RU (495) 989 48 46
Пленка на бампер

АНТИГРАВИЙНАЯ ЗАЩИТА БАМПЕРА

 

Аккумулятор прямая и обратная полярность отличия


что такое прямая и обратная, в чем разница и как определить отличия

Каждая аккумуляторная батарея имеет на корпусе полюсные выводы – минус (-) и плюс (+). Через клеммы она подключается к бортовой сети автомобиля, питает стартер и другие потребители. Расположение плюса и минуса определяет полярность АКБ. Водителям важно точно знать полярность аккумулятора, чтобы не перепутать контакты при установке.

Полярность аккумулятора

Полярностью называют схему расположения токовыводящих элементов на верхней крышке или лицевой стороне аккумулятора. Другими словами, это положение плюса и минуса. Токовыводы также выполнены из свинца, как и пластины внутри.

Прямая и обратная полярности

Существуют две распространенные схемы расположения:

Прямая

В советский период все аккумуляторы отечественного производства были с прямой полярностью. Полюсные выводы располагаются по схеме – плюс (+) слева и минус (-) справа. Аккумуляторы с такой же схемой выпускаются и сейчас в России и на постсоветском пространстве. АКБ иностранного производства, которые сделаны в России, также имеют данную схему расположения выводов.

Обратная

На таких аккумуляторах слева расположен минус, а справа плюс. Данное расположение характерно для АКБ европейского производства и поэтому такую полярность часто называют «европолярностью».

как определить, разница с прямой

АКБ

Полярностью называют схему расположения токовыводов на лицевой крышке батареи. Специалисты выделяют два типа: обратную и прямую. Признаком, по которому их отличают, является нахождение клемм. Аккумулятор устанавливают в посадочную нишу. Положение, в котором его фиксируют, изменить нельзя.

Если клеммы будут подключены неправильно, эксплуатировать АКБ (AGM, гелевую, свинцово-кислотную) невозможно. Решить проблему можно с помощью удлинения проводов. Этот способ сопровождается потерей времени. Гораздо проще обменять или приобрести новый аккумулятор.

Содержание статьи:

Разновидности полярности

Чтобы проверить принадлежность АКБ, ее необходимо развернуть к себе внешней стороной. Ее можно идентифицировать по наклейке. Всего на батарее находится два вывода (положительный и отрицательный). Под обратной (европейской) полярностью аккумулятора Varta подразумевают схему, на которой минусовая клемма располагается с левой стороны, а плюсовая – с правой.

Обратная и прямая полярность АКБ

Прямая (российская) полярность отличается иным расположением выводов (отрицательный – справа, положительный – слева). Некоторые утверждают, что кроме обратной (0) и прямой (1) полярности существует иные способы крепления клемм к автомобильным аккумуляторам. Это мнение ошибочно, единственной разницей является типоразмер батареи. Азиатские АКБ отличаются от американских уменьшенным размером клемм, высотой и шириной. Необходимо отметить отсутствие «ступеньки».

Разница между прямой и обратной полярностью

Владельцы легковых транспортных средств иностранного производства должны понимать, что на них устанавливают батареи с обратной полярностью. Отечественные автомобили оснащают аккумуляторы, клеммы которых расположены в «прямом» порядке.

На грузовые машины ставят специальные АКБ. Отводы находятся на узкой стороне корпуса. Обратную полярность в этом случае фиксируют цифрой «3», прямую – «4». Чтобы понять, к какому типу относится аккумулятор, его нужно осмотреть.

Внешний вид батарей с прямой и обратной полярностью довольно схож, поэтому перепутать их довольно легко. Чтобы не ошибиться, нужно при покупке обязательно ознакомиться со всеми необходимыми параметрами. Торопиться при выборе АКБ категорически запрещено.

Выбор АКБ

Новичку следует уделить внимание следующим нюансам:

  1. Плюсовая клемма толще минусовой. Таким образом снижают вероятность ошибки.
  2. Для определения полярности ориентируются на маркировку и расположение отводов.
  3. На аккумуляторах, которые устанавливают на спецтехнику и грузовые автомобили, клеммы размещены по диагонали.

Схемы обратной и прямой полярности считаются самыми востребованными. В перечне редких находятся аккумуляторы, обозначенные шестеркой (квадратный корпус, положительный отвод с правой стороны), 9 или 5 (клеммы располагаются посередине АКБ).

Возможные проблемы

При приобретении «неправильного» аккумулятора, эксплуатация оборудования становится невозможной. Трудности начинаются еще на этапе установки.

Устройство аккумуляторной батареи

Отсутствие опыта и низкая концентрация внимания может привести к:

Переполюсовка аккумулятора (60, 70 Ач) с обратной полярностью провоцирует появление искр. При возникновении признаков возгорания процедуру следует прекратить. Сменить местоположение клемм не получится.

Аккумулятор

В исключительных случаях автолюбитель сможет применить аккумуляторную батарею из другой категории. Обязательным пунктом является изменение положения АКБ на 180 градусов. Это необходимо для того, чтобы обеспечить совпадение клемм и выводов.

Данный метод установки не подойдет, если провода не имеют достаточной длины. В сложившихся обстоятельствах генератор двигателя невозможно совместить с основной «массой» транспортного средства. Чтобы избежать подобных проблем, провода делают более длинными. Их диаметр должен быть одинаковым.

Заключение

АКБ VARTA

Если аккумулятор уже куплен, а возможность замены отсутствует, стоит использовать его по назначению. Для этого АКБ нужно аккуратно сместить к «плюсовой» клемме. Если провода хватит, автолюбитель сможет закрепить составляющие. Минусовой вывод при этом останется неподключенным.

Накидывание этого провода на клемму произойдет только после его удлинения. Сечение используемого отрезка должно быть качественным. Посредством данного способа можно соединить аккумулятор и бортовую сеть вне зависимости от полярности.

Ошибки с фиксированием клемм чаще всего делают при зарядке АКБ. Это обусловлено одинаковым размером отводов. При краткосрочном контакте водитель рискует зарядным устройством. При длительном возникает переполюсовка. Этот процедура противопоказана батарее.

В данном случае необходимо применить лампу от поворотника или габарита. После полного обнуления аккумулятор нужно заново подключить к заряднику, уделив внимание правильной фиксации.

В перечне лучших присутствуют следующие производители:

Полярность АКБ — обратная и прямая

Чтобы выбрать аккумулятор с обратной полярностью, нужно иметь опыт, понимать важность ключевых показателей. Риск возникновения трудностей повышается, если водитель не проявил должного внимания к качеству и типу предлагаемой продукции. При отсутствии специальных знаний безопаснее и проще подобрать новую батарею. Не каждый сможет переделать провода. Аккумуляторы с прямой или обратной полярностью нужно приобретать с учетом рекомендаций, данных производителей.

что это такое и как определить

Многие автолюбители, приобретая новую аккумуляторную батарею, обращают внимание только на ее рабочие параметры – напряжение, емкость, и размеры, забывая при этом о полярности. Сразу отметим, что этот термин у АКБ не относится к физике, а является исключительно конструктивным понятием. В результате, игнорирование полярности приводит к тому, что батарею просто не удается подключить к сети потому, что провода с клеммами не достают к выводам аккумулятора.

Что значит прямая или обратная полярность аккумулятора

Понятие «полярность» определяет положение клеммных выводов аккумуляторной батареи. Самыми распространенными являются два ее вида – прямая и обратная. Далее разберемся, что такое прямая и обратная полярность аккумулятора, как ее определить, и также некоторые полезные советы.

Сразу отметим, что и не на всех европейских машинах устанавливаются АКБ с обратной полярностью. Некоторые модели, которые собираются в СНГ, могут комплектоваться аккумуляторами с прямой полярность. А вот на отечественных машинах, даже на самых последних моделях, используются батареи с прямой полярностью.

Теперь о том, почему так важно знать, какая полярность АКБ нужна. Здесь все просто – провода для подключения к батарее имеют ограниченную длину, поэтому установка аккумулятора с неподходящей полярностью приведет к тому, что его просто невозможно будет подключить к бортовой сети, поскольку клеммы не будут доставать до выводов.

Как определить прямая или обратная?

Распознать, какая полярность у аккумулятора совсем несложно. Достаточно повернуть его «лицом» к себе, то есть, чтобы боковая наклейка была обращена в вашу сторону, а сами выводы располагались с ближней стороны. После этого просто смотрим, как расположены выводы: если «плюс» — слева, то прямая полярность, правое же его положение указывает на обратную.

