוב ביותר עבור הכסף שלך, אפילו לתת לך לדעת מתי אתה תהיה טוב יותר מחכה קידום להתחיל, ואת החיסכון שאתה יכול לצפות לעשות.

Aliexpress.כל ות ומוכר מדורגות עבור שירות לקוחות, יר ואיכות על ידי לקוחות אמיתיים. וסף אתה יכול למצוא את החנות או דירוגי המוכר הפרט, כמו גם להשוות מחירים, הנחוח והנחות מציעה על ותו וצר על יי רוי רות וצר על יאי רוי רי ר כל רכישה מדורגת בכוכבים ולעתים קרובות יש הערות שנותרו על ידי לקוחות קודמים המתארים את חוויית העסקה שלהם, כך ת י ות בקיצור, אתה לא צריך לקחת את המילה שלנו על זה - רק להקשיב למיליוני לקוחות מאושרים שלנו.

וגם, תה חדש י aliexpress, ו מאפשרים לך על סוד.רק לפני שתלחץ על 'קנה עכשיו' בתהליך העסקה, הקדש רגע כדי לבדוק את הקופונים - ותחסוך עוד יותר. תה יכול למצוא קופונים החנות, ופונים aliexpress או שאתה יכול לאסוף קופונים כל יום על ידי משחק ים על יקציה aliexpress. וכפי שרוב המפיצים שלנו מציעים משלוח חינם - אנחנו חושבים שתסכים לכך שאתה מקבל את זה блок электронного зажигания באחד ירים הטובים ביותר באינטרנט.

תמיד יש לנו את הטכנולוגיה העדכנית ביותר, ת המגמות החדשות ביותר, ואת התוויות המדוברות ביותר.על aliexpress, איכות מעולה, יר ושירות מגיע כסטנדרט - בכל פעם. התחל את חוויית הקנייה הטובה ביותר שתהיה לך אי פעם, ממש כאן.

.

Страница не найдена

Последние дни доставки 24 декабря (CST)
×

12:00 (CST) в воскресенье, 13 декабря БЕСПЛАТНО при заказе от 50 $!
Последний день отправки в FedEx Ground
12:00 (CST) в воскресенье, 20 декабря БЕСПЛАТНО при заказе 250 $!
Последний день для заказа FedEx 2-дневный
12:00 (CST) понедельник, декабрь.21 Последний день для заказа FedEx Overnight

Horizon Hobby несет ответственность за безопасный сбор, упаковку и доставку ваших товаров по вашему адресу доставки. Мы не несем ответственности за повреждения или кражу, произошедшие после доставки посылки. Чтобы подписаться на уведомления о доставке посылок, подпишитесь на услуги наших партнеров по доставке:
FedEx Delivery Manager:
https: // www.fedex.com/en-us/delivery-manager.html
Информированная доставка USPS:
https://www.usps.com/manage/

Закрыть

.Мотоцикл

Dan's «Электронное зажигание»

Электронное зажигание ... так легко добраться, так легко проверить ... так легко. Ненавижу электронные системы зажигания. По крайней мере, я ненавижу над ними работать. Хотел бы я сказать вам, что я знаю все об электронном зажигании для мотоциклов, но, что ж, после работы над этими вещами с тех пор, как они впервые появились, я могу категорически заявить, что я ничего о них не знаю. Так что я просто буду немного о них говорить, и если вы внимательно прочитаете, вы будете знать так же мало, как и я.

Большинство электронных устройств зажигания состоит из четырех частей, которые могут выйти из строя. катушка триггера (датчика), катушка источника, блок CDI (черный ящик) и катушка зажигания. Катушка триггера сообщает черному ящику, когда запускать искру. Это происходит, когда небольшой магнит на маховике проходит через курок. Катушка источника производит энергию. Черный ящик координирует все и сообщает катушке зажигания, когда зажигать свечу. Это для магнето и не требует батареи, так как питание поступает от катушки источника. CDI с зажиганием от аккумулятора используют аккумулятор в качестве источника питания.Затем аккумулятор заряжается системой зарядки.

Теперь, когда я говорю CDI, я имею в виду зажигание с разрядом конденсатора, но я также говорю обо всех типах зажигания, в которых не используются точки. У каждого производителя свой дизайн и образ мышления. Однако кажется, что все они состоят из этих четырех частей. Катушка запуска, катушка источника, черный ящик и катушка зажигания. Обычно они дают вам спецификации на триггер, катушку источника и катушку зажигания. Иногда они также дают спецификации на коробке CDI. Эти характеристики даны как значения сопротивления в Ом.Это означает, что мы можем протестировать их, чтобы убедиться, что они хороши ... вроде ... в большинстве случаев ... может быть. Некоторые производители также указывают значения для черных ящиков, а некоторые - нет. Все это означает, что эти вещи очень трудно точно проверить. К счастью, большинство блоков электронного зажигания достаточно надежны и не требуют обслуживания, но этот плюс превращается в минус, когда они выходят из строя. Их очень сложно устранить. В довершение всего, замена большинства CDI для мотоциклов стоит дорого, а когда они выходят из строя, велосипеды слишком стары, чтобы оправдать затраты на замену.

Говорят, электронное зажигание не меняется после настройки. НО, ДЕЙСТВУЕТ. Иногда это будет меняться по мере сбоя. Это может дать довольно странный ход. Это также может привести к перегреву и заклиниванию двигателя. Об этом следует помнить, когда вы восстанавливаете двигатель, который взорвался, казалось бы, без причины.

Хорошо, мы можем использовать омметр для проверки большинства вещей, кроме черного ящика, а иногда даже черного ящика ... Если нам повезет. Ну, может, все проверили. Вы должны помнить, что все электрические приборы проверяют либо плохо, либо могут быть хорошими.Есть ряд очень дорогих тестировщиков, и все они утверждают, что отлично работают. Но так ли это?

Позвольте мне рассказать вам историю. Однажды мне попался снегоход, который умирал (без искры) через 5-6 минут бега. У меня были заводские спецификации на все, включая черный ящик. Все проверено нормально, даже когда горячо. Короче говоря, в конце концов я поговорил с владельцем компании, которая производила коробки CDI для снегоходов, замену их. Он сказал мне, что все заводские спецификации были неправильными, и дал мне несколько новых характеристик, которые, по его словам, иногда работали, и, поскольку он был очень хорошо осведомлен об электронных зажиганиях, я спросил его, какой тестер он использует.Он сказал мне, что перепробовал их все, и ни один из них не помог. Он сказал, что для каждой новой конструкции коробки CDI его компания покупала двигатель и модифицировала его, чтобы он мог работать с электродвигателем. Затем они могли проверить черные ящики заменой. Клиенты могли отправить свои заводские коробки CDI, и он мог проверить их, чтобы убедиться, что они хороши. Он сказал, что у них есть целый склад этих модифицированных двигателей. Это было еще в 1988-89 годах. Мне нравится думать, что теперь у них есть что-то получше ... однако я все еще не могу позволить себе тестер, кроме омметра.

Причина, по которой я вам все это рассказываю, состоит в том, чтобы дать вам представление о том, сколько хлопот могут доставить эти вещи. Много раз я читал заводские бюллетени, в которых их работникам велели быть более осторожными. Они отправляют обратно по гарантии слишком много «плохих» коробок, которые оказываются хорошими.

Хорошо, у нас нет искры. Проверьте сопротивление в Ом катушки запуска, катушки источника и катушки зажигания. Если один из них не соответствует требованиям, замените его, но сначала проверьте все разъемы.Проверьте и очистите все заземляющие соединения, а также убедитесь, что кнопка отключения работает правильно. Кроме того, помните, что на некоторых велосипедах есть аварийные выключатели на рычаге сцепления, боковой подножке и неизвестно где. Найдите их и убедитесь, что все они работают правильно.

Проверяйте каждое показание в омах несколько раз и помните, что в большинстве спецификаций указывается температура для проверки, обычно 70 градусов. Так что не оставляйте велосипед на ночь при температуре 30 градусов и рассчитывайте получить точные показания. Иногда будет спецификация для черного ящика, а иногда нет.Вот характеристики Кавасаки Вулкан. Остальные, если даются, выглядят одинаково. Как видите, предстоит выполнить довольно много тестов. Может быть, поэтому многие производители не дают никаких спецификаций. Хонда раньше давала спецификации, но, похоже, больше нет. Yamaha ничего не дает. Kawasaki и Suzuki иногда предоставляют спецификации, а иногда обращаются к специальным заводским тестерам. Другие? Вам нужно будет посмотреть руководство магазина.

В руководстве по эксплуатации будет указан цвет проводов для проверки и правильное сопротивление.Если все в пределах спецификации, перепроверьте все разъемы и заземление. Если все в порядке, остается только заменить черный ящик. Иногда можно снять деталь с рабочего велосипеда и заменить ее на рассматриваемую. В большинстве случаев это может работать очень хорошо. В других случаях плохая часть может вытеснить другие хорошие части. Причина этого в том, что эти системы производят очень высокое напряжение. Это напряжение должно куда-то уходить. Иногда он может прожечь пластиковый корпус.Хорошая новость в том, что в большинстве мотоциклетных систем такое случается довольно редко. Разве тебе не нравится способ, которым я пользуюсь чаще всего, иногда, и может, и может? Есть веские причины, по которым электрические детали продаются без гарантии.