Но перед приобретением новой батареи важно учитывать не только полярность, но и само ее расположение в посадочном месте на авто. Ведь достаточно повернуть батарею на 180 град, чтобы поменять полярность аккумулятора, вот только выводы в таком случае будут с дальней стороны. А это уже может создать проблемы с подключением АКБ к бортовой сети, из-за того, что проводов будет нахватать или же что-то помешает накинуть и закрепить клеммы.

Видео о прямой и обратной полярности аккумулятора

Что делать если перепутал полярность?

Бывает так, что батарея уже приобретена, но полярность ее не подходит, а возможности заменить на аккумулятор с нужным положением выводов нет. И все же ее можно подключить к сети авто.

Но для этого АКБ следует разместить так, чтобы «плюсовой» вывод располагался как можно ближе соответствующей клемме проводки (развернуть аккумулятор, немного сместить его в сторону). Важно сделать так, чтобы получилось подключить клемму к выводу батареи и закрепить ее.

Естественно, «минусовой» провод при этом доставать до вывода не будет, да это и не нужно. Далее берем длинный отрезок провода с хорошим сечением (можно использовать часть провода для «прикуривания»). Откручиваем «родной» массовый провод от кузова авто и заменяем его подготовленным отрезком. Закрепляем на конце клемму для подключения к АКБ и накидываем ее на вывод. Таким способом можно подключить к бортовой сети батарею с любой полярностью.

Похожие публикации

Полярность аккумулятора - что означает и как правильно определить полярность?

Полярность – расположение на крышке аккумулятора присоединительных клемм, которые являются токовыводящими элементами. Так как полюса всего два – положительный и отрицательный, то и вариантов расположения их немного – прямое и обратное. Мы рассмотрим по отношению к чему принято определять расположение клемм, что будет если случайно перепутать полюса, когда специально делается переполюсовка.

Что означает прямая и обратная полярность аккумулятора

Расположение клемм на аккумуляторе происходит всегда в определенной последовательности, по стандарту стран производителей. Клеммы всего две, плюс и минус. Они могут иметь разное положение, но наиболее удобным для обслуживания оказалось вынести клеммы на крышку. При этом они бывают поднятыми или утопленными, отличая европейский и азиатский тип.

Клеммы удобно располагать на крышке с двух сторон. Прямая и обратная полярность отличают аккумуляторы только переменой места полюсов. Если прямым считают положение, когда ты читаешь надписи на лицевой стороне, а правая рука касается правой плюсовой кнопки. Обратное положение- та же рука касается отрицательной кнопки.

Это важно учитывать, покупая аккумулятор взамен старого. Подключать клеммы наоборот будет неудобно, придется наращивать один провод, укорачивать другой.

Как определить – полярность аккумулятора прямая или обратная

У каждого аккумулятора есть лицевая сторона, снабженная маркетинговыми и информационными наклейками. Если поставить аккумулятор лицом к себе, клеммы располагаются по правую и левую руку.

«Прямая» полярность в маркировке иногда отмечается цифрой 1. Это российская компоновка аккумуляторов. Если аккумулятор стоит лицом, плюсовая кнопка под левой рукой, красная или с рифленым плюсом. Правая — отрицательная

«Обратная» полярность в классификациях отмечается цифрой «0». Чтобы определиться, нужно поставить аккумулятор лицом к себе. Левая рука ляжет на отрицательную клемму, а правая – на положительную.

Прямая и обратная полярность обозначают различие во внутренней схеме контактов банок на ту или другую сторону. Практически это значит, при замене аккумулятора владелец может перепутать полюса при подключении к шинам авто.

Разница между прямой и обратной полярностью аккумулятора

Ничем другим, кроме расположения полюсов, прямые и обратные схемы соединения банок в батарею не отличаются. Но при установке в гнездо не того аккумулятора могут возникнуть проблемы. Их будет еще больше, если не подойдут провода или перепутаете полярность.

Полярность грузовых аккумуляторов

Конечно, лучше поставить аккумулятор правильной полярности, но места под капотом больше, провода длиннее, поэтому правильно подсоединить можно любой аккумулятор. Важно не перепутать полюса при сборке схемы. В связи с тем что аккумуляторы для грузовиков габаритнее, вариантов подсоединения в них больше — полюса располагаются по вертикали, горизонтали и диагонали, меняясь местами.

 Как определить полярность аккумулятора

На грузовых авто установлены емкие и тяжелые аккумуляторы. У них точно также как определяется прямая и обратная полярность. Справа положительный полюс – прямая полярность, отрицательный – обратная. Только смотреть нужно не с лица, а со стороны, где ближе выводы. И обратная полярность в грузовом авто маркируется цифрой «3», а прямая цифрой «4». Если контакты расположились по диагонали – они маркируются цифрой «2». Есть еще виды расположения полюсов с маркировкой «9» и «6»

Что означает обратная полярность аккумулятора

Обратная полярность значит предусмотрена вариативность посадкиотносительное расположение полюсов аккумуляторов даже у одного производителя может быть прямым и обратным. Это позволяет эффективнее использовать подкапотное пространство, делая удобную компоновку. Тем важнее выбрать точно такой же аккумулятор. Если полярность обратная, независимо, в грузовой или легковой машине, катод будет всегда находиться под правой рукой, при условии, что аккумулятор стоит правильно.

Смена полярности аккумулятора

Смена полярности аккумулятора может произойти случайно или преднамеренно. Если вы перепутали клеммы при прикуривании – материальные издержки как донору, так и акцептору обеспечены.

Если случайно произвели смену полярности в своем авто, то в лучшем случае сгорит главный предохранитель, в худшем – диодный мост. Чем быстрее заметили косяк – тем меньше потери.

Смена полярности, как переполюсовка применяется для возвращения работоспособности сульфатированному АКБ. Аккумулятор с аппетитом ест сульфат свинца, очищая пластины. Но переполюсовка – работа аккумулятора вопреки правилам. Вынужденная мера должна быть временной. Гораздо лучше использовать при десульфатации двойную смену полярности.

Видео

Полярность прямая, обратная – вроде бы ясно все. Но случаются эксцессы. Предлагаем видео по теме.

 

Прямая и обратная полярность аккумулятора: как определить

Прямая и обратная полярность автомобильных аккумуляторов – это то, что необходимо изучить начинающему водителю. Ведь последствия неправильного подключения могут быть действительно серьезными. Поэтому изучение правил подключения клемм избавит от проблем.

Полярность – что это такое? По сути, полярность аккумулятора прямая и обратная – это определенное расположение токопроводящих клемм, которое присуще отечественным и европейским агрегатам.

Стандарты

Хотя автомобильная промышленность в разнообразных государствах и развивается синхронно, некоторые отличия все же есть.

Российские компании разрабатывают и выпускают агрегаты с прямой полярностью. Хотя некоторые компании-изготовители конструируют аккумуляторы, у которых отличное от стандарта размещение токопроводящих клемм.

Евро варианты разрабатываются для иностранных автотранспортных средств.

Не так давно компании-изготовители приступили к выпуску источников питания, оснащенных 2 рядами выводов. Они подходят для различных стандартов.

Прямая полярность АКБ

Отечественные компании, которые занимаются изготовлением аккумуляторных батарей, выпускают устройства с полярностью прямой. Для проверки аккумуляторов проводят осмотр.

Для установления прямой и обратной полярности источник питания располагают лицевой стороной. При этом токопроводящие выводы сосредотачиваются снизу. АКБ с прямой полярностью отличаются тем, что минус находится справа, плюс – слева.

Прямая полярность аккумулятора прослеживается на отечественном транспорте.

Обратная полярность АКБ

Аккумуляторы с обратной полярностью выпускают европейские компании. Отличается европейский источник расположением «банок», которые входят в состав. Определить, какой автомобильный аккумулятор перед вами, можно по тому же принципу. В этом случае минус будет справа, а плюс – слева.

Батарею с обратной полярностью устанавливают на европейские транспортные средства.

Как отличить прямую полярность от обратной?

Установить, в чем разница между прямой и обратной полярностью, несложно. Для этого:

  1. АКБ располагают так, чтобы была видна наклейка, выводы.
  2. Определяем расположение плюсовой, минусовой клеммы.
  3. У европейских моделей плюс находится справа. Прямая полярность акб отличается тем, что плюс находится слева.

Прямая и обратная полярность аккумулятора – это то, что учитывается во время подбора. Дополнительно изучается посадочное место, куда в дальнейшем будет монтироваться источник питания. Учитывается и длина силовых проводов, которые необходимы для подключения устройства.

Когда возникает необходимость в определении стандарта?

Изучение расположения клемм необходимо в таких случаях:

Способы определения без маркировки

Как определить полярность аккумулятора, если отсутствует маркировка? Специалисты выделяют 3 способа:

Отрицательные выводы отличаются от положительных диаметром. Размер плюсовой клеммы больше.

Для более точного определения отрицательный вывод поочередно подключают к выводам аккумуляторной батареи. Плюсовую клемму изолируют. При неправильном определении возникнут проблемы с подключением. Хотя точно установить, какая полярность, с помощью такого способа сложно.

Мультиметр – устройство, которое используется для установления положительных, отрицательных клемм. Перед измерением устанавливается режим с постоянным напряжением. Щупы, которые подведены к мультиметру, подключаются поочередно к выводам. При правильном подключении на мониторе отображается «12 В». Отличаться результаты могут, если подключение выполнено неправильно.

При проверке эксплуатируемых источников питания обследуются положительные выводы. На них, как правило, присутствует налет белого или зеленого цвета.

Последствия неправильного подключения

Переполюсовка – проблема, с которой сталкиваются даже опытные автомобильные электрики. Такие ситуации возникают из-за спешки, отсутствия маркировки.

Не учитывают отличия и из-за того, что цвет силовых кабелей, которые применяются при подключении акб евро с обратной полярностью, изменен.

К чему приводят подобные действия?

Поломка генератора

Если не знать, как определить полярность аккумулятора, провести неграмотное подключение, то в 85-90 % потребуется замена или ремонт генератора. Случалось и так, что подобные действия становились причиной воспламенения электрической проводки.

Переполюсовка провоцирует выход из строя 1-2 диодов, которые входят в состав выпрямительного моста. Обусловлено это их соединением. В результате, через образовавшееся соединение проходит максимальный ток, который становится причиной пробоя. Из-за того, что сопротивление пробитого диода нулевое, ток постоянно возрастает. Увеличивается и вероятность воспламенения проводки, выхода из строя источника питания, у которого обратная или прямая полярность. В состав современных генераторов входит предохранитель, который представлен в виде плавкой вставки. При переполюсовке он защищает внутренние элементы. Но и в этом случае проверка проводится.

Блок управление вышел из строя

Неправильное подключение приводит к поломке блока управления мотором. Из-за этого управление двигателем усложняется. В некоторых случаях мотор вообще не заводится. Для того чтобы предотвратить подобные последствия, компании-изготовители внедряют в блок управления защиту. Она требуется и в том случае, если генератор работает неправильно. Обозначать ее могут по-разному.

Защита представлена в виде стабилитрона. Его подводят к питающей шине. Подключение осуществляется параллельно. При неправильном подключении пробивается стабилитрон. И для того чтобы восстановить работоспособность системы, проводят замену стабилитрона. Если запасного стабилитрона нет, то вышедший из строя элемент выкусывают.

Выход из строя предохранителей

Если прямая или обратная полярность определена неправильно, то нередко выходит из строя предохранитель. При переполюсовке одновременно перегорает 20-25 % элементов, которые установлены в автотранспортное средство.

Перед заменой тщательно проверяют каждый предохранитель, который установлен изготовителями. Начинают проверку с распределительных компонентов, которые сосредоточены в капоте. Для замены подбирают предохранители, которые имеют такой же номинал. Использование элементов с большим номиналом невыгодно. Поэтому данным различием нужно интересоваться.

После замены предохранителей и тестирования генератора, осуществляется подключение автомобильного источника питания. Далее выполняется запуск мотора. После того как двигатель проработал 10-15 минут, определяется, насколько сильно нагрелся генератор. Чрезмерное поднятие температурного режима – признак пробитых диодов, которые входят в состав.

Перед эксплуатацией автотранспорта проводят проверку силовых узлов, электрической проводки, устройств. Все элементы и агрегаты должны быть исправными.

Можно ли устанавливать АКБ с противоположным размещением клемм?

Такая информация необходима начинающим автомобилистам, которые приобретают аккумуляторные батареи с обратным расположением токопроводящих выводов. Их последующая установка приводит к неприятным последствиям:

Установка АКБ, которая не соответствует стандартам, неприемлема. Ведь это приводит к выходу из строя отдельных узлов машины или же всей электроники, блока управления.

Полезные рекомендации

Дабы предотвратить неправильное подключение токопроводящих клемм, необходимо выполнять несколько правил:

  1. Перед подведением силовых кабелей тщательно проверяется соответствие маркировки. Опытные мастера рекомендуют выполнять проверку 2-3 раза.
  2. Если нанесенная маркировка износилась, наклеиваются новые обозначения. Положительной клемме уделяется особое внимание.
  3. Устанавливать в автотранспортное средство ранее эксплуатируемые источники питания не стоит. Ведь вероятность нарушения работоспособности генератора, силовых узлов возрастает.
  4. Периодически проверяется электрическая проводка, силовые узлы. Для этих целей используют специализированное оборудование, агрегаты.
  5. Выбирая новый источник питания, учитывается не только размещение клемм, но и способ фиксации, габариты, размеры выводов.

Для упрощения процесса используются каталоги, которые расположены на сайтах компаний-производителей. Они оснащены поисковиками, посредством которых проще подбирать модель.

Работоспособность автотранспортного средства во многом зависит от правильности определения полярности аккумуляторной батареи. Для этого используют различные способы. При необходимости привлекают мастеров, которые располагают всеми инструментами и устройствами.

Видео на тему полярностей акб


Прямая и обратная полярность аккумулятора

Одним из источников питания электроэнергией бортовой сети автомобиля является аккумулятор (он же просто батарея или АКБ). Работа этого элемента основана на химических реакциях, но водителю не обязательно знать все нюансы в его конструкции и принципы функционирования, тем более, что конструкция батареи такова, что или требует минимального вмешательства, либо вообще его не требует.

Для большинства автовладельцев – это всего лишь пластиковая герметичная коробка с ручкой (корпус батареи), с двумя выводами на верхней крышке к которым подключается «плюсовой» и «минусовой» провода. В ряде моделей могут дополнительно иметься пробки, для проведения обслуживания аккумулятора, а также сигнальное окошко, по которому можно узнать, что требуется вмешательства (долить воды или зарядить аккумулятор).

Всё, что остается водителю -это правильно подключить провода с клеммами к выводам батареи и все. Но часто возникает достаточно интересная проблема – на старом АКБ провода запросто доходили до выводов и накидывание клемм не составляло труда. А после приобретения новой батареи оказывается, что у нее «плюс» и «минус» поменяны местами и проводка не достают до своих выводов.

Все дело оказывается в таком термине, как полярность. Но в отличие от физических понятий полярности в аккумуляторе все значительно проще. Этот термин в аккумуляторе определяет расположение токовыводящих элементов (тех самых выводов, к которым подключаются провода бортовой сети) на крышке корпуса.

Видео: Определение полярности автомобильного аккумулятора

Прямая и обратная полярность аккумулятора

data-full-width-responsive="true">

И при подборе нового аккумулятора важно правильно выбрать его полярность, чтобы подключение к бортовой сети авто не создало проблем. Самыми распространенными являются два типа полярности:

  1. Прямая;
  2. Обратная.

У них дополнительно есть еще ряд обозначений, которые будут упомянуты ниже.

Вообще определить, какая полярность у АКБ – очень просто. Но не зная, какая батарея нужна для вашего авто, определение полярности не поможет. Поэтому очень важно перед поездкой на рынок за новым аккумулятором просмотреть расположение проводов с клеммами на автомобиль.

Теперь о самом термине и как его определять. Прямая полярность используется на всех ВАЗах, поскольку АКБ с таким расположением выводов – разработка еще советских конструкторов, поэтому этот тип выводов часто еще называется «российским». Дополнительно в такую полярность еще обозначают цифрой «1». У аккумуляторов с таким типом полярности «плюсовой» вывод располагается слева, а «минусовой» — справа.

Обратная полярность – полная противоположность прямой, то есть, выводы у них поменяны местами («плюсовой» — справа, «минусовой» — слева). Используется такой тип на многих зарубежных авто, но не всех. Поэтому эту полярность еще называют «европейской», также она еще обозначается цифрой «0».

Существуют еще несколько видов полярности, но они особого распространения не получили. К примеру в США используется их собственная полярность – «американская», которая отличается тем, что выводы у них установлены не на верхней крышке корпуса, а на боковой поверхности.