Еще нужно проверить воздушный зазор между спусковым крючком и магнитом на маховике. Обычно это делается с помощью немагнитных латунных манометров. Также можно использовать кусок пластика нужной толщины. Эта толщина обычно составляет от 0,005 дюйма до 0,010 дюйма. Постарайтесь подвести детали как можно ближе, чтобы они не задели.

Иногда нет отдельного пускового устройства. Все в катушках или черном ящике. Схема считывает повышение напряжения и вызывает искру в нужный момент. У них действительно есть маленькие блоки зажигания, которые используются в газонокосилках и небольших двигателях. Мне говорят, что некоторые из этих агрегатов можно использовать на мотоциклах. Я никогда не использовал их на велосипеде, но они работают с другими двигателями малого диаметра.

Большинство велосипедов Dirt имеют магнито CDI и не требуют батареи. Большинство уличных велосипедов имеют CDI с заряженным аккумулятором и требуют полностью заряженного аккумулятора.Эта батарея также должна питать стартер, фары, радио и другие вещи в дополнение к зажиганию. Разные вещи требуют разных требований к питанию от аккумулятора. Мы думаем о батарее как о стабильном питании 12 вольт, и это должно быть. Но все может быть иначе. При чем здесь электронное зажигание? Большинству электронных устройств зажигания требуется полное напряжение 12 В для получения хорошей искры. Если вы оставите байк на долгое время или батарея разряжена, вы можете не получить полных 12 вольт. Теперь стартер может вращаться нормально, но для него требуется ток больше, чем вольт.

Подумайте об этом так. Амперы - объемные, вольт - напряжения. Сила тока не перескочит через промежуток свечи зажигания, а стартер не раскрутит напряжение. По крайней мере, их не будет в тех цифрах, с которыми мы имеем дело. Как бы то ни было, стартер крутится, но в системе зажигания недостаточно вольт для зажигания свечи зажигания. Мораль? Убедитесь, что у вас есть исправный, полностью заряженный аккумулятор, прежде чем начинать поиск проблем с зажиганием.

Не отключайте ничего при работающем двигателе. Это включает крышку свечи зажигания.Эти системы могут производить много вольт, например 18 000–30 000 и более. Он должен куда-то пойти. Журнал «Ридерс Дайджест» широко разоблачает плохую автомеханику. Они открутили одну крышку свечи зажигания и отнесли ее к кучке разных механиков. Они жаловались, что многие из этих механиков провели подробные дорогостоящие тесты, вместо того, чтобы просто снова закрыть пробку. Эти механики не сделали ничего плохого. Выдергивание этой свечи могло поджечь всю систему зажигания. Я видел это. Когда вы проверяете наличие искры, заземляйте эту свечу на двигателе.Искра должна легко перескочить через зазор 1/4 дюйма. Если она не прыгнет на 1/4 дюйма или более за пределы двигателя, она не будет прыгать на 0,030 дюйма внутри двигателя при сжатии. Удобный инструмент - искра тестер. Существует много разных типов. Вы можете купить его или сделать самому очень легко.

Возьмите новую свечу зажигания и выпрямите боковой электрод. Теперь припаяйте небольшой зажим сбоку, и все готово. Прикрепите его к головке блока цилиндров и наденьте крышку свечи зажигания. Проверните двигатель, и вы легко увидите искру.Двигатель может работать и будет работать, если вы подсоедините зажим тестера к концу свечи зажигания. При условии, конечно, что свеча исправна и установлена ​​в двигателе.
Помните, что именно эта искра вызывает горение топливно-воздушной смеси. То же самое он может делать и вне двигателя.
Убедитесь, что на этом тестере искры или рядом с ним нет пролитого бензина или других легковоспламеняющихся смесей.
Держите под рукой огнетушитель.

Что делать, если есть пропуски зажигания, скажем, при 1/2 дроссельной заслонке, но только под нагрузкой? Карбюрация может вызвать промах, который выглядит, действует и ощущается точно так же, как промах при зажигании.Как отличить? Легко, подключите индикатор времени. По возможности используйте один из типов, который не нужно подключать к батарее для питания. Многие огни старого стиля были такими. Приклейте его к рулю и отправляйтесь на прогулку. Посмотри на свет. Если при пропуске зажигания свет выглядит ярким и ровным, значит проблема в карбюрации. Если он гаснет при пропуске зажигания, значит проблема в зажигании. Есть много способов сделать это, и вы можете использовать разные инструменты, например, заглушки с подсветкой.Главное - увидеть, когда искра возникает ... или не возникает.

Ну вот. Надеюсь, все это поможет. Одно можно сказать наверняка ... теперь вы знаете так же мало, как и я!

Эта страница вам помогла? Хотели бы вы нам помочь? Если да, Щелкните ЗДЕСЬ

Copyright 1999-2002 dansmc.com. Все права защищены.

.

Смотрите также