Как определить полярность аккумулятора и чем грозит спутывание полярности

Рассмотрим, как же определить, какой тип полярности имеет аккумуляторная батарея. И здесь все просто, нужно всего лишь повернуть батарею «лицом» к себе. Ориентироваться можно по этикетке на боковой поверхности, поскольку она клеится на лицевой части, или по самим выводам. Батарею нужно повернуть так, чтобы они располагались с ближней стороны, то есть, повернута к вам. А после этого и нужно смотреть, с какой стороны расположены выводы. Если «плюсовой» — слева, то это прямая полярность, если справа – обратная.

А теперь о том, чем грозит неправильный выбор по полярности, и какие проблемы это может создать. Полярность указывается неспроста. Дело в том, что у каждого автомобиля имеется специальное посадочное место для АКБ, где он и закрепляется. При этом провода с бортовой сети подводятся каждый со своей стороны и длина их – определенная. Все это направлено на то, чтобы случайно не перепутать их перед подключением. Но неправильно подключить АКБ все же возможно из-за все той же полярности. Для примера, на ВАЗ установлена батарея прямой полярности, а владелец при покупке нового не обратил внимание и купил «европейский» аккумулятор. При попытках установить его на авто, «плюс» оказывается с другой стороны, поэтому и получатся «переплюсовка», которая может нанести значительный вред.

Неправильное подключение приводит к перегоранию электронных приборов бортовой сети авто и может стать причиной пожара. Интересно, что не все электроприборы сгорят, поскольку ряд из них особо не восприимчивы к изменению полюсов. К примеру, обычной лампе накаливания разницы нет, как сделано подключение, она гореть будет. Что касается электродвигателей, то при смене полюсов они всего лишь начинают крутить в другую сторону. А вот электронные приборы сгорят, поскольку для них «переплюсовка» недопустима.

Сразу скажем, что производители аккумуляторов тоже принимают участие в том, чтобы предотвратить возможное неправильное подключение. И делают они это путем использования разных по размеру выводов. Диаметр «плюсового» вывода больше, чем «минусового». Клеммы, которые подсоединяются к проводам, тоже отличаются по размерам отверстий. Поэтому надеть и закрепить, к примеру, «минусовую» клемму на «плюсовой» вывод не получиться (если не воспользоваться молотком). Дополнительно производители наносят на корпус тиснения, указывающие, какой это вывод.

Ещё кое-что полезное для Вас:

Видео: Какой аккумулятор подходит на Приору.

Что можно предпринять?

Несмотря на все предусмотрительности, проблемы с установкой АКБ из-за его полярности все же возникают достаточно часто. Чтобы их избежать, необходимо не только определить полярность батареи, но еще и посмотреть, как она расположена в посадочном месте. И это очень важно.

Все потому, что достаточно развернуть аккумулятор на 180 градусов, чтобы получить правильное положение выводов на АКБ. К примеру, на автомобиле используется батарея прямой полярности и установлена она «лицом», если смотреть на нее (этикеткой вперед). Если же взять «обратный» аккумулятор и развернуть его на 180 градусов, то выводы окажутся как надо, но при этом АКБ будет обращена тыльной стороной. А поскольку провода имеют определенную длину, то они могут просто не доставать до выводов или им что-то будет мешать.

Напоследок рассмотрим, что же предпринять, если в наличии имеется аккумулятор с неподходящей полярностью, а достать другой не представляется возможным. Здесь важно постараться расположить батарею так, чтобы «плюсовой» провод доставал до своего вывода на аккумуляторе и его можно было закрепить. Для этого можно разворачивать батарею, постараться ее сместить в сторону и т. д.

А вот с «минусовым» проводом разобраться будет значительно легче. Ведь он является массой и подключен к кузову авто. Поэтому его запросто можно нарастить. То есть, берем отрезок провода большого сечения (больше – лучше) необходимой длины. Откручиваем «родной» провод, а на его место закрепляем подготовленный. Затем перекидываем клемму и подключаем его к АКБ.

А вот «плюсовой» провод нарастить или заменить не получится поэтому и важно сделать все, чтобы подключить его к батарее «как есть», без внесения доработок, тем более, что сделать это практически нереально. Ведь обычная скрутка для наращивания длины является небезопасной.

Разница между прямым и обратным смещением по сравнительной таблице

Одно из основных различий между прямым и обратным смещением состоит в том, что при прямом смещении положительная клемма батареи подключается к полупроводниковому материалу p-типа , а отрицательная клемма подключается к n- Тип полупроводниковый материал . Тогда как при обратном смещении материал n-типа подключается к положительной клемме источника питания, а материал p-типа подключается к отрицательной клемме батареи.Прямое и обратное смещение дифференцируются ниже в сравнительной таблице.

Смещение означает, что к полупроводниковому устройству подключено электрическое питание или разность потенциалов. Разность потенциалов бывает двух типов: прямое смещение и обратное смещение.

Прямое смещение снижает потенциальный барьер диода и обеспечивает легкий путь для прохождения тока. В то время как в обратное смещение разность потенциалов увеличивает силу барьера, который не позволяет носителю заряда перемещаться по переходу.Обратное смещение обеспечивает высокий резистивный путь для прохождения тока, и, следовательно, ток не течет через цепь.

Содержание: прямое смещение по сравнению с обратным смещением

  1. Сравнительная таблица
  2. Определение
  3. Ключевые отличия

Сравнительная таблица

Основа для сравнения Прямое смещение Обратное смещение
Определение Внешнее напряжение, которое прикладывается к PN-диоду для уменьшения потенциального барьера и образует легкий ток через него, называется прямым смещением. Внешнее напряжение, которое прикладывается к PN-переходу для усиления потенциального барьера и предотвращения протекания тока через него, называется обратным смещением.
Символ
Подключение Положительная клемма батареи подключена к полупроводнику P-типа устройства, а отрицательная клемма подключена к полупроводнику N-типа Отрицательная клемма батареи подключена к P-области и положительный полюс батареи подключен к полупроводнику N-типа.
Барьерный потенциал Снижает Усиление
Напряжение Напряжение анода больше, чем катода. Напряжение на катоде больше, чем на аноде.
Прямой ток Большой Маленький
Слой истощения Тонкий Толстый
Сопротивление Низкое Высокое
Текущий поток Допускает Предотвращает
Величина тока Зависит от прямого напряжения. Ноль
Эксплуатация Проводник Изолятор

Определение прямого смещения

При прямом смещении внешнее напряжение подается на диод PN-перехода. Это напряжение устраняет потенциальный барьер и обеспечивает путь с низким сопротивлением для прохождения тока. Прямое смещение означает, что положительная область подключена к p-клемме источника питания, а отрицательная область подключена к n-типу устройства.

Напряжение потенциального барьера очень мало (около 0,7 В для кремния и 0,3 В для германиевого перехода), поэтому для полного устранения барьера требуется очень небольшое напряжение. Полное устранение барьера составляет путь с низким сопротивлением для прохождения тока. Таким образом, через переход начинает течь ток. Этот ток называется прямым током.

Определение обратного смещения

При обратном смещении отрицательная область подключена к положительной клемме батареи, а положительная область подключена к отрицательной клемме.Обратный потенциал увеличивает силу потенциального барьера. Потенциальный барьер препятствует потоку носителей заряда через переход. Это создает путь с высоким сопротивлением, в котором ток не течет через цепь.


Ключевые различия между прямым и обратным смещением

  1. Прямое смещение снижает силу потенциального барьера, из-за чего ток легко проходит через переход, тогда как обратное смещение усиливает потенциальный барьер и препятствует потоку носителей заряда.
  2. При прямом смещении положительный вывод батареи подключен к p-области, а отрицательный вывод подключается к материалу n-типа, в то время как при обратном смещении положительный вывод источника питания подключается к материалу n-типа, а отрицательный клемма подключается к материалу p-типа устройства.
  3. Прямое смещение создает электрическое поле поперек потенциала, которое снижает силу потенциального барьера, тогда как обратное смещение увеличивает силу потенциального барьера.
    • Примечание. Потенциальный барьер - это слой между диодом с PN-переходом, который ограничивает движение электронов через переход.
  4. При прямом смещении напряжение на аноде больше, чем на катоде, тогда как при обратном смещении напряжение на катоде больше, чем на аноде.
  5. Прямое смещение имеет большой прямой ток, а обратное смещение имеет очень маленький прямой ток.
    • Примечание. Ток в диоде, когда он течет в прямом направлении, называется прямым током.
  6. Слой обеднения диода очень тонкий при прямом смещении и толстый при обратном смещении.
    • Примечание. Слой обеднения - это область вокруг соединения, в которой свободные носители заряда истощены.
  7. Прямое смещение уменьшает сопротивление диода, тогда как обратное смещение увеличивает сопротивление диода.
  8. При прямом смещении ток легко течет по цепи, тогда как обратное смещение не позволяет току проходить через нее.
  9. При прямом смещении величина тока зависит от прямого напряжения, тогда как при обратном смещении величина тока очень мала или незначительна.
  10. При прямом смещении устройство работает как проводник, тогда как при обратном смещении устройство действует как изолятор.

Прямое напряжение кремниевого диода составляет 0,7 В, а прямое напряжение германия - 0,3 В.

.

Разница между прямым и обратным смещением (со сравнительной таблицей)

Полярность приложенного внешнего потенциала (напряжения) к любому устройству характеризуется как прямое и обратное смещение. Решающее различие между прямым и обратным смещением состоит в том, что при прямом смещении p-область устройства напрямую соединяется с положительной стороной батареи, а n-область соединяется с отрицательной стороной батареи. В отличие от этого, при обратном смещении p-область устройства образует соединение с отрицательной стороной батареи, а n-область формирует соединение с положительной стороной батареи.

Любое устройство, на которое подается внешнее напряжение, позволяет ему вести себя иначе. В электронных схемах в основном действие электронов и дырок является результатом поведения устройства.

Давайте теперь посмотрим на содержание, которое будет обсуждаться в этой статье, а затем мы продвинемся дальше, чтобы понять другие важные различия между ними.

Содержание: прямое против обратного смещения

  1. Сравнительная таблица
  2. Определение
  3. Ключевые отличия
  4. Заключение

Таблица сравнения

Параметр Прямое смещение Обратное смещение
Текущий поток За счет основных носителей заряда. Практически незначительный ток из-за неосновных носителей заряда.
Подключение в комплекте Область P подключена к плюсу, а область n подключена к минусу батареи. Область P подключена к отрицательной клемме, а область n подключена к положительной клемме аккумулятора.
Ширина истощения Тонкая Толстая
Величина тока Высокая Низкая (только ток утечки)
Работает как Закрытый выключатель Открытый выключатель
Барьерный потенциал Меньше Больше
Функционирование Действует как проводник после преодоления потенциального барьера Действует как изолятор и протекает почти несущественный ток
Предлагаемое сопротивление Имеет низкое сопротивление. Обладает высоким сопротивлением.
Сила, испытываемая большинством авианосцев Отталкивающая Привлекательная
Диоды, работающие при заданном смещении Светодиод, туннельный диод, диод Шокли и т. Д. Стабилитрон, варакторный диод, фотодиод и т. Д.

Определение прямого смещения

Считается, что устройство с PN-переходом находится в состоянии прямого смещения, когда область p образует соединение с положительным выводом, а область n формирует соединение с отрицательным выводом батареи.

Мы уже знаем, что в полупроводниковом материале p-типа дырки присутствуют в качестве основных носителей, а электроны - в качестве неосновных. В то время как в случае полупроводникового материала n-типа электроны являются основными носителями, а дырки - неосновными носителями.

Давайте посмотрим на представление прямого смещения, применяемого к диоду с PN переходом:

Итак, когда на устройство подается прямое смещение, как показано выше. Тогда большинство перевозчиков с обеих сторон, т.е.е. дырки со стороны p и электроны со стороны n испытывают силу отталкивания от положительного и отрицательного полюсов батареи соответственно.

Как мы уже знаем, физический закон Кулона гласит, что одинаковых зарядов отталкиваются друг от друга, а разные заряды притягиваются друг к другу . Таким образом, из-за отталкивания от внешнего источника большинство носителей получают достаточную энергию и преодолевают барьерный потенциал. Барьерный потенциал - это не что иное, как область нейтральных атомов, которые генерируются из-за разницы температур, когда к нему не подается внешнее напряжение.

С увеличением приложенного прямого напряжения ширина обедненной области уменьшается. После полного преодоления барьерного потенциала область обеднения уменьшается, и отмечается резкое протекание тока, потому что теперь большое количество основных носителей заряда пересекает область перехода.

Определение обратного смещения

Считается, что устройство с PN-переходом находится в состоянии обратного смещения, когда p-область подключена к отрицательному потенциалу батареи, а n-область подключена к положительному потенциалу батареи.

Давайте посмотрим на обратное смещение диода с PN переходом:

Из приведенного выше рисунка ясно, что большинство носителей, присутствующих в p-области, то есть дырки, притягиваются к отрицательному выводу батареи. Точно так же электроны в n-области притягиваются к положительной стороне батареи. Таким образом, большинство перевозчиков начинают удаляться от перекрестка. В результате увеличивается ширина истощения. Из-за увеличения ширины обедненной области протекание тока за счет основных носителей несколько ограничивается.

Однако неосновные носители в обеих областях, то есть электроны на стороне p и дырки на стороне n, испытывают отталкивание от клемм батареи и перемещаются через переход. Из-за этого движения через устройство проходит очень небольшой обратный ток утечки . Этот ток известен как ток обратного насыщения. Как и в случае с обратным смещением, через устройство не протекает ток из-за большинства носителей. Таким образом, говорят, что он ведет себя как изолятор .

Ключевые различия между прямым и обратным смещением

  1. Фактор, который создает ключевое различие между прямым смещением и обратным смещением, состоит в том, что когда прямое напряжение прикладывается к устройству, то в основном протекает ток из-за движения основных носителей заряда . Напротив, когда к устройству подается обратное напряжение, движение только неосновных носителей генерирует небольшой ток , известный как ток утечки.
  2. При подаче прямого напряжения на устройство с PN-переходом ширина обеднения уменьшается с увеличением подаваемого напряжения. В то время как, когда на устройство с PN-переходом подается обратное смещение, ширина обедненной области увеличивается с подаваемым напряжением.
  3. Из-за того, что приложено прямое напряжение, устройство с pn переходом действует как хороший проводник после преодоления барьерного потенциала. Принимая во внимание, что из-за обратного подаваемого напряжения устройства с pn переходом начинают вести себя как изолятор , таким образом, позволяя практически пренебречь током, протекающим через него.
  4. В случае прямого приложения потенциала устройство PN-перехода обеспечивает очень низкое сопротивление. С другой стороны, в случае обратного приложенного напряжения устройство pn перехода обеспечивает очень высокое сопротивление.
  5. В основном понятно, что прямое смещенное напряжение допускает большой поток тока. , таким образом, работает как замкнутый переключатель. В то время как обратное смещенное напряжение не позволяет протекать достаточному току, , следовательно, в основном называется состоянием разомкнутого переключения.
  6. Из-за тонкой области истощения во время прямого смещения потенциал барьера низкий.Однако из-за большой ширины обеднения в случае обратного смещения потенциал барьера высок.
  7. В случае прямого смещения большинство носителей испытывают отталкивание от клеммы аккумулятора. В отличие от этого, в случае обратного смещения большинство носителей испытывают притяжение со стороны выводов батареи.

Заключение

Итак, из приведенного выше обсуждения мы можем заключить, что протекание тока через устройство с PN-переходом зависит от предусмотренного для него устройства смещения.Так как различные факторы показывают зависимость от подаваемого на него внешнего напряжения.

.

Защита от обратного тока / полярности батареи • Цепи

В устройствах с батарейным питанием и съемными батареями обычно необходимо предотвратить неправильное подключение батарей, чтобы предотвратить повреждение электроники, случайное короткое замыкание или другие несоответствующие операции. Если это невозможно физически, вам необходимо включить некоторую электронную защиту от обратного тока. Физическая защита может означать просто поляризованный разъем или батарею со смещенными соединениями (как в большинстве литиевых батарей мобильных телефонов) в сочетании с инструкционными символами и изображениями.Для батареек размера AAA или AA есть держатели, которые сконструированы таким образом, что при неправильной установке батареи один конец не соприкасается. По-прежнему существуют обстоятельства, когда физические средства невозможны, например, с большинством монетных батарей или если пользователь может подключить питание с помощью проводов к винтовым клеммным колодкам. Следовательно, это может относиться и к устройствам, не работающим от батарей, и, вероятно, применимо к автомобильной электронике.
Следовательно, разработчики и производители электронных продуктов должны обеспечить, чтобы обратный ток, обратный ток, протекающий в обратном направлении, и обратное напряжение смещения было достаточно низким, чтобы предотвратить повреждение либо самой батареи, либо внутренней электроники продукта.

Почему бы не использовать простой диод?

Использование диода в качестве защиты от обратной полярности мощности, как показано на схеме , схема 1 - очень простое и надежное решение, если вы можете позволить себе потерять энергию. Скорее всего, с устройством с батарейным питанием вы не захотите тратить энергию, особенно если ваше напряжение питания уже достаточно низкое, и поэтому падение напряжения на 0,3 В или 0,4 В на диоде Шоттки будет значительным и неприемлемым. Для более высоких напряжений питания в диапазоне 9–48 В и автомобильных приложений небольшое падение напряжения может не иметь значения, особенно при низком токе.При высоких токах, превышающих 5 А, может возникнуть проблема с повышением температуры из-за больших потерь мощности. Вы не хотите, чтобы диод становился слишком горячим, поэтому, скорее всего, потребуется добавить радиатор.

Цена диода Шоттки выше обычного диода, но потери существенно ниже. Имейте в виду, что многие диоды Шоттки имеют довольно высокую утечку обратного тока, поэтому убедитесь, что вы выбираете диоды с низким обратным током (около 100 мкА) в схеме защиты батареи.
При 5 амперах потери мощности в диоде Шоттки обычно будут: 5 x 0,4 В = 2 Вт по сравнению с обычным диодом: 5 x 0,7 В = 3,5 Вт.

Хорошим кандидатом для использования в системе защиты от обратного тока является новый тип диода под названием Super Barrier Rectifier (SBR) - это запатентованная и запатентованная технология Diodes Inc., в которой используется процесс производства МОП (традиционный метод Шоттки использует биполярный процесс) создать превосходное двухполюсное устройство, которое имеет более низкое прямое напряжение (VF), чем сопоставимые диоды Шоттки, но при этом обладает термостойкостью и высокими характеристиками надежности эпитаксиальных диодов PN.Диод
Super Barrier Rectifier (SBR) разработан для приложений с высокой мощностью, низкими потерями и быстрым переключением. Наличие МОП-канала в его структуре формирует низкий потенциальный барьер для большинства носителей, поэтому прямое смещение SBR при низком напряжении аналогично работе диода Шоттки. Однако ток утечки ниже, чем у диода Шоттки при обратном смещении из-за перекрытия слоев обеднения P-N и отсутствия снижения потенциального барьера из-за заряда изображения.
TRENCH SUPER BARRIER RECTIFIERS (SBRT).
Trench SBR - это следующая эволюция, которая дает нам высокопроизводительного члена семейства SBR. Благодаря использованию передовой траншейной технологии SBRT предлагает еще меньший VF для приложений, где очень важно сверхнизкое прямое напряжение. В то время как дальнейшие технологические усовершенствования постоянно применяются к SBRT, эти усилия приводят к еще более продвинутому и экономичному члену - SBRTF. Для получения дополнительной информации посетите веб-сайт Diodes Inc.

Обратная защита с использованием N-канального MOS-FET

Самые последние N-MOSFET имеют ОЧЕНЬ с низким сопротивлением, намного ниже, чем у типов P-Channel, и поэтому идеально подходят для обеспечения защиты от обратного тока с минимальными потерями. Цепь 3 показывает полевой МОП-транзистор нижнего плеча в цепи заземления. Диод на корпусе полевого транзистора ориентирован в направлении нормального тока. Когда батарея установлена ​​неправильно, напряжение затвора NMOS FET низкое, что не позволяет ему включиться.

Когда батарея установлена ​​правильно и переносное оборудование запитано, напряжение затвора NMOS FET повышается, а его канал закорачивает диод. Падение напряжения RdsOn × ILOAD наблюдается в обратном пути заземления при использовании NMOS FET.Некоторые из последних пороговых напряжений N-FET и RdsOn, используемые для защиты от обратного тока, перечислены в , таблица 1, и более высокие типы тока в , таблица 3, далее на этой странице.

Производитель Тип Пакет RdsOn
IRF (OnSemi) ILRML2502 СОТ – 23 80 мОм при пороговом напряжении 2,7 В
Вишай Si2312 СОТ – 23 51 мОм при 1.Пороговое напряжение 8 В

Таблица 1.
Обратная сторона:
Вставка N-MOSFET в цепь заземления приведет к сдвигу заземления, который может быть неприемлемым для всех приложений. Это может вызвать проблемы для чувствительных приложений (например, автомобильных систем) с одним или несколькими подключениями, возможно, к датчикам, коммуникационным шинам и исполнительным механизмам, внешним по отношению к цепи.

Чтобы использовать полевой МОП-транзистор в качестве предохранителя от обратного тока в цепи питания высокого напряжения, необходимо, чтобы для включения полевого МОП-транзистора напряжение на затворе было больше, чем напряжение батареи.Для этого требуется схема подкачки заряда, которая увеличивает сложность схемы и стоимость компонентов, а также может создавать проблемы с электромагнитными помехами. МОП-транзистор с P-каналом сопоставимого размера будет иметь более высокое значение RdsOn и, следовательно, более высокие потери мощности, но может быть реализован с помощью более простой схемы управления, содержащей стабилитрон и резистор.

Обратная защита с использованием P-канального MOS-FET транзистора

Самые последние полевые МОП-транзисторы имеют очень низкое сопротивление и поэтому идеально подходят для обеспечения защиты от обратного тока с минимальными потерями. Схема 2 показывает полевой PMOS-транзистор верхнего плеча в цепи питания. Диод на корпусе полевого транзистора ориентирован в направлении нормального тока. Когда батарея установлена ​​неправильно, напряжение на затворе PMOS FET высокое, что не позволяет ему включиться.

Стабилитрон защищает от превышения рекомендованного напряжения затвор-исток и может не требоваться в зависимости от диапазона входного напряжения и используемого полевого МОП-транзистора. Для защиты от возможных скачков напряжения и переходных процессов из-за разрушения полевого МОП-транзистора на входе можно добавить пару транзорбционных диодов, как показано на рис.3. Добавлен конденсатор между затвором и истоком, чтобы гарантировать правильную работу схемы при быстром изменении полярности входного напряжения.
Когда батарея установлена ​​правильно и переносное оборудование запитано, напряжение затвора PMOS FET становится низким, а его канал закорачивает диод.
В тракте питания наблюдается падение напряжения RdsOn × ILOAD. В прошлом основным недостатком этих схем была высокая стоимость полевых транзисторов с низким значением RdsOn и низким пороговым напряжением. Однако достижения в области обработки полупроводников привели к созданию полевых транзисторов, которые обеспечивают минимальное падение напряжения в небольших корпусах.Некоторые из последних пороговых напряжений P-FET и RdsOn показаны в таблице 2.

Производитель Тип Пакет RdsOn
IRF (OnSemi) ILRML6401 СОТ – 23 85 мОм при пороговом напряжении 2,7 В
Вишай Si2323 СОТ – 23 68 МОм при пороговом напряжении 1,8 В

Таблица 2.

Защита от обратного тока батареи с помощью интегральной схемы LM74610

LM74610-Q1 - это контроллер, который можно использовать с N-канальным MOSFET в схеме защиты от обратной полярности. Он предназначен для управления внешним МОП-транзистором для имитации идеального диодного выпрямителя при последовательном подключении к источнику питания. Уникальное преимущество этой схемы состоит в том, что она не привязана к земле и, следовательно, имеет нулевой Iq. Контроллер LM74610-Q1 обеспечивает управление затвором для внешнего N-канального полевого МОП-транзистора и внутренний компаратор с быстрым откликом для разрядки затвора МОП-транзистора в случае обратной полярности.Эта функция быстрого понижения ограничивает количество и продолжительность обратного тока, если обнаруживается противоположная полярность. Конструкция устройства также соответствует требованиям стандарта CISPR25 Class 5 EMI и автомобильным требованиям ISO7637 к переходным процессам с подходящим TVS-диодом.

LM74610 представляет собой контроллер с нулевым Iq, который объединен с внешним N-канальным MOSFET для замены диода или P-MOSFET решения обратной полярности в энергосистемах. Напряжение на истоке и стоке MOSFET постоянно контролируется выводами ANODE и CATHODE LM74610-Q1.Внутренний зарядный насос используется для обеспечения привода GATE для внешнего MOSFET. . Эта накопленная энергия используется для управления затвором полевого МОП-транзистора. Падение напряжения зависит от RDSON конкретного используемого полевого МОП-транзистора, который значительно меньше, чем у полевого транзистора. LM74610-Q1 не имеет заземления, что делает его идентичным диоду. TZ1 и TZ2 не требуются для LM74610-Q1. Однако они обычно используются для ограничения выбросов положительного и отрицательного напряжения соответственно. Выходной конденсатор Cout рекомендуется для защиты от немедленного падения выходного напряжения в результате сбоев в линии.C1 и C2 подавляют высокочастотный шум в дополнение к функции фиксаторов ESD.

Выбор MOSFET:

LM74610-Q1 может обеспечить напряжение затвор-исток до 5 В (VGS). Важными электрическими параметрами полевого МОП-транзистора являются максимальный непрерывный ток стока, максимальное напряжение сток-исток VDS (MAX) и сопротивление сток-исток RDSON. Максимальный непрерывный ток стока, ID, рейтинг должен превышать максимальный непрерывный ток нагрузки. Максимальный ток, проходящий через основной диод, IS, обычно равен или немного выше, чем ток стока, но ток основного диода протекает только в течение небольшого периода времени, когда заряжается конденсатор накачки заряда.Напряжение на внутреннем диоде полевого МОП-транзистора должно быть выше 0,48 В при низком токе. Напряжение на внутреннем диоде полевого транзистора обычно уменьшается с повышением температуры окружающей среды. Это увеличит требования к току истока для достижения минимального напряжения сток-исток на внутреннем диоде для инициирования подкачки заряда. Максимальное напряжение сток-исток, VDS (MAX), должно быть достаточно высоким, чтобы выдерживать самое высокое дифференциальное напряжение, наблюдаемое в приложении. Это может включать любые ожидаемые неисправности.LM74610-Q1 не имеет ограничения по положительному напряжению, однако для автомобильных приложений рекомендуется использовать полевые МОП-транзисторы с номинальным напряжением около 45 В.

Таблица 3 показывает примеры рекомендуемых полевых МОП-транзисторов для использования с LM74610:

Корпус
Деталь № Напряжение
(В)
Ток утечки
@ 25 * C
Rdson мОм
при 4,5 В
Vgs Порог
(В)
Напряжение диода
@ 2A при
125 * C / 175 * C
,
Площадь основания
Qual
CSD17313Q2 30 5 26 1.8 0,65 SON, 2 x 2 мм Авто
SQJ886EP 40 60 5,5 2,5 0,5 PowerPAK SO-8L, 5 x 6 мм Авто
SQ4184EY 40 29 5,6 2,5 0,5 SO-8, 5 x 6 мм Авто
Si4122DY 40 23,5 6 2.5 0,5 SO-8, 5 x 6 мм Авто
RS1G120MN 40 12 20,7 2,5 0,6 HSOP8, 5 x 6 мм Авто
RS1G300GN 40 30 2,5 2,5 0,5 HSOP8, 5 x 6 мм Авто
CSD18501Q5A 40 22 3.3 2,3 0,53 SON, 5 x 6 мм Промышленное
SQD40N06-14L 60 40 17 2,5 0,5 ТО-252, 6 x 10 мм Авто
SQ4850EY 60 12 31 2,5 0,55 SO8, 5 x 6 мм Авто
CSD18532Q5B 60 23 3.3 2,2 0,53 SON, 5 x 6 мм Промышленное
IPG20N04S4L-07A 40 20 7,2 2,2 0,48 PG-TDSON-8-10, 5 x 6 мм Авто
IPB057N06N 60 45 5,7 3,3 0,55 PG-TO263-3, 10 x 15 мм Авто
IPD50N04S4L 40 50 7.3 2,2 0,5 PG-TO252-3-313, 3 x 6 мм Авто
BUK9Y3R5-40E 40 100 3,8 2,1 0,48 LFPAK56, Power-SO8 5x6 мм Авто
IRF7478PBF-1 60 7 30 3 0,55 SO8, 5 x 6 мм Промышленное
SQJ422EP 40 75 4.3 2,5 0,5 PowerPAK SO-8L, 5 x 6 мм Авто
IRL1004 40 130 6,5 1 0,6 К-220АБ Авто
AUIRL7736 40 112 2,2 3 0,65 DirectFET, 5 x 6 мм Авто

ТАБЛИЦА 3

Защита от обратного тока батареи с помощью интегральной схемы LTC4359

LTC®4359 - это положительный высоковольтный идеальный диодный контроллер, который управляет внешним N-канальным MOSFET вместо диода Шоттки.Он контролирует падение прямого напряжения на полевом МОП-транзисторе, чтобы обеспечить плавную подачу тока без колебаний даже при небольших нагрузках. Если источник питания выходит из строя или закорочен, быстрое отключение минимизирует переходные процессы обратного тока. Доступен режим отключения для снижения тока покоя до 9 мкА для переключателя нагрузки и 14 мкА для идеальных диодных приложений. При использовании в сильноточных диодах LTC4359 снижает потребление энергии, тепловыделение, потери напряжения и площадь печатной платы. Благодаря широкому диапазону рабочего напряжения, способности выдерживать обратное входное напряжение и высокой температуре, LTC4359 удовлетворяет строгим требованиям как автомобильных, так и телекоммуникационных приложений.LTC4359 также легко подключает источники питания в системах с резервными источниками питания.
Операция:
LTC4359 управляет внешним N-канальным MOSFET для формирования идеального диода. Усилитель GATE (см. Блок-схему) распознает входы и выходы и управляет затвором полевого МОП-транзистора для регулирования прямого напряжения до 30 мВ. По мере увеличения тока нагрузки GATE поднимается выше, пока не будет достигнута точка, в которой MOSFET будет полностью включен. Дальнейшее увеличение тока нагрузки приводит к прямому падению RdsOn x ILOAD.Если ток нагрузки уменьшается, усилитель GATE опускает затвор полевого МОП-транзистора ниже, чтобы поддерживать падение на 30 мВ. Если входное напряжение снижается до точки, при которой прямое падение 30 мВ не может поддерживаться, усилитель GATE отключает MOSFET.
В случае быстрого падения входного напряжения, такого как короткое замыкание на входе или скачок отрицательного напряжения, через полевой МОП-транзистор временно протекает обратный ток. Этот ток обеспечивается любой емкостью нагрузки и другими источниками питания или батареями, которые питают выход в диодных схемах ИЛИ.FPD COMP (Fast Pull-Down Comparator) быстро реагирует на это условие, выключая MOSFET через 300 нс, тем самым сводя к минимуму помехи выходной шине. Контакты IN, SOURCE, GATE и SHDN защищены от обратных входов до –40 В. Внутренний компаратор обнаруживает отрицательные входные потенциалы на выводе SOURCE и быстро переводит GATE в положение SOURCE, выключая MOSFET и изолируя нагрузку от отрицательного входа. При низком уровне на выводе SHDN отключается большая часть внутренней схемы, снижая ток покоя до 9 мкА и удерживая MOSFET выключенным.На выводе SHDN можно установить высокий уровень или оставить открытым, чтобы включить LTC4359. Если оставить его открытым, внутренний источник тока 2,6 мкА поднимает SHDN на высокий уровень.
Информация о приложениях:
Блокирующие диоды обычно размещаются последовательно с входами питания с целью объединения резервных источников питания и защиты от реверсирования питания. LTC4359 заменяет диоды в этих приложениях на полевые МОП-транзисторы, чтобы уменьшить как падение напряжения, так и потери мощности, связанные с пассивным решением. Кривая, показанная на странице 1, иллюстрирует резкое снижение потерь мощности, достигаемое на практике.Это дает значительную экономию площади платы за счет значительного снижения рассеиваемой мощности в проходном устройстве. При низких входных напряжениях улучшение потерь напряжения в прямом направлении легко заметить там, где запасы ограничены, как показано на рисунке 2.
LTC4359 работает от 4 до 80 В и выдерживает абсолютный максимальный диапазон от –40 до 100 В без повреждений. В автомобильных приложениях LTC4359 работает через сброс нагрузки, холодный запуск и скачки между двумя батареями, и он выдерживает обратное подключение батареи, а также защищает нагрузку.
Применение идеального диода на 12 В / 20 А показано в Цепь 5 .

В дополнение к полевому МОП-транзистору Q1 включены несколько внешних компонентов. Идеальные диоды, как и их неидеальные аналоги, демонстрируют поведение, известное как обратное восстановление. В сочетании с паразитными или преднамеренно введенными индуктивностями пики обратного восстановления могут генерироваться идеальным диодом во время коммутации. D1, D2 и R1 защищают от этих всплесков, которые в противном случае могли бы превысить рейтинг выживаемости LTC4359 от –40 до 100 В.COUT также играет роль в поглощении энергии обратного восстановления. Пики и схемы защиты подробно обсуждаются в разделе «Ошибки короткого замыкания на входе».
Важно отметить, что вывод SHDN при отключении LTC4359 и снижении его потребления тока до 9 мкА не отключает нагрузку от входа, поскольку внутренний диод Q1 присутствует постоянно. Второй MOSFET требуется для приложений переключения нагрузки.

Заключение

Использование запатентованного чипа, такого как LTC4349 и LM74610, позволяет сэкономить часть проектных работ, поэтому вы получите рабочее решение с меньшими усилиями, но с более высокой стоимостью компонентов по сравнению с дискретным решением.И, если вы проектируете для автомобильной промышленности, вам необходимо убедиться, что ваша конструкция соответствует требованиям соответствующих стандартов, таких как ISO7637-2.

.

Radartutorial

pnp- Работа транзистора

Коллектор

База

Эмиттер

прямое смещение

обратное смещение

Рисунок 1. Правильно смещенный pnp-транзистор

Коллектор

База

Эмиттер

прямое смещение

обратное смещение

Рисунок 1. Правильно смещенный pnp-транзистор

Транзистор pnp работает по существу так же, как транзистор npn.Однако, поскольку эмиттер, база и коллектор в pnp-транзисторе сделаны из материалы, которые отличаются от материалов, используемых в транзисторе npn, в блоке pnp протекают разные носители тока. Большинство носителей тока в pnp-транзисторе - это дырки. Это в отличие от npn-транзистор, в котором основными носителями тока являются электроны. Чтобы поддержать это другой тип тока (поток дырок), батареи смещения поменяны местами для pnp-транзистора.Типичная установка смещения для pnp-транзистора показана на рисунке 1.

Обратите внимание, что процедура, использованная ранее для правильного смещения npn-транзистора, также применяется здесь к транзистору pnp. Первая буква (p) в последовательности pnp указывает полярность напряжения, необходимого для эмиттера ( p ositive), а вторая буква (n) указывает полярность базового напряжения ( n egative). Поскольку переход база-коллектор всегда имеет обратное смещение, тогда напряжение противоположной полярности (отрицательное) необходимо использовать для коллектора.Таким образом, база pnp-транзистора должна быть отрицательной. по отношению к эмиттеру, а коллектор должен быть более отрицательным, чем база. Помните, как и в случае транзистора npn, эта разница в напряжении питания равна необходимо, чтобы ток (поток дырок в случае транзистора pnp) от эмиттер к коллектору. Хотя ток через отверстие является преобладающим типом потока в pnp-транзистор, дырочный поток происходит только внутри самого транзистора, в то время как электроны текут во внешней цепи.Однако именно внутренний поток дырок приводит к потоку электронов во внешних проводах, подключенных к транзистору.

Коллектор

База

Эмиттер

прямое смещение

Рис. 2. Смещенный в прямом направлении переход в pnp-транзисторе.

Коллектор

База

Эмиттер

прямое смещение

Рис. 2. Смещенный в прямом направлении переход в pnp-транзисторе.

pnp разветвление с прямым смещением

Теперь давайте посмотрим, что происходит, когда переход эмиттер-база смещен вперед.При показанной настройке смещения положительная клемма батареи отталкивает отверстия эмиттера. к базе, в то время как отрицательная клемма направляет электроны базы к эмиттеру. Когда эмиттерная дырка и базовый электрон встречаются, они объединяются. Для каждого электрона, который объединяет с отверстием другой электрон покидает отрицательную клемму аккумулятора и попадает в база. В то же время электрон покидает эмиттер, создавая новую дырку, и входит в положительный полюс аккумуляторной батареи.Это движение электронов в базу и выходящий из эмиттера ток составляет базовый ток (I B ), и путь, по которому проходят эти электроны, называется схемой эмиттер-база.

pnp соединение с обратным смещением

В обратносмещенном переходе (рисунок 3) отрицательное напряжение на коллекторе и положительное напряжение на базовом блоке основных носителей тока от пересечения перекрестка.

Однако это же отрицательное напряжение коллектора действует как прямое смещение для меньшинства. текущие отверстия в основании, которые пересекают переход и входят в коллектор.Меньшинство Текущие электроны в коллекторе также воспринимают прямое смещение - положительная база напряжение - и двигайся в базу. Отверстия в коллекторе заполнены электронами, которые течь с минусовой клеммы АКБ. При этом электроны покидают отрицательная клемма батареи, другие электроны в основании разрывают свои ковалентные связи и введите положительный полюс аккумулятора. Хотя есть только меньшинство текущих расход в обратносмещенном переходе, он все еще очень мал из-за ограниченного количества неосновных носителей тока.

Коллектор

База

Эмиттер

обратное
смещение
переход

Рисунок 3: Обратно-смещенный переход в pnp-транзисторе.

Коллектор

База

Эмиттер

обратное
смещение
переход

Рисунок 3: Обратно-смещенный переход в pnp-транзисторе.

pnp Junction Взаимодействие

Коллектор

База

Эмиттер

обратное
смещение
переход

вперед
смещение
переход

отверстие
поток

электронный поток

Я С

I B

Рисунок 4: Работа pnp-транзистора.

Коллектор

База

Эмиттер

обратное
смещение
переход

вперед
смещение
переход

отверстие
поток

электронный поток

Я С

I B

Рисунок 4: Работа pnp-транзистора.

Взаимодействие между переходы с прямым и обратным смещением в Транзистор pnp очень похож на транзистор npn, за исключением того, что в pnp-транзисторе большинство носителей тока представляют собой дырки.В pnp-транзисторе, показанном на рисунке 4, положительное напряжение на эмиттере отталкивает отверстия к основанию. однажды в основании дырки объединяются с базовыми электронами. Но опять же помните, что база область сделана очень тонкой, чтобы предотвратить рекомбинацию дырок с электронами. Следовательно, более 90 процентов отверстий, которые входят в основание, притягиваются к большим отрицательное напряжение коллектора и проходит прямо через базу. Однако для каждого электрона и дырки, которые объединяются в основной области, другой электрон покидает отрицательный вывод базовый аккумулятор (V BB ) и поступает в базу как базовый ток (I B ).На в то же время один электрон покидает отрицательную клемму батареи, другой электрон покидает эмиттер как IE (создающий новое отверстие) и входит в положительный вывод V BB . Между тем в коллекторной цепи электроны от коллекторной батареи (V CC ) введите коллектор как Ic и объедините с лишними отверстиями от основания. Для каждой лунки который нейтрализуется в коллекторе электроном, другой электрон покидает эмиттер и начинает свой путь обратно к положительной клемме V CC .

Рисунок 5: Полный ток, протекающий через pnp-транзистор.

Рисунок 5: Полный ток, протекающий через pnp-транзистор.

Хотя ток во внешней цепи pnp-транзистора противоположен в направлении npn-транзистора, основные носители всегда текут из эмиттер к коллектору. Этот поток основных носителей также приводит к образованию две отдельные токовые петли в каждом транзисторе.Один контур - это путь базового тока, а другой контур - это путь коллекторного тока. Комбинация тока в обоих этих контуров (I B + I C ) приводит к общему току транзистора (I E ). Самое важное, что нужно помнить о двух разных типах транзисторов, это то, что напряжение эмиттер-база pnp-транзистора имеет такое же управляющее воздействие на коллекторный ток как у npn-транзистора. Проще говоря, увеличение Напряжение прямого смещения транзистора уменьшает барьер перехода эмиттер-база.Этот Действие позволяет большему количеству носителей достичь коллектора, вызывая увеличение тока. от эмиттера к коллектору и через внешнюю цепь. И наоборот, уменьшение в прямом смещении снижает ток коллектора.

.

Защита от обратного напряжения с P-FET

В последнем видео

[Afroman] показано, как добавить защиту от обратного напряжения с минимальными потерями мощности. В какой-то момент одна из ваших электронных изобретений окажется очень полезной. Вы хотите убедиться, что батарея вставлена ​​неправильно или неправильная полярность вашего настольного блока питания не повредит оборудование. Достаточно легко установить диод для защиты, но, как отмечает [Афроман], это приводит к потере энергии в виде тепла, когда схема работает правильно.Его решение состоит в том, чтобы добавить полевой МОП-транзистор с каналом P, который пропускает мощность только при правильной полярности напряжения источника.

На схеме выше показан полевой транзистор P-FET на стороне высокого напряжения. Затвор соединен с землей, позволяя току проходить через переход DS при подключении батареи. В этой конструкции также используется ограничивающий диод, чтобы удерживать напряжение затвора в безопасном диапазоне. Но есть P-FET, для которых не нужен этот диод или резистор. Этот метод потребляет в десять раз меньше энергии, чем простой диод.

Мы встроили видео после перерыва, где [Афроман] делится математическими расчетами и аргументами, лежащими в основе его выбора компонентов.

.

Смотрите также